lib.rs 52.1 KB
Newer Older
1
/// Text Generation Inference Webserver
OlivierDehaene's avatar
OlivierDehaene committed
2
pub mod config;
Nicolas Patry's avatar
Nicolas Patry committed
3
pub mod infer;
Olivier Dehaene's avatar
Olivier Dehaene committed
4
pub mod server;
Nicolas Patry's avatar
Nicolas Patry committed
5
pub mod validation;
Olivier Dehaene's avatar
Olivier Dehaene committed
6

7
8
#[cfg(feature = "kserve")]
mod kserve;
Nicolas Patry's avatar
Nicolas Patry committed
9
pub mod logging;
10

11
mod sagemaker;
12
pub mod usage_stats;
Nicolas Patry's avatar
Nicolas Patry committed
13
mod vertex;
14

Nicolas Patry's avatar
Nicolas Patry committed
15
16
use crate::infer::{Infer, InferError};
use crate::server::prepare_chat_input;
17
18
use pyo3::prelude::*;
use pyo3::types::IntoPyDict;
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
19
use serde::{Deserialize, Serialize};
20
use tokenizers::Encoding;
Nicolas Patry's avatar
Nicolas Patry committed
21
use tracing::warn;
22
use utoipa::ToSchema;
Olivier Dehaene's avatar
Olivier Dehaene committed
23
use validation::Validation;
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
24

25
#[allow(clippy::large_enum_variant)]
26
27
28
29
30
#[derive(Clone)]
pub enum Tokenizer {
    Python {
        tokenizer_name: String,
        revision: Option<String>,
31
        trust_remote_code: bool,
32
33
34
35
36
37
38
39
40
41
42
    },
    Rust(tokenizers::Tokenizer),
}

pub struct PyTokenizer<'a>(pyo3::Bound<'a, pyo3::PyAny>);

impl<'a> PyTokenizer<'a> {
    fn from_py(
        py: Python<'a>,
        tokenizer_name: String,
        revision: Option<String>,
43
        trust_remote_code: bool,
44
45
46
47
48
49
    ) -> PyResult<PyTokenizer<'a>> {
        let transformers = py.import_bound("transformers")?;
        let auto = transformers.getattr("AutoTokenizer")?;
        let from_pretrained = auto.getattr("from_pretrained")?;
        let args = (tokenizer_name,);
        let kwargs = if let Some(rev) = &revision {
50
51
52
53
54
            [
                ("revision", rev.to_string().into_py(py)),
                ("trust_remote_code", trust_remote_code.into_py(py)),
            ]
            .into_py_dict_bound(py)
55
        } else {
56
            [("trust_remote_code", trust_remote_code.into_py(py))].into_py_dict_bound(py)
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
        };
        let tokenizer = from_pretrained.call(args, Some(&kwargs))?;
        tracing::info!("Loaded a python tokenizer");
        Ok(PyTokenizer(tokenizer))
    }
}

trait TokenizerTrait {
    fn encode_trait(
        &self,
        query: String,
        add_special_tokens: bool,
    ) -> Result<tokenizers::Encoding, Box<dyn std::error::Error + Send + Sync>>;
}

impl TokenizerTrait for tokenizers::Tokenizer {
    fn encode_trait(
        &self,
        query: String,
        add_special_tokens: bool,
    ) -> Result<tokenizers::Encoding, Box<dyn std::error::Error + Send + Sync>> {
        self.encode(query, add_special_tokens)
    }
}

impl<'a> TokenizerTrait for PyTokenizer<'a> {
    fn encode_trait(
        &self,
        query: String,
        add_special_tokens: bool,
    ) -> Result<tokenizers::Encoding, Box<dyn std::error::Error + Send + Sync>> {
        let py = self.0.py();
        let kwargs = [
            ("text", query.into_py(py)),
            ("add_special_tokens", add_special_tokens.into_py(py)),
        ]
        .into_py_dict_bound(py);
        let encode = self.0.getattr("encode")?;
        let input_ids: Vec<u32> = encode.call((), Some(&kwargs))?.extract()?;
        Ok(Encoding::new(
            input_ids,
            vec![],                           // type ids
            vec![],                           // tokens (strings)
            vec![],                           // words
            vec![],                           // offsets
            vec![],                           // special_tokens_mask
            vec![],                           // attention_mask
            vec![],                           // overflowing
            std::collections::HashMap::new(), //sequence_ranges
        ))
    }
}

110
111
/// Hub type
#[derive(Clone, Debug, Deserialize)]
112
pub struct HubModelInfo {
113
114
115
116
117
118
    #[serde(rename(deserialize = "id"))]
    pub model_id: String,
    pub sha: Option<String>,
    pub pipeline_tag: Option<String>,
}

119
#[derive(Debug, Clone, Serialize, Deserialize, PartialEq)]
120
121
122
123
124
pub struct ChatTemplate {
    name: String,
    template: String,
}

125
#[derive(Debug, Clone, Serialize, Deserialize, PartialEq)]
126
127
128
129
130
131
#[serde(untagged)]
pub enum ChatTemplateVersions {
    Single(String),
    Multiple(Vec<ChatTemplate>),
}

132
133
use std::path::Path;

134
#[derive(Debug, Clone, Serialize, Deserialize, Default)]
135
pub struct HubTokenizerConfig {
136
    pub chat_template: Option<ChatTemplateVersions>,
137
    pub completion_template: Option<String>,
138
139
    pub bos_token: Option<TokenizerConfigToken>,
    pub eos_token: Option<TokenizerConfigToken>,
140
141
142
    pub tokenizer_class: Option<String>,
    pub add_bos_token: Option<bool>,
    pub add_eos_token: Option<bool>,
143
144
145
}

impl HubTokenizerConfig {
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
    pub fn from_file<P: AsRef<Path>>(filename: P) -> Option<Self> {
        std::fs::read_to_string(filename)
            .ok()
            .and_then(|content| serde_json::from_str(&content).ok())
    }
}

#[derive(Debug, Clone, Deserialize, Serialize, PartialEq)]
#[serde(untagged)]
pub enum TokenizerConfigToken {
    String(String),
    Object { content: String },
}

impl TokenizerConfigToken {
    pub fn as_str(&self) -> &str {
        match self {
            TokenizerConfigToken::String(s) => s,
            TokenizerConfigToken::Object { content } => content,
        }
166
167
168
    }
}

169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
#[derive(Debug, Clone, Serialize, Deserialize)]
#[serde(tag = "processor_class")]
pub enum HubPreprocessorConfig {
    Idefics2Processor(Idefics2Preprocessor),
}

impl HubPreprocessorConfig {
    pub fn from_file<P: AsRef<std::path::Path>>(filename: P) -> Option<Self> {
        let content = std::fs::read_to_string(filename).ok()?;
        serde_json::from_str(&content).ok()
    }
}

