layers.py 39.2 KB
Newer Older
1
import os
2
import torch
3
import torch.distributed
4
5

from torch import nn
6
from torch.nn import functional as F
7
from typing import List, Tuple, Optional
8
9
from loguru import logger
from functools import lru_cache
10
11
12

HAS_BITS_AND_BYTES = True
try:
13
    import bitsandbytes as bnb
Nicolas Patry's avatar
Nicolas Patry committed
14
    from bitsandbytes.nn import Int8Params, Params4bit
15
except ImportError:
16
17
    HAS_BITS_AND_BYTES = False

18
19
from accelerate import init_empty_weights

20
from text_generation_server.utils.gptq.quant_linear import QuantLinear
OlivierDehaene's avatar
OlivierDehaene committed
21
from text_generation_server.utils.import_utils import IS_CUDA_SYSTEM, IS_ROCM_SYSTEM
22
23

HAS_AWQ = True
OlivierDehaene's avatar
OlivierDehaene committed
24
try:
25
26
27
28
    from text_generation_server.utils.awq.quantize.qmodule import WQLinear
except ImportError:
    HAS_AWQ = False

29
try:
30
31
32
    major, _minor = torch.cuda.get_device_capability()
except Exception:
    major = 1
Nicolas Patry's avatar
Nicolas Patry committed
33

34
HAS_EXLLAMA = False
fxmarty's avatar
fxmarty committed
35
CAN_EXLLAMA = major >= 8 or IS_ROCM_SYSTEM
Nicolas Patry's avatar
Nicolas Patry committed
36
37
V2 = os.getenv("EXLLAMA_VERSION", "2") == "2"

38
if os.getenv("DISABLE_EXLLAMA") == "True":
39
    HAS_EXLLAMA = False
40
elif CAN_EXLLAMA:
OlivierDehaene's avatar
OlivierDehaene committed
41
    try:
Nicolas Patry's avatar
Nicolas Patry committed
42
        if V2:
OlivierDehaene's avatar
OlivierDehaene committed
43
44
45
46
47
            from text_generation_server.utils.gptq.exllamav2 import (
                QuantLinear as ExllamaQuantLinear,
                create_exllama_buffers,
                set_device,
            )
OlivierDehaene's avatar
OlivierDehaene committed
48

Nicolas Patry's avatar
Nicolas Patry committed
49
50
            HAS_EXLLAMA = "2"
        else:
OlivierDehaene's avatar
OlivierDehaene committed
51
52
53
54
55
            from text_generation_server.utils.gptq.exllama import (
                Ex4bitLinear as ExllamaQuantLinear,
                create_exllama_buffers,
                set_device,
            )
OlivierDehaene's avatar
OlivierDehaene committed
56

Nicolas Patry's avatar
Nicolas Patry committed
57
            HAS_EXLLAMA = "1"
OlivierDehaene's avatar
OlivierDehaene committed
58
59
60

    except ImportError:
        pass
61

62
63
64
HAS_EETQ = False
try:
    from EETQ import quant_weights, w8_a16_gemm
OlivierDehaene's avatar
OlivierDehaene committed
65

66
67
68
69
    HAS_EETQ = True
except ImportError:
    pass

70

71
72
73
74
75
76
77
78
79
80
81
82
83
# Monkey patching
@classmethod
def load_layer_norm(cls, prefix, weights, eps):
    weight = weights.get_tensor(f"{prefix}.weight")
    bias = weights.get_tensor(f"{prefix}.bias")
    with init_empty_weights():
        ln = cls(weight.shape, eps=eps)

    ln.weight = nn.Parameter(weight)
    ln.bias = nn.Parameter(bias)
    return ln


84
85
86
87
88
89
90
91
92
93
@classmethod
def load_layer_norm_no_bias(cls, prefix, weights, eps):
    weight = weights.get_tensor(f"{prefix}.weight")
    with init_empty_weights():
        ln = cls(weight.shape, eps=eps)

    ln.weight = nn.Parameter(weight)
    ln.bias = None
    return ln

OlivierDehaene's avatar
OlivierDehaene committed
94

95
96
97
98
99
@classmethod
def load_conv2d(cls, prefix, weights, in_channels, out_channels, kernel_size, stride):
    weight = weights.get_tensor(f"{prefix}.weight")
    bias = weights.get_tensor(f"{prefix}.bias")
    with init_empty_weights():
OlivierDehaene's avatar
OlivierDehaene committed
100
101
102
103
104
105
        conv2d = cls(
            in_channels=in_channels,
            out_channels=out_channels,
            kernel_size=kernel_size,
            stride=stride,
        )
106
107
108
109
110
111
112

    conv2d.weight = nn.Parameter(weight)
    conv2d.bias = nn.Parameter(bias)
    return conv2d


@classmethod
OlivierDehaene's avatar
OlivierDehaene committed
113
def load_conv2d_no_bias(
OlivierDehaene's avatar
OlivierDehaene committed
114
    cls, prefix, weights, in_channels, out_channels, kernel_size, stride
OlivierDehaene's avatar
OlivierDehaene committed
115
):
116
117
    weight = weights.get_tensor(f"{prefix}.weight")
    with init_empty_weights():
OlivierDehaene's avatar
OlivierDehaene committed
118
119
120
121
122
123
        conv2d = cls(
            in_channels=in_channels,
            out_channels=out_channels,
            kernel_size=kernel_size,
            stride=stride,
        )
124
125
126
127
128

    conv2d.weight = nn.Parameter(weight)
    conv2d.bias = None
    return conv2d

129

130
131
torch.nn.Conv2d.load = load_conv2d
torch.nn.Conv2d.load_no_bias = load_conv2d_no_bias
132
torch.nn.LayerNorm.load = load_layer_norm
133
torch.nn.LayerNorm.load_no_bias = load_layer_norm_no_bias
134

135
136

class FastLinear(nn.Module):
137
    def __init__(
OlivierDehaene's avatar
OlivierDehaene committed
138
139
140
        self,
        weight,
        bias,
141
    ) -> None:
142
143
144
145
146
        super().__init__()
        self.weight = nn.Parameter(weight)
        if bias is not None:
            self.bias = nn.Parameter(bias)
        else:
147
            self.bias = None
148
149
150
151
152
153

    @classmethod
    def load(cls, config, prefix: str, weights, bias: bool):
        weight = weights.get_tensor(f"{prefix}.weight")
        if bias:
            bias = weights.get_tensor(f"{prefix}.bias")
154
        else:
155
156
            bias = None
        return cls(weight, bias)
157
158

    def forward(self, input: torch.Tensor) -> torch.Tensor:
159
        return F.linear(input, self.weight, self.bias)
160
161


162
163
class EETQLinear(nn.Module):
    def __init__(
OlivierDehaene's avatar
OlivierDehaene committed
164
165
166
        self,
        weight,
        bias,
167
168
169
    ) -> None:
        super().__init__()
        device = weight.device
170
171
        if weight.dtype != torch.float16:
            weight = weight.to(dtype=torch.float16)
172
173
        weight = torch.t(weight).contiguous().cpu()
        weight, scale = quant_weights(weight, torch.int8, False)
174

175
176
177
178
179
180
181
182
183
184
        self.weight = weight.cuda(device)
        self.scale = scale.cuda(device)
        self.bias = bias.cuda(device) if bias is not None else None

    def forward(self, input: torch.Tensor) -> torch.Tensor:
        output = w8_a16_gemm(input, self.weight, self.scale)
        output = output + self.bias if self.bias is not None else output
        return output


Nicolas Patry's avatar
Nicolas Patry committed
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
def fp8_quantize(weight, qdtype=torch.float8_e4m3fn):
    device = weight.device
    # weight, scale = quant_weights(weight, torch.int8, False)
    finfo = torch.finfo(qdtype)
    # Calculate the scale as dtype max divided by absmax
    scale = finfo.max / weight.abs().max().clamp(min=1e-12)
    # scale and clamp the tensor to bring it to
    # the representative range of float8 data type
    # (as default cast is unsaturated)
    qweight = (weight * scale).clamp(min=finfo.min, max=finfo.max)
    # Return both float8 data and the inverse scale (as float),
    # as both required as inputs to torch._scaled_mm
    qweight = qweight.to(qdtype)
    scale = scale.float().reciprocal()
    return qweight, scale


class Fp8Linear(nn.Module):
    def __init__(
        self,
        weight,
        bias,
    ) -> None:
        super().__init__()
        self.dtype = weight.dtype
        self.qweight, self.scale = fp8_quantize(weight)

        self.bias = bias if bias is not None else None

    def forward(self, input: torch.Tensor) -> torch.Tensor:
        qinput, scale = fp8_quantize(input)
        output, _ = torch._scaled_mm(
            qinput,
            self.qweight.t(),
            out_dtype=self.dtype,
            scale_a=scale,
            scale_b=self.scale,
            bias=self.bias,
        )
        return output


227
class Linear8bitLt(nn.Module):
228
    def __init__(
OlivierDehaene's avatar
OlivierDehaene committed
229
230
231
232
233
234
235
        self,
        weight,
        bias,
        has_fp16_weights=True,
        memory_efficient_backward=False,
        threshold=0.0,
        index=None,
236
    ):
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
        super().__init__()
        assert (
            not memory_efficient_backward
        ), "memory_efficient_backward is no longer required and the argument is deprecated in 0.37.0 and will be removed in 0.39.0"
        self.state = bnb.MatmulLtState()
        self.index = index

        # Necessary for stacked layers
        self.state.threshold = threshold
        self.state.has_fp16_weights = has_fp16_weights
        self.state.memory_efficient_backward = memory_efficient_backward
        if threshold > 0.0 and not has_fp16_weights:
            self.state.use_pool = True

        self.weight = Int8Params(
            weight.data,
            has_fp16_weights=has_fp16_weights,
            requires_grad=has_fp16_weights,
255
        )
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
        self.weight.cuda(weight.device)
        self.bias = bias

    def init_8bit_state(self):
        self.state.CB = self.weight.CB
        self.state.SCB = self.weight.SCB
        self.weight.CB = None
        self.weight.SCB = None

    def forward(self, x: torch.Tensor):
        self.state.is_training = self.training
        if self.weight.CB is not None:
            self.init_8bit_state()

        # weights are cast automatically as Int8Params, but the bias has to be cast manually
        if self.bias is not None and self.bias.dtype != x.dtype:
            self.bias.data = self.bias.data.to(x.dtype)

        out = bnb.matmul(x, self.weight, bias=self.bias, state=self.state)

        if not self.state.has_fp16_weights:
            if self.state.CB is not None and self.state.CxB is not None:
                # we converted 8-bit row major to turing/ampere format in the first inference pass
                # we no longer need the row-major weight
                del self.state.CB
                self.weight.data = self.state.CxB
        return out
283
284


Nicolas Patry's avatar
Nicolas Patry committed
285
286
287
288
class Linear4bit(nn.Module):
    def __init__(self, weight, bias, quant_type):
        super().__init__()
        self.weight = Params4bit(
OlivierDehaene's avatar
OlivierDehaene committed
289
290
291
292
            weight.data,
            requires_grad=False,
            compress_statistics=True,
            quant_type=quant_type,
Nicolas Patry's avatar
Nicolas Patry committed
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
        )
        self.compute_dtype = None
        self.weight.cuda(weight.device)
        self.bias = bias

    def forward(self, x: torch.Tensor):
        # weights are cast automatically as Int8Params, but the bias has to be cast manually
        if self.bias is not None and self.bias.dtype != x.dtype:
            self.bias.data = self.bias.data.to(x.dtype)

        if getattr(self.weight, "quant_state", None) is None:
            print(
                "FP4 quantization state not initialized. Please call .cuda() or .to(device) on the LinearFP4 layer first."
            )
        inp_dtype = x.dtype
        if self.compute_dtype is not None:
            x = x.to(self.compute_dtype)

        bias = None if self.bias is None else self.bias.to(self.compute_dtype)
        out = bnb.matmul_4bit(
            x, self.weight.t(), bias=bias, quant_state=self.weight.quant_state
        )

        out = out.to(inp_dtype)

        return out


321
322
@lru_cache(1)
def warn_deprecate_bnb():
OlivierDehaene's avatar
OlivierDehaene committed
323
324
325
326
    logger.warning(
        "Bitsandbytes 8bit is deprecated, using `eetq` is a drop-in replacement, and has much better performnce"
    )