#[derive(Clone, Debug, Serialize, Deserialize)]
pub struct Idefics2Preprocessor {
    #[serde(default)]
    do_image_splitting: bool,
}

drbh's avatar
drbh committed
188
189
190
191
192
193
194
195
#[derive(Debug, Clone, Deserialize, Default)]
pub struct HubProcessorConfig {
    pub chat_template: Option<ChatTemplateVersions>,
    pub image_seq_len: usize,
    pub processor_class: Option<String>,
}

impl HubProcessorConfig {
196
197
198
199
    pub fn from_file<P: AsRef<Path>>(filename: P) -> Option<Self> {
        std::fs::read_to_string(filename)
            .ok()
            .and_then(|content| serde_json::from_str(&content).ok())
drbh's avatar
drbh committed
200
201
202
    }
}

203
#[derive(Clone, Debug, Deserialize, ToSchema, Serialize)]
Nicolas Patry's avatar
Nicolas Patry committed
204
#[cfg_attr(test, derive(PartialEq))]
drbh's avatar
drbh committed
205
206
#[serde(tag = "type", content = "value")]
pub(crate) enum GrammarType {
207
208
209
210
211
    /// A string that represents a [JSON Schema](https://json-schema.org/).
    ///
    /// JSON Schema is a declarative language that allows to annotate JSON documents
    /// with types and descriptions.
    #[serde(rename = "json")]
drbh's avatar
drbh committed
212
    #[serde(alias = "json_object")]
213
214
    #[schema(example = json ! ({"properties": {"location":{"type": "string"}}}))]
    Json(serde_json::Value),
drbh's avatar
drbh committed
215
216
217
218
    #[serde(rename = "regex")]
    Regex(String),
}

219
220
#[derive(Clone, Debug, Serialize, ToSchema)]
pub struct Info {
221
    /// Model info
222
223
224
225
    #[schema(example = "bigscience/blomm-560m")]
    pub model_id: String,
    #[schema(nullable = true, example = "e985a63cdc139290c5f700ff1929f0b5942cced2")]
    pub model_sha: Option<String>,
Nicolas Patry's avatar
Nicolas Patry committed
226
227
228
229
    // #[schema(example = "torch.float16")]
    // pub model_dtype: String,
    // #[schema(example = "cuda")]
    // pub model_device_type: String,
230
231
    #[schema(nullable = true, example = "text-generation")]
    pub model_pipeline_tag: Option<String>,
Nicolas Patry's avatar
Nicolas Patry committed
232

233
234
235
236
237
238
239
240
    /// Router Parameters
    #[schema(example = "128")]
    pub max_concurrent_requests: usize,
    #[schema(example = "2")]
    pub max_best_of: usize,
    #[schema(example = "4")]
    pub max_stop_sequences: usize,
    #[schema(example = "1024")]
OlivierDehaene's avatar
OlivierDehaene committed
241
    pub max_input_tokens: usize,
242
243
244
245
    #[schema(example = "2048")]
    pub max_total_tokens: usize,
    #[schema(example = "2")]
    pub validation_workers: usize,
246
247
    #[schema(example = "32")]
    pub max_client_batch_size: usize,
Nicolas Patry's avatar
Nicolas Patry committed
248

249
    /// Router Info
250
251
    #[schema(example = "text-generation-router")]
    pub router: &'static str,
252
253
254
255
    #[schema(example = "0.5.0")]
    pub version: &'static str,
    #[schema(nullable = true, example = "null")]
    pub sha: Option<&'static str>,
256
257
    #[schema(nullable = true, example = "null")]
    pub docker_label: Option<&'static str>,
258
259
}

drbh's avatar
drbh committed
260
#[derive(Clone, Debug, Deserialize, ToSchema, Default)]
Nicolas Patry's avatar
Nicolas Patry committed
261
#[cfg_attr(test, derive(PartialEq))]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
262
pub(crate) struct GenerateParameters {
263
    /// Generate best_of sequences and return the one if the highest token logprobs.
264
265
266
    #[serde(default)]
    #[schema(exclusive_minimum = 0, nullable = true, default = "null", example = 1)]
    pub best_of: Option<usize>,
267
268

    /// The value used to module the logits distribution.
269
270
271
272
273
274
275
276
    #[serde(default)]
    #[schema(
        exclusive_minimum = 0.0,
        nullable = true,
        default = "null",
        example = 0.5
    )]
    pub temperature: Option<f32>,
277
278
279

    /// The parameter for repetition penalty. 1.0 means no penalty.
    /// See [this paper](https://arxiv.org/pdf/1909.05858.pdf) for more details.
280
281
282
283
284
285
286
287
    #[serde(default)]
    #[schema(
        exclusive_minimum = 0.0,
        nullable = true,
        default = "null",
        example = 1.03
    )]
    pub repetition_penalty: Option<f32>,
288
289
290
291

    /// The parameter for frequency penalty. 1.0 means no penalty
    /// Penalize new tokens based on their existing frequency in the text so far,
    /// decreasing the model's likelihood to repeat the same line verbatim.
292
    #[serde(default)]
293
294
295
296
297
298
299
    #[schema(
        exclusive_minimum = -2.0,
        nullable = true,
        default = "null",
        example = 0.1
    )]
    pub frequency_penalty: Option<f32>,
300
301

    /// The number of highest probability vocabulary tokens to keep for top-k-filtering.
302
    #[serde(default)]
303
304
    #[schema(exclusive_minimum = 0, nullable = true, default = "null", example = 10)]
    pub top_k: Option<i32>,
305
306

    /// Top-p value for nucleus sampling.
307
308
309
310
311
312
313
314
315
    #[serde(default)]
    #[schema(
        exclusive_minimum = 0.0,
        maximum = 1.0,
        nullable = true,
        default = "null",
        example = 0.95
    )]
    pub top_p: Option<f32>,
316
317
318

    /// Typical Decoding mass
    /// See [Typical Decoding for Natural Language Generation](https://arxiv.org/abs/2202.00666) for more information.
319
    #[serde(default)]
320
321
322
323
324
325
326
327
    #[schema(
        exclusive_minimum = 0.0,
        maximum = 1.0,
        nullable = true,
        default = "null",
        example = 0.95
    )]
    pub typical_p: Option<f32>,
328
329

    /// Activate logits sampling.
330
    #[serde(default)]
331
    #[schema(default = "false", example = true)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
332
    pub do_sample: bool,
333
334

    /// Maximum number of tokens to generate.
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
335
    #[serde(default = "default_max_new_tokens")]
336
    #[schema(nullable = true, default = "100", example = "20")]
337
    pub max_new_tokens: Option<u32>,
338
339