327

328
329
330
def get_linear(weight, bias, quantize):
    if quantize is None:
        linear = FastLinear(weight, bias)
331
332
333
334
    elif quantize == "eetq":
        if HAS_EETQ:
            linear = EETQLinear(weight, bias)
        else:
OlivierDehaene's avatar
OlivierDehaene committed
335
336
337
            raise ImportError(
                "Please install EETQ from https://github.com/NetEase-FuXi/EETQ"
            )
Nicolas Patry's avatar
Nicolas Patry committed
338
339
    elif quantize == "fp8":
        linear = Fp8Linear(weight, bias)
340
    elif quantize == "bitsandbytes":
341
        warn_deprecate_bnb()
342
343
344
345
346
347
348
349
        linear = Linear8bitLt(
            weight,
            bias,
            has_fp16_weights=False,
            threshold=6.0,
        )
        if bias is not None:
            linear.bias = nn.Parameter(bias)
Nicolas Patry's avatar
Nicolas Patry committed
350
351
352
353
354
355
356
357
358
359
360
361
    elif quantize == "bitsandbytes-fp4":
        linear = Linear4bit(
            weight,
            bias,
            quant_type="fp4",
        )
    elif quantize == "bitsandbytes-nf4":
        linear = Linear4bit(
            weight,
            bias,
            quant_type="nf4",
        )
362
    elif quantize == "gptq":
363
        try:
364
            qweight, qzeros, scales, g_idx, bits, groupsize, use_exllama = weight
365
366
367
368
369
        except Exception:
            raise NotImplementedError(
                f"The passed weight is not `gptq` compatible, loader needs to be updated."
            )

370
        if use_exllama:
OlivierDehaene's avatar
OlivierDehaene committed
371
372
373
            linear = ExllamaQuantLinear(
                qweight, qzeros, scales, g_idx, bias, bits, groupsize
            )
374
375
376
377
378
379
380
381
382
383
        else:
            linear = QuantLinear(
                qweight,
                qzeros,
                scales,
                g_idx,
                bias,
                bits,
                groupsize,
            )
384
385
386
387
388
389
390
    elif quantize == "awq":
        try:
            qweight, qzeros, scales, _, bits, groupsize, _ = weight
        except Exception:
            raise NotImplementedError(
                f"The passed weight is not `awq` compatible, loader needs to be updated."
            )
Ilyas Moutawwakil's avatar
Ilyas Moutawwakil committed
391
392
393
394
395
396
        if IS_ROCM_SYSTEM:
            raise NotImplementedError(
                "AWQ GEMM kernel can't be used on ROCm systems, please use `--quantize gptq` instead "
                "to use Exllama/GPTQ kernels for AWQ inference."
            )
        if not HAS_AWQ:
OlivierDehaene's avatar
OlivierDehaene committed
397
398
399
            raise NotImplementedError(
                "You do not seem to have awq installed, either install it (cd server &&  make install-awq), or try using GPTQ `---quantize gptq` a conversion AWQ->GPTQ will happen on the fly"
            )
OlivierDehaene's avatar
OlivierDehaene committed
400
401
402
403
404
405
406
407
        linear = WQLinear(
            w_bit=bits,
            group_size=groupsize,
            qweight=qweight,
            qzeros=qzeros,
            scales=scales,
            bias=bias is not None,
        )
408
409
410
411
412
413
414
415
416
417
418
419
420
421
    else:
        raise NotImplementedError(f"Quantization `{quantize}` is not implemented yet.")
    return linear


class SuperLayer(nn.Module):
    def __init__(self, linear):
        super().__init__()
        self.linear = linear

    def forward(self, x):
        return self.linear.forward(x)


422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
class ResBlock(torch.nn.Module):
    def __init__(self, config, prefix, weights):
        super().__init__()
        self.linear = FastLinear.load(
            config, prefix=f"{prefix}.linear", weights=weights, bias=True
        )
        self.act = torch.nn.SiLU()

    def forward(self, x):
        return x + self.act(self.linear(x))


class MedusaModel(torch.nn.Module):
    def __init__(self, config, weights):
        super().__init__()
        self.heads = torch.nn.ModuleList(
            [
                MedusaHead(config, prefix=f"{i}", weights=weights)
                for i in range(config["medusa_num_heads"])
            ]
        )

    def forward(self, x):
        speculative_logits = torch.stack([head(x) for head in self.heads], dim=1)
        return speculative_logits


class MedusaHead(torch.nn.Module):
    def __init__(self, config, prefix, weights):
        super().__init__()
        self.blocks = torch.nn.ModuleList(
            [
                ResBlock(config, prefix=f"{prefix}.{i}", weights=weights)
                for i in range(config["medusa_num_layers"])
            ]
        )
        n = len(self.blocks)
        self.out = FastLinear.load(
            config, prefix=f"{prefix}.{n}", weights=weights, bias=False
        )

    def forward(self, x):
        for block in self.blocks:
            x = block(x)
        x = self.out(x)
        return x


class SpeculativeHead(nn.Module):
    def __init__(self, lm_head, medusa):
        super().__init__()
        self.lm_head = lm_head
        self.medusa = medusa