    /// Whether to prepend the prompt to the generated text
OlivierDehaene's avatar
OlivierDehaene committed
340
    #[serde(default)]
341
    #[schema(nullable = true, default = "null", example = false)]
342
    pub return_full_text: Option<bool>,
343
344

    /// Stop generating tokens if a member of `stop` is generated.
345
    #[serde(default)]
346
    #[schema(inline, max_items = 4, example = json ! (["photographer"]))]
347
    pub stop: Vec<String>,
348
349

    /// Truncate inputs tokens to the given size.
OlivierDehaene's avatar
OlivierDehaene committed
350
    #[serde(default)]
351
    #[schema(nullable = true, default = "null", example = "null")]
352
    pub truncate: Option<usize>,
353
354

    /// Watermarking with [A Watermark for Large Language Models](https://arxiv.org/abs/2301.10226).
355
    #[serde(default)]
356
357
    #[schema(default = "false", example = true)]
    pub watermark: bool,
358
359

    /// Whether to return generation details.
360
    #[serde(default)]
361
    #[schema(default = "true")]
OlivierDehaene's avatar
OlivierDehaene committed
362
    pub details: bool,
363
364

    /// Whether to return decoder input token logprobs and ids.
365
    #[serde(default)]
366
    #[schema(default = "false")]
367
    pub decoder_input_details: bool,
368
369

    /// Random sampling seed.
370
    #[serde(default)]
371
372
373
374
375
376
    #[schema(
        exclusive_minimum = 0,
        nullable = true,
        default = "null",
        example = "null"
    )]
377
    pub seed: Option<u64>,
378
379

    /// The number of highest probability vocabulary tokens to keep for top-n-filtering.
Nicolas Patry's avatar
Nicolas Patry committed
380
381
382
    #[serde(default)]
    #[schema(exclusive_minimum = 0, nullable = true, default = "null", example = 5)]
    pub top_n_tokens: Option<u32>,
383
384

    /// Grammar constraints for the generation.
drbh's avatar
drbh committed
385
    #[serde(default)]
386
    #[schema(nullable = true, default = "null", example = "null")]
drbh's avatar
drbh committed
387
    pub grammar: Option<GrammarType>,
drbh's avatar
drbh committed
388
389
390
391
392

    /// Lora adapter id
    #[serde(default)]
    #[schema(nullable = true, default = "null", example = "null")]
    pub adapter_id: Option<String>,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
393
394
}

395
fn default_max_new_tokens() -> Option<u32> {
396
    Some(100)
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
397
398
399
400
}

fn default_parameters() -> GenerateParameters {
    GenerateParameters {
401
        best_of: None,
402
403
        temperature: None,
        repetition_penalty: None,
404
        frequency_penalty: None,
405
406
        top_k: None,
        top_p: None,
407
        typical_p: None,
408
        do_sample: true,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
409
        max_new_tokens: default_max_new_tokens(),
410
        return_full_text: None,
411
        stop: Vec::new(),
412
        truncate: None,
413
        watermark: false,
OlivierDehaene's avatar
OlivierDehaene committed
414
        details: false,
415
        decoder_input_details: false,
416
        seed: None,
Nicolas Patry's avatar
Nicolas Patry committed
417
        top_n_tokens: None,
drbh's avatar
drbh committed
418
        grammar: None,
drbh's avatar
drbh committed
419
        adapter_id: None,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
420
421
422
    }
}

423
424
425
426
427
428
429
430
431
432
433
434
435
#[derive(Clone, Deserialize, Serialize, ToSchema, Debug)]
#[serde(try_from = "PromptDeserializer")]
pub struct Prompt(pub Vec<String>);

#[derive(Deserialize)]
#[serde(untagged)]
enum PromptDeserializer {
    Single(String),
    Multiple(Vec<String>),
}

impl TryFrom<PromptDeserializer> for Prompt {
    type Error = String;
436

437
    fn try_from(value: PromptDeserializer) -> Result<Self, Self::Error> {
438
        match value {
439
440
441
442
443
444
445
446
447
448
449
            PromptDeserializer::Single(s) => Ok(Prompt(vec![s])),
            PromptDeserializer::Multiple(v) => {
                if v.is_empty() {
                    Err(
                        "Empty array detected. Do not use an empty array for the prompt."
                            .to_string(),
                    )
                } else {
                    Ok(Prompt(v))
                }
            }
450
451
452
453
        }
    }
}

454
455
456
457
458
#[derive(Clone, Deserialize, Serialize, ToSchema, Debug)]
pub struct CompletionRequest {
    /// UNUSED
    #[schema(example = "mistralai/Mistral-7B-Instruct-v0.2")]
    /// ID of the model to use. See the model endpoint compatibility table for details on which models work with the Chat API.
459
    pub model: Option<String>,
460
461
462

    /// The prompt to generate completions for.
    #[schema(example = "What is Deep Learning?")]
463
    pub prompt: Prompt,
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500

    /// The maximum number of tokens that can be generated in the chat completion.
    #[serde(default)]
    #[schema(default = "32")]
    pub max_tokens: Option<u32>,

    /// What sampling temperature to use, between 0 and 2. Higher values like 0.8 will make the output more random, while
    /// lower values like 0.2 will make it more focused and deterministic. We generally recommend altering this or `top_p` but not both.
    #[serde(default)]
    #[schema(nullable = true, example = 1.0)]
    pub temperature: Option<f32>,

    /// An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the
    /// tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered.
    #[serde(default)]
    #[schema(nullable = true, example = 0.95)]
    pub top_p: Option<f32>,

    #[serde(default = "bool::default")]
    pub stream: bool,

    #[schema(nullable = true, example = 42)]
    pub seed: Option<u64>,

    /// The text to append to the prompt. This is useful for completing sentences or generating a paragraph of text.
    /// please see the completion_template field in the model's tokenizer_config.json file for completion template.
    #[serde(default)]
    pub suffix: Option<String>,

    #[serde(default)]
    pub repetition_penalty: Option<f32>,

    /// Number between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far,
    /// decreasing the model's likelihood to repeat the same line verbatim.
    #[serde(default)]
    #[schema(example = "1.0")]
    pub frequency_penalty: Option<f32>,
501
502
503
504
505

    /// Up to 4 sequences where the API will stop generating further tokens.
    #[serde(default)]
    #[schema(nullable = true, example = "null")]
    pub stop: Option<Vec<String>>,
506
507
}

508
509
510
511
512
513
514
515
516
#[derive(Clone, Serialize, ToSchema)]
#[serde(tag = "object")]
enum Completion {
    #[serde(rename = "text_completion")]
    Chunk(Chunk),
    #[serde(rename = "text_completion")]
    Final(CompletionFinal),
}