    @staticmethod
    def load(config, prefix: str, weights):
        lm_head = TensorParallelHead.load(config, prefix, weights)
        use_medusa = config.use_medusa
        if use_medusa:
            from pathlib import Path
            from safetensors import safe_open
            import json

            medusa_config = str(Path(use_medusa) / "config.json")
            filename = str(Path(use_medusa) / "medusa_lm_head.safetensors")

            with open(medusa_config, "r") as f:
                config = json.load(f)
            routing = weights.routing
            with safe_open(filename, framework="pytorch") as f:
                for k in f.keys():
                    if k in routing:
                        raise RuntimeError(
                            f"Key {k} was found in multiple files: {filename} and {routing[k]}"
                        )
                    weights.routing[k] = filename

            medusa = MedusaModel(config, weights)
        else:
            medusa = None
        return SpeculativeHead(lm_head, medusa)

    def forward(
        self, input: torch.Tensor
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
        logits = self.lm_head(input)
        speculative_logits = self.medusa(input) if self.medusa is not None else None
        return logits, speculative_logits


512
class TensorParallelHead(SuperLayer):
513
    def __init__(self, linear, process_group, should_gather: bool):
514
        super().__init__(linear)
515
        self.process_group = process_group
516
        self.should_gather = should_gather
517
518
519

    @staticmethod
    def load(config, prefix: str, weights):
520
521
522
523
524
525
526
527
528
529
530
531
        if weights.process_group.size() > 1:
            try:
                weight = weights.get_sharded(f"{prefix}.weight", dim=0)
                should_gather = True
            except AssertionError:
                # If the vocab size is not divisible by number of shards
                # just load the entire thing.
                weight = weights.get_tensor(f"{prefix}.weight")
                should_gather = False
        else:
            weight = weights.get_tensor(f"{prefix}.weight")
            should_gather = False
532

533
534
        # GPTQ,AWQ,EETQ don't quantize heads (nor embeddings)
        if config.quantize in ["gptq", "awq", "eetq"]:
535
536
537
            quantize = None
        else:
            quantize = config.quantize
538
        return TensorParallelHead(
539
            get_linear(weight, bias=None, quantize=quantize),
540
            process_group=weights.process_group,
541
            should_gather=should_gather,
542
543
544
        )

    def forward(self, input: torch.Tensor) -> torch.Tensor:
OlivierDehaene's avatar
OlivierDehaene committed
545
546
547
        if not self.should_gather:
            return super().forward(input)

548
        world_size = self.process_group.size()
OlivierDehaene's avatar
OlivierDehaene committed
549
        if len(input.shape) == 2 and isinstance(self.linear, FastLinear):
550
551
            out_dim = self.linear.weight.shape[0]

OlivierDehaene's avatar
OlivierDehaene committed
552
553
554
555
556
557
558
559
            if input.shape[0] == 1:
                world_out = input.new_empty(1, out_dim * world_size)
                local_out = input.new_empty(1, out_dim)
                gather_input = local_out
            else:
                world_out = input.new_empty(out_dim * world_size, input.shape[0])
                gather_input = input.new_empty(out_dim, input.shape[0])
                local_out = gather_input.T
560
561
562
563

            torch.mm(input, self.linear.weight.T, out=local_out)

            torch.distributed.all_gather_into_tensor(
OlivierDehaene's avatar
OlivierDehaene committed
564
                world_out, gather_input, group=self.process_group
565
566
            )

OlivierDehaene's avatar
OlivierDehaene committed
567
568
569
            if input.shape[0] == 1:
                return world_out
            return world_out.T
570

OlivierDehaene's avatar
OlivierDehaene committed
571
572
573
574
        output = super().forward(input)
        world_output = [
            torch.empty_like(output) for _ in range(self.process_group.size())
        ]
575
576
577
578
579
580
581
        torch.distributed.all_gather(world_output, output, group=self.process_group)
        world_output = torch.cat(world_output, dim=-1)
        return world_output


class TensorParallelColumnLinear(SuperLayer):
    @classmethod
xiaobin's avatar
xiaobin committed
582
583
    def load_qkv(cls, config, prefix: str, weights, bias: bool):
        """Specific method when the QKV was joined after the fact"""
OlivierDehaene's avatar
OlivierDehaene committed
584
        weight = weights.get_weights_col_packed_qkv(prefix, quantize=config.quantize)
xiaobin's avatar
xiaobin committed
585
586
587
588
589
590
591
592
        if bias:
            raise NotImplementedError("packed_qkv only implemented for baichuan")
        else:
            bias = None
        linear = get_linear(weight, bias, config.quantize)
        return cls(linear)

    @classmethod
593
    def load(cls, config, prefix: str, weights, bias: bool):
594
        return cls.load_multi(config, [prefix], weights, bias, dim=0)
595

596
597
    @classmethod
    def load_multi(cls, config, prefixes: List[str], weights, bias: bool, dim: int):
598
599
600
        weight = weights.get_multi_weights_col(
            prefixes, quantize=config.quantize, dim=dim
        )
601

602
603
        if bias:
            b = [weights.get_sharded(f"{p}.bias", dim=0) for p in prefixes]
604
            bias = torch.cat(b, dim=dim)
605
606
        else:
            bias = None
607
608
        linear = get_linear(weight, bias, config.quantize)
        return cls(linear)
609

610
611
612
613

class TensorParallelRowLinear(SuperLayer):
    def __init__(self, linear, process_group):
        super().__init__(linear)
614
615
        self.process_group = process_group

616
617
    @classmethod
    def load(cls, config, prefix: str, weights, bias: bool):
618
619
        weight = weights.get_multi_weights_row(prefix, quantize=config.quantize)

620
621
622
623
624
625
626
627
628
        if bias and weights.process_group.rank() == 0:
            # Rank is only on the first rank process
            bias = weights.get_tensor(f"{prefix}.bias")
        else:
            bias = None
        return cls(
            get_linear(weight, bias, config.quantize),
            process_group=weights.process_group,
        )
629

630
    def forward(self, input: torch.Tensor, reduce: bool = True) -> torch.Tensor:
631
        out = super().forward(input)
632
        if self.process_group.size() > 1 and reduce:
633
            torch.distributed.all_reduce(out, group=self.process_group)
634
        return out
635
636


637
638
639
class TensorParallelEmbedding(nn.Module):
    def __init__(self, prefix: str, weights, reduce=True):
        super().__init__()
640
        weight = weights.get_partial_sharded(f"{prefix}.weight", dim=0)
641
642
643
644
645
646
647
        num_embeddings = weights.get_shape(f"{prefix}.weight")[0]

        process_group = weights.process_group

        world_size = process_group.size()
        rank = process_group.rank()

648
        block_size = (num_embeddings + world_size - 1) // world_size
649
650
        self.min_id = rank * block_size
        self.max_id = min(num_embeddings, (rank + 1) * block_size)
OlivierDehaene's avatar
OlivierDehaene committed
651
652
653
        self.null_idx = weight.shape[
            0
        ]  # Usually block_size, might be less in non even vocab_size.
654
655
        self.process_group = weights.process_group
        self.reduce = reduce
656
657

        """Additional 0 entry used for masking"""
658
        self.weight = nn.Parameter(F.pad(weight, (0, 0, 0, 1)))
659
660
661
662
663
664
665
666
667

    def forward(self, input: torch.Tensor) -> torch.Tensor:
        # default all out of bounds values to `self.null_idx` that will then be mapped to 0
        # translate for [0, self.max_id - self.min_id[
        input = torch.where(
            (self.min_id > input) | (input >= self.max_id),
            self.null_idx,
            input - self.min_id,
        )
668
        out = torch.nn.functional.embedding(input, self.weight)
669
        if self.reduce and self.process_group.size() > 1:
670
            torch.distributed.all_reduce(out, group=self.process_group)
671
672
673
674
        return out


try:
fxmarty's avatar
fxmarty committed
675
676
    if IS_CUDA_SYSTEM:
        import dropout_layer_norm
OlivierDehaene's avatar
OlivierDehaene committed
677
678
    elif IS_ROCM_SYSTEM:
        from vllm import layernorm_ops
fxmarty's avatar
fxmarty committed
679
680
    else:
        dropout_layer_norm = None
681
682
683

    class FastLayerNorm(nn.LayerNorm):
        def forward(self, hidden_states, residual=None):
fxmarty's avatar
fxmarty committed
684
            if hidden_states.shape[-1] > 8192 or IS_ROCM_SYSTEM:
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
                if residual is not None:
                    hidden_states += residual
                residual = hidden_states

                return super(FastLayerNorm, self).forward(hidden_states), residual
            else:
                (
                    normed_hidden_states,
                    residual,
                    *rest,
                ) = dropout_layer_norm.dropout_add_ln_fwd(
                    hidden_states,
                    residual,
                    self.weight,
                    self.bias,
                    None,
                    None,
                    None,
                    None,
                    0.0,
                    self.eps,
                    1.0,
                    0,
                    None,
                    False,
                    False,
                )
                if residual is None:
                    residual = hidden_states

                return normed_hidden_states, residual
OlivierDehaene's avatar
OlivierDehaene committed
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747

    class FastRMSNorm(nn.Module):
        def __init__(self, weight: torch.Tensor, eps: float):
            super().__init__()

            self.weight = nn.Parameter(weight)
            self.variance_epsilon = eps

        @classmethod
        def load(cls, prefix, weights, eps=1e-6):
            weight = weights.get_tensor(f"{prefix}.weight")
            return cls(weight, eps)

        def forward(self, hidden_states, residual=None):
            if hidden_states.shape[-1] > 8192:
                if residual is not None:
                    hidden_states += residual
                residual = hidden_states

                hidden_states = hidden_states.to(torch.float32)
                variance = hidden_states.pow(2).mean(-1, keepdim=True)
                hidden_states = hidden_states * torch.rsqrt(
                    variance + self.variance_epsilon
                )

                # convert into half-precision if necessary
                if self.weight.dtype in [torch.float16, torch.bfloat16]:
                    hidden_states = hidden_states.to(self.weight.dtype)

                return self.weight * hidden_states, residual
            elif IS_CUDA_SYSTEM:
                # faster post attention rms norm
OlivierDehaene's avatar
OlivierDehaene committed
748
749
750
751
752
                (
                    normed_hidden_states,
                    res,
                    *rest,
                ) = dropout_layer_norm.dropout_add_ln_fwd(
OlivierDehaene's avatar
OlivierDehaene committed
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
                    hidden_states,
                    residual,
                    self.weight,
                    None,
                    None,
                    None,
                    None,
                    None,
                    0.0,
                    self.variance_epsilon,
                    1.0,
                    0,
                    None,
                    False,
                    True,  # Activate RMSNorm
                )
                if res is None:
                    res = hidden_states

                return normed_hidden_states, res
            elif IS_ROCM_SYSTEM:
                # We use VLLM RMSNorm kernel that can be compiled for RoCm, instead of Flash Attention ones that can not.
                if residual is not None:
                    hidden_states += residual
                residual = hidden_states

                out = torch.empty_like(hidden_states)
                layernorm_ops.rms_norm(
                    out,
                    hidden_states,
                    self.weight.data,
                    self.variance_epsilon,
                )
                return out, residual
            else:
                raise ValueError(
OlivierDehaene's avatar
OlivierDehaene committed
789
790
                    "Your system seem to be not supported. Please check your install or open an issue at https://github.com/huggingface/text-generation-inference/issues with a clear reproduction."
                )
OlivierDehaene's avatar
OlivierDehaene committed
791

792
793
794
795
except ImportError:
    pass

try:
fxmarty's avatar
fxmarty committed
796
797
798
799
800
    if IS_CUDA_SYSTEM:
        from flash_attn.layers.rotary import RotaryEmbedding
        import rotary_emb
    elif IS_ROCM_SYSTEM:
        from vllm import pos_encoding_ops
801