517
#[derive(Clone, Deserialize, Serialize, ToSchema, Default)]
518
pub(crate) struct CompletionFinal {
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
    pub id: String,
    #[schema(example = "1706270835")]
    pub created: u64,
    #[schema(example = "mistralai/Mistral-7B-Instruct-v0.2")]
    pub model: String,
    pub system_fingerprint: String,
    pub choices: Vec<CompletionComplete>,
    pub usage: Usage,
}

#[derive(Clone, Deserialize, Serialize, ToSchema)]
pub(crate) struct CompletionComplete {
    pub index: u32,
    pub text: String,
    pub logprobs: Option<Vec<f32>>,
    pub finish_reason: String,
}

537
538
539
540
541
542
543
544
545
#[derive(Clone, Deserialize, Serialize, ToSchema)]
pub(crate) struct Chunk {
    pub id: String,
    pub created: u64,
    pub choices: Vec<CompletionComplete>,
    pub model: String,
    pub system_fingerprint: String,
}

546
#[derive(Clone, Deserialize, Serialize, ToSchema)]
547
548
pub(crate) struct ChatCompletion {
    pub id: String,
549
    #[schema(example = "1706270835")]
550
    pub created: u64,
551
    #[schema(example = "mistralai/Mistral-7B-Instruct-v0.2")]
552
553
554
555
556
557
    pub model: String,
    pub system_fingerprint: String,
    pub choices: Vec<ChatCompletionComplete>,
    pub usage: Usage,
}

558
#[derive(Clone, Deserialize, Serialize, ToSchema)]
559
560
pub(crate) struct ChatCompletionComplete {
    pub index: u32,
Nicolas Patry's avatar
Nicolas Patry committed
561
    pub message: OutputMessage,
562
    pub logprobs: Option<ChatCompletionLogprobs>,
563
564
565
    pub finish_reason: String,
}

566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
#[derive(Clone, Deserialize, Serialize, ToSchema)]
pub(crate) struct ChatCompletionLogprobs {
    content: Vec<ChatCompletionLogprob>,
}

impl From<(Token, Vec<Token>)> for ChatCompletionLogprobs {
    fn from(value: (Token, Vec<Token>)) -> Self {
        let (token, top_tokens) = value;

        Self {
            content: vec![ChatCompletionLogprob {
                token: token.text,
                logprob: token.logprob,
                top_logprobs: top_tokens
                    .into_iter()
                    .map(|t| ChatCompletionTopLogprob {
                        token: t.text,
                        logprob: t.logprob,
                    })
                    .collect(),
            }],
        }
    }
}

impl From<(Vec<Token>, Vec<Vec<Token>>)> for ChatCompletionLogprobs {
    fn from(value: (Vec<Token>, Vec<Vec<Token>>)) -> Self {
        let (tokens, top_tokens) = value;
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608

        // Create an iterator that produces None for top_tokens once it's exhausted
        let top_tokens_iter = top_tokens
            .into_iter()
            .map(Some)
            .chain(std::iter::repeat(None));

        let content = tokens
            .into_iter()
            .zip(top_tokens_iter)
            .map(|(t, top_t_option)| ChatCompletionLogprob {
                token: t.text,
                logprob: t.logprob,
                top_logprobs: match top_t_option {
                    Some(top_t) => top_t
609
610
611
612
613
614
                        .into_iter()
                        .map(|t| ChatCompletionTopLogprob {
                            token: t.text,
                            logprob: t.logprob,
                        })
                        .collect(),
615
616
617
618
619
620
                    None => vec![], // Handle the case where there are no top tokens
                },
            })
            .collect();

        Self { content }
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
    }
}

#[derive(Clone, Deserialize, Serialize, ToSchema)]
pub(crate) struct ChatCompletionLogprob {
    token: String,
    logprob: f32,
    top_logprobs: Vec<ChatCompletionTopLogprob>,
}

#[derive(Clone, Deserialize, Serialize, ToSchema)]
pub(crate) struct ChatCompletionTopLogprob {
    token: String,
    logprob: f32,
}

637
#[derive(Clone, Deserialize, Serialize, ToSchema, Default)]
638
639
640
641
642
643
pub(crate) struct Usage {
    pub prompt_tokens: u32,
    pub completion_tokens: u32,
    pub total_tokens: u32,
}

644
645
646
647
648
649
650
651
652
#[derive(Clone, Serialize, ToSchema)]
#[serde(tag = "object")]
enum CompletionType {
    #[serde(rename = "chat.completion.chunk")]
    ChatCompletionChunk(ChatCompletionChunk),
    #[serde(rename = "chat.completion")]
    ChatCompletion(ChatCompletion),
}

653
654
655
656
impl ChatCompletion {
    pub(crate) fn new(
        model: String,
        system_fingerprint: String,
drbh's avatar
drbh committed
657
        output: Option<String>,
658
659
660
        created: u64,
        details: Details,
        return_logprobs: bool,
661
        tool_calls: Option<Vec<ToolCall>>,
662
    ) -> Self {
Nicolas Patry's avatar
Nicolas Patry committed
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
        let message = match (output, tool_calls) {
            (Some(content), None) => OutputMessage::ChatMessage(TextMessage {
                role: "assistant".into(),
                content,
            }),
            (None, Some(tool_calls)) => OutputMessage::ToolCall(ToolCallMessage {
                role: "assistant".to_string(),
                tool_calls,
            }),
            (Some(output), Some(_)) => {
                warn!("Received both chat and tool call");
                OutputMessage::ChatMessage(TextMessage {
                    role: "assistant".into(),
                    content: output,
                })
            }
            (None, None) => {
                warn!("Didn't receive an answer");
                OutputMessage::ChatMessage(TextMessage {
                    role: "assistant".into(),
                    content: "".to_string(),
                })
            }
        };
687
688
689
690
691
692
693
        Self {
            id: String::new(),
            created,
            model,
            system_fingerprint,
            choices: vec![ChatCompletionComplete {
                index: 0,
Nicolas Patry's avatar
Nicolas Patry committed
694
                message,
695
                logprobs: return_logprobs
696
                    .then(|| ChatCompletionLogprobs::from((details.tokens, details.top_tokens))),
697
                finish_reason: details.finish_reason.format(true),
698
699
700
701
702
703
704
705
706
            }],
            usage: Usage {
                prompt_tokens: details.prefill.len() as u32,
                completion_tokens: details.generated_tokens,
                total_tokens: details.prefill.len() as u32 + details.generated_tokens,
            },
        }
    }
}
707
#[derive(Clone, Serialize, ToSchema)]
708
709
pub(crate) struct ChatCompletionChunk {
    pub id: String,
710
    #[schema(example = "1706270978")]
711
    pub created: u64,
712
    #[schema(example = "mistralai/Mistral-7B-Instruct-v0.2")]
713
714
715
    pub model: String,
    pub system_fingerprint: String,
    pub choices: Vec<ChatCompletionChoice>,
Nicolas Patry's avatar
Nicolas Patry committed
716
    pub usage: Option<Usage>,
717
718
}