Nicolas Patry's avatar
Nicolas Patry committed
802
803
    def _create_inv_freq(dim, base, device):
        inv_freq = 1.0 / (
OlivierDehaene's avatar
OlivierDehaene committed
804
            base ** (torch.arange(0, dim, 2, device=device, dtype=torch.float32) / dim)
Nicolas Patry's avatar
Nicolas Patry committed
805
806
807
808
809
        )
        return inv_freq

    def _get_rope_config(config):
        if os.getenv("ROPE_SCALING", None) is not None:
OlivierDehaene's avatar
OlivierDehaene committed
810
811
812
813
            rope_scaling = {
                "type": os.environ["ROPE_SCALING"],
                "factor": float(os.environ["ROPE_FACTOR"]),
            }
Nicolas Patry's avatar
Nicolas Patry committed
814
815
816
            return rope_scaling
        return getattr(config, "rope_scaling", None)

817
    class PositionRotaryEmbedding(nn.Module):
Nicolas Patry's avatar
Nicolas Patry committed
818
        def __init__(self, inv_freq, scaling_factor):
819
            super().__init__()
820
            self.inv_freq = inv_freq
821
822
823
824
825
            self._seq_len_cached = 0
            self._cos_cached = None
            self._sin_cached = None
            self._cos_k_cached = None
            self._sin_k_cached = None
Nicolas Patry's avatar
Nicolas Patry committed
826
827
            self.scaling_factor = scaling_factor
            self.dynamic_args = None
828

OlivierDehaene's avatar
OlivierDehaene committed
829
830
831
832
833
834
835
        def forward(
            self,
            query: torch.Tensor,
            key: torch.Tensor,
            cos: torch.Tensor,
            sin: torch.Tensor,
        ):
fxmarty's avatar
fxmarty committed
836
837
838
839
            # Such controlflows may add some overhead.
            if IS_CUDA_SYSTEM:
                rotary_dim = cos.shape[-1]
                q1 = query[..., :rotary_dim]
OlivierDehaene's avatar
OlivierDehaene committed
840
                q2 = query[..., rotary_dim : 2 * rotary_dim]
fxmarty's avatar
fxmarty committed
841
842
843
844

                rotary_emb.apply_rotary(q1, q2, cos, sin, q1, q2, False)

                k1 = key[..., :rotary_dim]
OlivierDehaene's avatar
OlivierDehaene committed
845
                k2 = key[..., rotary_dim : 2 * rotary_dim]
fxmarty's avatar
fxmarty committed
846
847
848
849
850
851
852
853
854

                rotary_emb.apply_rotary(k1, k2, cos, sin, k1, k2, False)
            elif IS_ROCM_SYSTEM:
                # NOTE: On RoCm systems, we use a ROPE implementatation adapted from VLLM which launches a single kernel for both query/key, contrary to flash-attn implementation used on NVIDIA systems.
                # Compiling flash-attn rotary on RoCm, it appears hipcc is unable to unroll loops, resulting in an even slower inference compared to eager: https://github.com/pytorch/pytorch/issues/113773

                head_size = query.shape[-1]

                # Inplace operation, updating query and key.
OlivierDehaene's avatar
OlivierDehaene committed
855
                pos_encoding_ops.rotary_embedding(query, key, head_size, cos, sin, True)
fxmarty's avatar
fxmarty committed
856
            else:
OlivierDehaene's avatar
OlivierDehaene committed
857
                raise ValueError(
OlivierDehaene's avatar
OlivierDehaene committed
858
859
                    "Your system seem to be not supported. Please check your install or open an issue at https://github.com/huggingface/text-generation-inference/issues with a clear reproduction."
                )
fxmarty's avatar
fxmarty committed
860

861
        @classmethod
Nicolas Patry's avatar
Nicolas Patry committed
862
863
864
865
866
867
868
869
870
        def static(cls, config, dim, base, device):
            inv_freq = _create_inv_freq(dim, base, device)
            scaling_factor = None
            rope_scaling = _get_rope_config(config)
            if rope_scaling is not None:
                scaling_factor = rope_scaling["factor"]
                if rope_scaling["type"] == "linear":
                    pass
                elif rope_scaling["type"] == "dynamic":
OlivierDehaene's avatar
OlivierDehaene committed
871
872
873
874
875
876
877
                    return DynamicPositionRotaryEmbedding(
                        dim=dim,
                        max_position_embeddings=config.max_position_embeddings,
                        base=base,
                        device=inv_freq.device,
                        scaling_factor=scaling_factor,
                    )
Nicolas Patry's avatar
Nicolas Patry committed
878
879
880
                elif rope_scaling["type"] == "yarn":
                    return YarnPositionRotaryEmbedding(
                        dim=2 * inv_freq.shape[0],
OlivierDehaene's avatar
OlivierDehaene committed
881
882
883
                        max_position_embeddings=rope_scaling[
                            "original_max_position_embeddings"
                        ],
Nicolas Patry's avatar
Nicolas Patry committed
884
885
886
887
888
889
                        base=10000.0,
                        device=inv_freq.device,
                        scaling_factor=scaling_factor,
                        extrapolation_factor=1,
                        attn_factor=1,
                        beta_fast=32,
OlivierDehaene's avatar
OlivierDehaene committed
890
                        beta_slow=1,
Nicolas Patry's avatar
Nicolas Patry committed
891
                    )
Nicolas Patry's avatar
Nicolas Patry committed
892
                else:
OlivierDehaene's avatar
OlivierDehaene committed
893
894
895
                    raise NotImplementedError(
                        f"rope scaling type {rope_scaling['type']} is not implemented or invalid"
                    )
Nicolas Patry's avatar
Nicolas Patry committed
896
            return cls(inv_freq, scaling_factor)
897
898

        @classmethod
Nicolas Patry's avatar
Nicolas Patry committed
899
        def load(cls, config, prefix, weights):
900
901
902
903
904
            # XXX: Always load this in float32 !
            dtype = weights.dtype
            weights.dtype = torch.float32
            inv_freq = weights.get_tensor(f"{prefix}.inv_freq")
            weights.dtype = dtype
Nicolas Patry's avatar
Nicolas Patry committed
905
906
907
908
909
910
911
912

            scaling_factor = None
            rope_scaling = _get_rope_config(config)
            if rope_scaling is not None:
                scaling_factor = rope_scaling["factor"]
                if rope_scaling["type"] == "linear":
                    pass
                elif rope_scaling["type"] == "dynamic":
OlivierDehaene's avatar
OlivierDehaene committed
913
914
915
916
917
918
919
                    return DynamicPositionRotaryEmbedding(
                        dim=2 * inv_freq.shape[0],
                        max_position_embeddings=config.max_position_embeddings,
                        base=10000.0,
                        device=inv_freq.device,
                        scaling_factor=scaling_factor,
                    )
Nicolas Patry's avatar
Nicolas Patry committed
920
921
922
                elif rope_scaling["type"] == "yarn":
                    return YarnPositionRotaryEmbedding(
                        dim=2 * inv_freq.shape[0],
OlivierDehaene's avatar
OlivierDehaene committed
923
924
925
                        max_position_embeddings=rope_scaling[
                            "original_max_position_embeddings"
                        ],
Nicolas Patry's avatar
Nicolas Patry committed
926
927
928
929
930
931
                        base=10000.0,
                        device=inv_freq.device,
                        scaling_factor=scaling_factor,
                        extrapolation_factor=1,
                        attn_factor=1,
                        beta_fast=32,
OlivierDehaene's avatar
OlivierDehaene committed
932
                        beta_slow=1,
Nicolas Patry's avatar
Nicolas Patry committed
933
                    )
Nicolas Patry's avatar
Nicolas Patry committed
934
                else:
OlivierDehaene's avatar
OlivierDehaene committed
935
936
937
                    raise NotImplementedError(
                        f"rope scaling type {rope_scaling['type']} is not implemented or invalid"
                    )
Nicolas Patry's avatar
Nicolas Patry committed
938
            return cls(inv_freq, scaling_factor)
939

940
941
942
943
        def _update_cos_sin_cache(self, dtype, device, seqlen):
            # Reset the tables if the sequence length has changed,
            # or if we're on a new device (possibly due to tracing for instance)
            if (
OlivierDehaene's avatar
OlivierDehaene committed
944
945
946
                seqlen > self._seq_len_cached
                or self._cos_cached.device != device
                or self._cos_cached.dtype != dtype
947
948
949
            ):
                self._seq_len_cached = seqlen
                t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype)
Nicolas Patry's avatar
Nicolas Patry committed
950
951
                if self.scaling_factor is not None:
                    t /= self.scaling_factor
952
953
                # Don't do einsum, it converts fp32 to fp16
                # freqs = torch.einsum("i,j->ij", t, self.inv_freq)
Nicolas Patry's avatar
Nicolas Patry committed
954

955
956
957
958
959
                freqs = torch.outer(t, self.inv_freq.to(device=t.device))
                self._cos_cached = torch.cos(freqs).to(dtype)
                self._sin_cached = torch.sin(freqs).to(dtype)

        def get_cos_sin(
OlivierDehaene's avatar
OlivierDehaene committed
960
            self, position_ids: torch.Tensor, max_s: int, dtype: torch.dtype
961
962
963
964
        ):
            """
            Return cos and sin for the asked position ids
            """
fxmarty's avatar
fxmarty committed
965
966
967
968
969
            if IS_ROCM_SYSTEM:
                # For RoCm, we always use float cos/sin to avoid a cast.
                # For NVIDIA, for some reason, the flash-attn rotary kernel requires cos/sin and query/key to be of same dtype: https://github.com/Dao-AILab/flash-attention/blob/017716451d446e464dde9aca3a3c1ed2209caaa9/csrc/rotary/rotary.cpp#L26
                # But later on goes and cast cos/sin to float anyway: https://github.com/Dao-AILab/flash-attention/blob/017716451d446e464dde9aca3a3c1ed2209caaa9/csrc/rotary/rotary_cuda.cu#L29, which looks suboptimal.
                dtype = torch.float32
970
971
972
973
974

            self._update_cos_sin_cache(dtype, position_ids.device, max_s)

            cos = torch.index_select(self._cos_cached, 0, position_ids)
            sin = torch.index_select(self._sin_cached, 0, position_ids)
fxmarty's avatar
fxmarty committed
975
            # Note: this unsqueeze is not necessary on RoCm + VLLM ROPE implementation, but we leave it as is to avoid yet an other controlflow.
976
977
            return cos.unsqueeze(1), sin.unsqueeze(1)

Nicolas Patry's avatar
Nicolas Patry committed
978
979
    class DynamicPositionRotaryEmbedding(PositionRotaryEmbedding):
        def __init__(self, dim, max_position_embeddings, base, device, scaling_factor):
Nicolas Patry's avatar
Nicolas Patry committed
980
            inv_freq = _create_inv_freq(dim, base, device)
Nicolas Patry's avatar
Nicolas Patry committed
981
982
983
984
985
            super().__init__(inv_freq, scaling_factor)
            self.dim = dim
            self.max_position_embeddings = max_position_embeddings
            self.base = base

OlivierDehaene's avatar
OlivierDehaene committed
986
        def _update_cos_sin_cache(self, dtype, device, seqlen):
Nicolas Patry's avatar
Nicolas Patry committed
987
988
989
            # Reset the tables if the sequence length has changed,
            # or if we're on a new device (possibly due to tracing for instance)
            if (
OlivierDehaene's avatar
OlivierDehaene committed
990
991
992
                seqlen > self._seq_len_cached
                or self._cos_cached.device != device
                or self._cos_cached.dtype != dtype
Nicolas Patry's avatar
Nicolas Patry committed
993
994
            ):
                if seqlen > self.max_position_embeddings:
OlivierDehaene's avatar
OlivierDehaene committed
995
                    newbase = self.base * (
OlivierDehaene's avatar
OlivierDehaene committed
996
997
                        (self.scaling_factor * seqlen / self.max_position_embeddings)
                        - (self.scaling_factor - 1)
OlivierDehaene's avatar
OlivierDehaene committed
998
999
1000
1001
                    ) ** (self.dim / (self.dim - 2))
                    self.inv_freq = _create_inv_freq(
                        self.dim, newbase, self.inv_freq.device
                    )
Nicolas Patry's avatar
Nicolas Patry committed
1002
1003
1004
1005
1006
1007
1008
1009
1010
                self._seq_len_cached = seqlen
                t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype)
                # Don't do einsum, it converts fp32 to fp16
                # freqs = torch.einsum("i,j->ij", t, self.inv_freq)

                freqs = torch.outer(t, self.inv_freq.to(device=t.device))
                self._cos_cached = torch.cos(freqs).to(dtype)
                self._sin_cached = torch.sin(freqs).to(dtype)