719
#[derive(Clone, Serialize, ToSchema)]
720
721
722
pub(crate) struct ChatCompletionChoice {
    pub index: u32,
    pub delta: ChatCompletionDelta,
723
    pub logprobs: Option<ChatCompletionLogprobs>,
724
725
726
    pub finish_reason: Option<String>,
}

Nicolas Patry's avatar
Nicolas Patry committed
727
728
729
730
731
732
733
#[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)]
pub struct ToolCallDelta {
    #[schema(example = "assistant")]
    role: String,
    tool_calls: DeltaToolCall,
}

734
735
#[derive(Clone, Debug, Serialize, ToSchema)]
#[serde(untagged)]
Nicolas Patry's avatar
Nicolas Patry committed
736
737
738
enum ChatCompletionDelta {
    Chat(TextMessage),
    Tool(ToolCallDelta),
drbh's avatar
drbh committed
739
740
}

Nicolas Patry's avatar
Nicolas Patry committed
741
#[derive(Clone, Deserialize, Serialize, ToSchema, Debug, PartialEq)]
drbh's avatar
drbh committed
742
743
744
745
746
747
748
pub(crate) struct DeltaToolCall {
    pub index: u32,
    pub id: String,
    pub r#type: String,
    pub function: Function,
}

Nicolas Patry's avatar
Nicolas Patry committed
749
#[derive(Clone, Deserialize, Serialize, ToSchema, Debug, PartialEq)]
drbh's avatar
drbh committed
750
751
752
pub(crate) struct Function {
    pub name: Option<String>,
    pub arguments: String,
753
754
}

drbh's avatar
drbh committed
755
#[allow(clippy::too_many_arguments)]
756
757
758
759
impl ChatCompletionChunk {
    pub(crate) fn new(
        model: String,
        system_fingerprint: String,
drbh's avatar
drbh committed
760
761
        delta: Option<String>,
        tool_calls: Option<Vec<String>>,
762
        created: u64,
763
        logprobs: Option<ChatCompletionLogprobs>,
764
        finish_reason: Option<String>,
Nicolas Patry's avatar
Nicolas Patry committed
765
        usage: Option<Usage>,
766
    ) -> Self {
767
        let delta = match (delta, tool_calls) {
Nicolas Patry's avatar
Nicolas Patry committed
768
769
770
771
772
773
774
            (Some(delta), _) => ChatCompletionDelta::Chat(TextMessage {
                role: "assistant".to_string(),
                content: delta,
            }),
            (None, Some(tool_calls)) => ChatCompletionDelta::Tool(ToolCallDelta {
                role: "assistant".to_string(),
                tool_calls: DeltaToolCall {
775
776
777
778
779
780
781
                    index: 0,
                    id: String::new(),
                    r#type: "function".to_string(),
                    function: Function {
                        name: None,
                        arguments: tool_calls[0].to_string(),
                    },
Nicolas Patry's avatar
Nicolas Patry committed
782
783
784
785
786
787
                },
            }),
            (None, None) => ChatCompletionDelta::Chat(TextMessage {
                role: "assistant".to_string(),
                content: "".to_string(),
            }),
788
        };
789
790
791
792
793
794
        Self {
            id: String::new(),
            created,
            model,
            system_fingerprint,
            choices: vec![ChatCompletionChoice {
795
                index: 0,
796
                delta,
797
798
799
                logprobs,
                finish_reason,
            }],
Nicolas Patry's avatar
Nicolas Patry committed
800
            usage,
801
802
803
804
805
        }
    }
}

#[derive(Clone, Deserialize, ToSchema, Serialize)]
Nicolas Patry's avatar
Nicolas Patry committed
806
#[cfg_attr(test, derive(Debug, PartialEq, Default))]
807
pub(crate) struct ChatRequest {
808
    #[schema(example = "mistralai/Mistral-7B-Instruct-v0.2")]
drbh's avatar
drbh committed
809
    /// [UNUSED] ID of the model to use. See the model endpoint compatibility table for details on which models work with the Chat API.
810
    pub model: Option<String>,
drbh's avatar
drbh committed
811

812
    /// A list of messages comprising the conversation so far.
drbh's avatar
drbh committed
813
    #[schema(example = "[{\"role\": \"user\", \"content\": \"What is Deep Learning?\"}]")]
814
815
816
817
818
    pub messages: Vec<Message>,

    /// Number between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far,
    /// decreasing the model's likelihood to repeat the same line verbatim.
    #[serde(default)]
819
    #[schema(example = "1.0")]
820
821
822
823
824
825
826
827
828
829
830
831
832
833
    pub frequency_penalty: Option<f32>,

    /// UNUSED
    /// Modify the likelihood of specified tokens appearing in the completion. Accepts a JSON object that maps tokens
    /// (specified by their token ID in the tokenizer) to an associated bias value from -100 to 100. Mathematically,
    /// the bias is added to the logits generated by the model prior to sampling. The exact effect will vary per model,
    /// but values between -1 and 1 should decrease or increase likelihood of selection; values like -100 or 100 should
    /// result in a ban or exclusive selection of the relevant token.
    #[serde(default)]
    pub logit_bias: Option<Vec<f32>>,

    /// Whether to return log probabilities of the output tokens or not. If true, returns the log probabilities of each
    /// output token returned in the content of message.
    #[serde(default)]
834
    #[schema(example = "false")]
835
836
837
838
839
    pub logprobs: Option<bool>,

    /// An integer between 0 and 5 specifying the number of most likely tokens to return at each token position, each with
    /// an associated log probability. logprobs must be set to true if this parameter is used.
    #[serde(default)]
840
    #[schema(example = "5")]
841
842
843
844
    pub top_logprobs: Option<u32>,

    /// The maximum number of tokens that can be generated in the chat completion.
    #[serde(default)]
845
    #[schema(example = "32")]
846
847
848
849
850
851
    pub max_tokens: Option<u32>,

    /// UNUSED
    /// How many chat completion choices to generate for each input message. Note that you will be charged based on the
    /// number of generated tokens across all of the choices. Keep n as 1 to minimize costs.
    #[serde(default)]
852
    #[schema(nullable = true, example = "2")]
853
854
855
856
857
    pub n: Option<u32>,

    /// Number between -2.0 and 2.0. Positive values penalize new tokens based on whether they appear in the text so far,
    /// increasing the model's likelihood to talk about new topics
    #[serde(default)]
858
    #[schema(nullable = true, example = 0.1)]
859
860
    pub presence_penalty: Option<f32>,

861
862
863
864
865
    /// Up to 4 sequences where the API will stop generating further tokens.
    #[serde(default)]
    #[schema(nullable = true, example = "null")]
    pub stop: Option<Vec<String>>,

866
867
868
869
870
    #[serde(default = "bool::default")]
    pub stream: bool,

    #[schema(nullable = true, example = 42)]
    pub seed: Option<u64>,
871
872
873
874
875
876

    /// What sampling temperature to use, between 0 and 2. Higher values like 0.8 will make the output more random, while
    /// lower values like 0.2 will make it more focused and deterministic.
    ///
    /// We generally recommend altering this or `top_p` but not both.
    #[serde(default)]
877
    #[schema(nullable = true, example = 1.0)]
878
879
880
881
882
    pub temperature: Option<f32>,

    /// An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the
    /// tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered.
    #[serde(default)]
883
    #[schema(nullable = true, example = 0.95)]
884
    pub top_p: Option<f32>,
drbh's avatar
drbh committed
885
886
887
888
889
890
891
892

    /// A list of tools the model may call. Currently, only functions are supported as a tool. Use this to provide a list of
    /// functions the model may generate JSON inputs for.
    #[serde(default)]
    #[schema(nullable = true, example = "null")]
    pub tools: Option<Vec<Tool>>,

    /// A prompt to be appended before the tools
drbh's avatar
drbh committed
893
    #[serde(default)]
drbh's avatar
drbh committed
894
895
    #[schema(
        nullable = true,
drbh's avatar
drbh committed
896
        example = "Given the functions available, please respond with a JSON for a function call with its proper arguments that best answers the given prompt. Respond in the format {name: function name, parameters: dictionary of argument name and its value}.Do not use variables."
drbh's avatar
drbh committed
897
898
899
900
901
902
    )]
    pub tool_prompt: Option<String>,

    /// A specific tool to use. If not provided, the model will default to use any of the tools provided in the tools parameter.
    #[serde(default)]
    #[schema(nullable = true, example = "null")]
drbh's avatar
drbh committed
903
    pub tool_choice: ToolChoice,
drbh's avatar
drbh committed
904
905
906
907
908
909
910

    /// Response format constraints for the generation.
    ///
    /// NOTE: A request can use `response_format` OR `tools` but not both.
    #[serde(default)]
    #[schema(nullable = true, default = "null", example = "null")]
    pub response_format: Option<GrammarType>,
911
912
913
914
915

    /// A guideline to be used in the chat_template
    #[serde(default)]
    #[schema(nullable = true, default = "null", example = "null")]
    pub guideline: Option<String>,
Nicolas Patry's avatar
Nicolas Patry committed
916
917
918
919
920
921
922

    /// Options for streaming response. Only set this when you set stream: true.
    #[serde(default)]
    #[schema(nullable = true, example = "null")]
    pub stream_options: Option<StreamOptions>,
}

Nicolas Patry's avatar
Nicolas Patry committed
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
impl ChatRequest {
    fn try_into_generate(self, infer: &Infer) -> Result<(GenerateRequest, bool), InferError> {
        let ChatRequest {
            model,
            max_tokens,
            messages,
            seed,
            stop,
            stream,
            tools,
            tool_choice,
            tool_prompt,
            temperature,
            response_format,
            guideline,
            presence_penalty,
            frequency_penalty,
            top_p,
            top_logprobs,
            ..
        } = self;

        let repetition_penalty = presence_penalty.map(|x| x + 2.0);
        let max_new_tokens = max_tokens.or(Some(100));
        let tool_prompt = tool_prompt
            .filter(|s| !s.is_empty())
            .unwrap_or_else(default_tool_prompt);
        let stop = stop.unwrap_or_default();
        // enable greedy only when temperature is 0
        let (do_sample, temperature) = match temperature {
            Some(temperature) if temperature == 0.0 => (false, None),
            other => (true, other),
        };
        let (inputs, grammar, using_tools) = prepare_chat_input(
            infer,
            response_format,
            tools,
            tool_choice,
            &tool_prompt,
            guideline,
            messages,
        )?;

        Ok((
            GenerateRequest {
                inputs: inputs.to_string(),
                add_special_tokens: false,
                parameters: GenerateParameters {
                    best_of: None,
                    temperature,
                    repetition_penalty,
                    frequency_penalty,
                    top_k: None,
                    top_p,
                    typical_p: None,
                    do_sample,
                    max_new_tokens,
                    return_full_text: None,
                    stop,
                    truncate: None,
                    watermark: false,
                    details: true,
                    decoder_input_details: !stream,
                    seed,
                    top_n_tokens: top_logprobs,
                    grammar,
                    adapter_id: model.filter(|m| *m != "tgi").map(String::from),
                },
            },
            using_tools,
        ))
    }
}

Nicolas Patry's avatar
Nicolas Patry committed
997
#[derive(Clone, Deserialize, ToSchema, Serialize)]
Nicolas Patry's avatar
Nicolas Patry committed
998
#[cfg_attr(test, derive(Debug, PartialEq))]
Nicolas Patry's avatar
Nicolas Patry committed
999
1000
1001
1002
struct StreamOptions {
    /// If set, an additional chunk will be streamed before the data: [DONE] message. The usage field on this chunk shows the token usage statistics for the entire request, and the choices field will always be an empty array. All other chunks will also include a usage field, but with a null value.
    #[schema(example = "true")]
    include_usage: bool,
drbh's avatar
drbh committed
1003
1004
}

drbh's avatar
drbh committed
1005
1006
pub fn default_tool_prompt() -> String {
    "\nGiven the functions available, please respond with a JSON for a function call with its proper arguments that best answers the given prompt. Respond in the format {name: function name, parameters: dictionary of argument name and its value}.Do not use variables.\n".to_string()
drbh's avatar
drbh committed
1007
}
1008
1009

#[derive(Clone, Debug, Deserialize, PartialEq, Serialize, ToSchema)]
1010
1011
#[schema(example = "auto")]
/// Controls which (if any) tool is called by the model.
1012
pub enum ToolType {
1013
1014
    /// Means the model can pick between generating a message or calling one or more tools.
    #[schema(rename = "auto")]
drbh's avatar
drbh committed
1015
    OneOf,
1016
1017
    /// Means the model will not call any tool and instead generates a message.
    #[schema(rename = "none")]
drbh's avatar
drbh committed
1018
    NoTool,
1019
1020
1021
    /// Forces the model to call a specific tool.
    #[schema(rename = "function")]
    Function(FunctionName),
drbh's avatar
drbh committed
1022
1023
}