Nicolas Patry's avatar
Nicolas Patry committed
1011
1012
    # Inverse dim formula to find dim based on number of rotations
    import math
OlivierDehaene's avatar
OlivierDehaene committed
1013

OlivierDehaene's avatar
OlivierDehaene committed
1014
1015
1016
1017
1018
1019
    def find_correction_dim(
        num_rotations, dim, base=10000, max_position_embeddings=2048
    ):
        return (
            dim * math.log(max_position_embeddings / (num_rotations * 2 * math.pi))
        ) / (2 * math.log(base))
Nicolas Patry's avatar
Nicolas Patry committed
1020
1021

    # Find dim range bounds based on rotations
OlivierDehaene's avatar
OlivierDehaene committed
1022
1023
1024
1025
1026
1027
1028
1029
1030
    def find_correction_range(
        low_rot, high_rot, dim, base=10000, max_position_embeddings=2048
    ):
        low = math.floor(
            find_correction_dim(low_rot, dim, base, max_position_embeddings)
        )
        high = math.ceil(
            find_correction_dim(high_rot, dim, base, max_position_embeddings)
        )
OlivierDehaene's avatar
OlivierDehaene committed
1031
1032
        return max(low, 0), min(high, dim - 1)  # Clamp values just in case

Nicolas Patry's avatar
Nicolas Patry committed
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
    def linear_ramp_mask(min, max, dim):
        if min == max:
            max += 0.001  # Prevent singularity

        linear_func = (torch.arange(dim, dtype=torch.float32) - min) / (max - min)
        ramp_func = torch.clamp(linear_func, 0, 1)
        return ramp_func

    def get_mscale(scale=1):
        if scale <= 1:
            return 1.0
        return 0.1 * math.log(scale) + 1.0

    class YarnPositionRotaryEmbedding(PositionRotaryEmbedding):
OlivierDehaene's avatar
OlivierDehaene committed
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
        def __init__(
            self,
            dim,
            max_position_embeddings,
            base,
            device,
            scaling_factor,
            *,
            extrapolation_factor,
            attn_factor,
            beta_fast,
            beta_slow,
        ):
Nicolas Patry's avatar
Nicolas Patry committed
1060
1061
1062
1063
1064
1065
1066
1067
1068
            inv_freq = _create_inv_freq(dim, base, device)
            super().__init__(inv_freq, scaling_factor)
            self.dim = dim
            self.max_position_embeddings = max_position_embeddings
            self.base = base
            self.extrapolation_factor = extrapolation_factor
            self.attn_factor = attn_factor
            self.beta_fast = beta_fast
            self.beta_slow = beta_slow
OlivierDehaene's avatar
OlivierDehaene committed
1069
1070
1071
            self.mscale = float(
                get_mscale(self.scaling_factor) * self.attn_factor
            )  # Get n-d magnitude scaling corrected for interpolation
Nicolas Patry's avatar
Nicolas Patry committed
1072
1073
1074
1075
1076

        def _update_cos_sin_cache(self, dtype, device, seqlen):
            # Reset the tables if the sequence length has changed,
            # or if we're on a new device (possibly due to tracing for instance)
            if (
OlivierDehaene's avatar
OlivierDehaene committed
1077
1078
1079
                seqlen > self._seq_len_cached
                or self._cos_cached.device != device
                or self._cos_cached.dtype != dtype
Nicolas Patry's avatar
Nicolas Patry committed
1080
1081
1082
1083
1084
1085
1086
            ):
                if seqlen > self.max_position_embeddings:
                    inv_freq_extrapolation = _create_inv_freq(
                        self.dim, self.base, self.inv_freq.device
                    )
                    freqs = 1.0 / inv_freq_extrapolation
                    inv_freq_interpolation = 1.0 / (self.scaling_factor * freqs)
OlivierDehaene's avatar
OlivierDehaene committed
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
                    low, high = find_correction_range(
                        self.beta_fast,
                        self.beta_slow,
                        self.dim,
                        self.base,
                        self.max_position_embeddings,
                    )
                    inv_freq_mask = (
                        1
                        - linear_ramp_mask(low, high, self.dim // 2).float().to(device)
                    ) * self.extrapolation_factor  # Get n-d rotational scaling corrected for extrapolation
                    inv_freq = (
                        inv_freq_interpolation * (1 - inv_freq_mask)
                        + inv_freq_extrapolation * inv_freq_mask
                    )
Nicolas Patry's avatar
Nicolas Patry committed
1102
1103

                    self.inv_freq = inv_freq
OlivierDehaene's avatar
OlivierDehaene committed
1104
1105
1106
                    self.mscale = float(
                        get_mscale(self.scaling_factor) * self.attn_factor
                    )  # Get n-d magnitude scaling corrected for interpolation
Nicolas Patry's avatar
Nicolas Patry committed
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116

                self._seq_len_cached = seqlen
                t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype)
                # Don't do einsum, it converts fp32 to fp16
                # freqs = torch.einsum("i,j->ij", t, self.inv_freq)

                freqs = torch.outer(t, self.inv_freq.to(device=t.device))
                self._cos_cached = (torch.cos(freqs) * self.mscale).to(dtype)
                self._sin_cached = (torch.sin(freqs) * self.mscale).to(dtype)

1117
1118
except ImportError:
    pass