1024
#[derive(Debug, Clone, PartialEq, Serialize, Deserialize, ToSchema)]
1025
1026
1027
1028
pub struct FunctionName {
    pub name: String,
}

drbh's avatar
drbh committed
1029
#[derive(Debug, Clone, PartialEq, Serialize, Deserialize, Default, ToSchema)]
1030
1031
#[serde(from = "ToolTypeDeserializer")]
pub struct ToolChoice(pub Option<ToolType>);
drbh's avatar
drbh committed
1032

1033
1034
1035
#[derive(Deserialize)]
#[serde(untagged)]
enum ToolTypeDeserializer {
1036
    Null,
drbh's avatar
drbh committed
1037
1038
    String(String),
    ToolType(ToolType),
1039
}
drbh's avatar
drbh committed
1040

1041
1042
impl From<ToolTypeDeserializer> for ToolChoice {
    fn from(value: ToolTypeDeserializer) -> Self {
drbh's avatar
drbh committed
1043
        match value {
1044
            ToolTypeDeserializer::Null => ToolChoice(None),
drbh's avatar
drbh committed
1045
1046
1047
            ToolTypeDeserializer::String(s) => match s.as_str() {
                "none" => ToolChoice(Some(ToolType::NoTool)),
                "auto" => ToolChoice(Some(ToolType::OneOf)),
1048
                _ => ToolChoice(Some(ToolType::Function(FunctionName { name: s }))),
drbh's avatar
drbh committed
1049
            },
drbh's avatar
drbh committed
1050
            ToolTypeDeserializer::ToolType(tool_type) => ToolChoice(Some(tool_type)),
drbh's avatar
drbh committed
1051
1052
1053
1054
        }
    }
}

1055
#[derive(Debug, Deserialize, Serialize, ToSchema, PartialEq)]
drbh's avatar
drbh committed
1056
pub struct JsonSchemaTool {
drbh's avatar
drbh committed
1057
1058
1059
1060
1061
    #[serde(flatten)]
    functions_map: FunctionsMap,
    properties: Properties,
}

1062
#[derive(Debug, Serialize, Deserialize, PartialEq)]
drbh's avatar
drbh committed
1063
1064
1065
1066
1067
struct FunctionsMap {
    #[serde(rename = "$functions")]
    functions: std::collections::HashMap<String, serde_json::Value>,
}

1068
#[derive(Debug, Serialize, Deserialize, PartialEq)]
drbh's avatar
drbh committed
1069
1070
1071
1072
1073
struct FunctionRef {
    #[serde(rename = "$ref")]
    ref_path: String,
}

1074
#[derive(Debug, Serialize, Deserialize, PartialEq)]
drbh's avatar
drbh committed
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
struct Properties {
    #[serde(serialize_with = "serialize_function")]
    function: Vec<FunctionRef>,
}

fn serialize_function<S>(functions: &Vec<FunctionRef>, serializer: S) -> Result<S::Ok, S::Error>
where
    S: serde::Serializer,
{
    use serde::ser::SerializeStruct;
    let mut state = serializer.serialize_struct("Function", 1)?;
    state.serialize_field("anyOf", functions)?;
    state.end()
}

Nicolas Patry's avatar
Nicolas Patry committed
1090
#[derive(Clone, Debug, Deserialize, Serialize, ToSchema, Default, PartialEq)]
drbh's avatar
drbh committed
1091
1092
1093
1094
pub(crate) struct FunctionDefinition {
    #[serde(default)]
    pub description: Option<String>,
    pub name: String,
1095
1096
    #[serde(alias = "parameters")]
    pub arguments: serde_json::Value,
drbh's avatar
drbh committed
1097
1098
1099
}

#[derive(Clone, Debug, Deserialize, Serialize, ToSchema)]
Nicolas Patry's avatar
Nicolas Patry committed
1100
#[cfg_attr(test, derive(PartialEq))]
drbh's avatar
drbh committed
1101
1102
1103
1104
1105
1106
pub(crate) struct Tool {
    // The type of the tool. Currently, only 'function' is supported.
    #[schema(example = "function")]
    pub r#type: String,
    // Grab the tool as generic JSON for debugging purposes.
    pub function: FunctionDefinition,
1107
1108
}

1109
#[derive(Clone, Serialize, Deserialize, Default)]
1110
pub(crate) struct ChatTemplateInputs<'a> {
Nicolas Patry's avatar
Nicolas Patry committed
1111
    messages: Vec<TextMessage>,
1112
1113
    bos_token: Option<&'a str>,
    eos_token: Option<&'a str>,
1114
    add_generation_prompt: bool,
drbh's avatar
drbh committed
1115
    tools: Option<Vec<Tool>>,
1116
    guideline: Option<&'a str>,
1117
1118
}

Nicolas Patry's avatar
Nicolas Patry committed
1119
#[derive(Clone, Deserialize, Serialize, ToSchema, Default, Debug, PartialEq)]
drbh's avatar
drbh committed
1120
pub(crate) struct ToolCall {
1121
    pub id: String,
drbh's avatar
drbh committed
1122
1123
1124
1125
    pub r#type: String,
    pub function: FunctionDefinition,
}

Nicolas Patry's avatar
Nicolas Patry committed
1126
#[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)]
1127
pub struct Url {
Nicolas Patry's avatar
Nicolas Patry committed
1128
    url: String,
drbh's avatar
drbh committed
1129
1130
}

Nicolas Patry's avatar
Nicolas Patry committed
1131
1132
1133
#[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)]
#[serde(tag = "type")]
#[serde(rename_all = "snake_case")]
1134
1135
1136
pub enum MessageChunk {
    Text { text: String },
    ImageUrl { image_url: Url },
Nicolas Patry's avatar
Nicolas Patry committed
1137
1138
1139
1140
1141
1142
1143
}

#[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)]
pub struct Message {
    #[schema(example = "user")]
    role: String,
    #[schema(example = "My name is David and I")]
1144
    pub content: MessageContent,
drbh's avatar
drbh committed
1145
    #[serde(default, skip_serializing_if = "Option::is_none")]
Nicolas Patry's avatar
Nicolas Patry committed
1146
1147
    #[schema(example = "\"David\"")]
    name: Option<String>,
drbh's avatar
drbh committed
1148
1149
}

1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
#[derive(Clone, Deserialize, Serialize, ToSchema, Debug, PartialEq)]
#[serde(untagged)]
pub enum MessageContent {
    SingleText(String),
    MultipleChunks(Vec<MessageChunk>),
}

// Pushing a chunk to a single text message will convert it to a multiple chunks message
impl MessageContent {
    pub fn push(&mut self, chunk: MessageChunk) {
        match self {
            MessageContent::SingleText(text) => {
drbh's avatar
drbh committed
1162
1163
1164
1165
                *self = MessageContent::MultipleChunks(vec![
                    MessageChunk::Text { text: text.clone() },
                    chunk,
                ]);
Nicolas Patry's avatar
Nicolas Patry committed
1166
            }
1167
1168
1169
1170
            MessageContent::MultipleChunks(chunks) => {
                chunks.push(chunk);
            }
        }
drbh's avatar
drbh committed
1171
1172
1173
    }
}

Nicolas Patry's avatar
Nicolas Patry committed
1174
1175
#[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)]
pub struct TextMessage {
1176
1177
1178
    #[schema(example = "user")]
    pub role: String,
    #[schema(example = "My name is David and I")]
Nicolas Patry's avatar
Nicolas Patry committed
1179
1180
1181
1182
1183
1184
1185
    pub content: String,
}

impl From<Message> for TextMessage {
    fn from(value: Message) -> Self {
        TextMessage {
            role: value.role,
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
            content: match value.content {
                MessageContent::SingleText(text) => text,
                MessageContent::MultipleChunks(chunks) => chunks
                    .into_iter()
                    .map(|chunk| match chunk {
                        MessageChunk::Text { text } => text,
                        MessageChunk::ImageUrl { image_url } => format!("![]({})", image_url.url),
                    })
                    .collect::<Vec<_>>()
                    .join(""),
            },
Nicolas Patry's avatar
Nicolas Patry committed
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
        }
    }
}

#[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)]
pub struct ToolCallMessage {
    #[schema(example = "assistant")]
    role: String,
    tool_calls: Vec<ToolCall>,
}

#[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)]
#[serde(untagged)]
pub(crate) enum OutputMessage {
    ChatMessage(TextMessage),
    ToolCall(ToolCallMessage),
1213
1214
}

1215
#[derive(Clone, Debug, Deserialize, ToSchema)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1216
pub(crate) struct GenerateRequest {
1217
    #[schema(example = "My name is Olivier and I")]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1218
1219
1220
    pub inputs: String,
    #[serde(default = "default_parameters")]
    pub parameters: GenerateParameters,
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230

    /// This is used internally because some requests
    /// already contain the templated input therefore
    /// we shouldn't add the special tokens.
    #[serde(default = "default_true", skip)]
    pub add_special_tokens: bool,
}

fn default_true() -> bool {
    true
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1231
1232
}

1233
1234
1235
1236
1237
1238
1239
#[derive(Clone, Debug, Deserialize, ToSchema)]
pub(crate) struct CompatGenerateRequest {
    #[schema(example = "My name is Olivier and I")]
    pub inputs: String,
    #[serde(default = "default_parameters")]
    pub parameters: GenerateParameters,
    #[serde(default)]
OlivierDehaene's avatar
OlivierDehaene committed
1240
    #[schema(default = "false")]
1241
1242
1243
1244
1245
1246
1247
    pub stream: bool,
}

impl From<CompatGenerateRequest> for GenerateRequest {
    fn from(req: CompatGenerateRequest) -> Self {
        Self {
            inputs: req.inputs,
1248
            add_special_tokens: true,
1249
1250
1251
1252
1253
            parameters: req.parameters,
        }
    }
}

1254
1255
1256
#[derive(Debug, Serialize, ToSchema)]
pub struct PrefillToken {
    #[schema(example = 0)]
Nicolas Patry's avatar
Nicolas Patry committed
1257
    pub id: u32,
1258
    #[schema(example = "test")]
Nicolas Patry's avatar
Nicolas Patry committed
1259
    pub text: String,
1260
    #[schema(nullable = true, example = - 0.34)]
Nicolas Patry's avatar
Nicolas Patry committed
1261
    pub logprob: f32,
1262
1263
}

1264
#[derive(Debug, Serialize, ToSchema, Clone)]
1265
1266
pub struct Token {
    #[schema(example = 0)]
Nicolas Patry's avatar
Nicolas Patry committed
1267
    pub id: u32,
1268
    #[schema(example = "test")]
Nicolas Patry's avatar
Nicolas Patry committed
1269
    pub text: String,
1270
    #[schema(nullable = true, example = - 0.34)]
Nicolas Patry's avatar
Nicolas Patry committed
1271
    pub logprob: f32,
1272
    #[schema(example = "false")]
Nicolas Patry's avatar
Nicolas Patry committed
1273
    pub special: bool,
1274
1275
}

1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
#[derive(Debug, Serialize, ToSchema)]
pub struct SimpleToken {
    #[schema(example = 0)]
    id: u32,
    #[schema(example = "test")]
    text: String,
    #[schema(example = 0)]
    start: usize,
    #[schema(example = 2)]
    stop: usize,
}

OlivierDehaene's avatar
OlivierDehaene committed
1288
#[derive(Debug, Serialize, ToSchema)]
1289
#[serde(rename_all(serialize = "snake_case"))]
1290
#[schema(example = "Length")]
Nicolas Patry's avatar
Nicolas Patry committed
1291
pub enum FinishReason {
1292
1293
1294
1295
1296
1297
1298
1299
    #[schema(rename = "length")]
    Length,
    #[serde(rename = "eos_token")]
    #[schema(rename = "eos_token")]
    EndOfSequenceToken,
    #[schema(rename = "stop_sequence")]
    StopSequence,
}
1300

1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
impl std::fmt::Display for FinishReason {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        match self {
            FinishReason::Length => write!(f, "length"),
            FinishReason::EndOfSequenceToken => write!(f, "eos_token"),
            FinishReason::StopSequence => write!(f, "stop_sequence"),
        }
    }
}

1311
1312
1313
1314
1315
1316
1317
1318
1319
impl FinishReason {
    pub fn format(&self, use_stop: bool) -> String {
        match self {
            FinishReason::EndOfSequenceToken if use_stop => "stop".to_string(),
            _ => self.to_string(),
        }
    }
}

1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
#[derive(Serialize, ToSchema)]
pub(crate) struct BestOfSequence {
    #[schema(example = "test")]
    pub generated_text: String,
    #[schema(example = "length")]
    pub finish_reason: FinishReason,
    #[schema(example = 1)]
    pub generated_tokens: u32,
    #[schema(nullable = true, example = 42)]
    pub seed: Option<u64>,
    pub prefill: Vec<PrefillToken>,
    pub tokens: Vec<Token>,
Nicolas Patry's avatar
Nicolas Patry committed
1332
1333
    #[serde(skip_serializing_if = "Vec::is_empty")]
    pub top_tokens: Vec<Vec<Token>>,
1334
1335
}

1336
#[derive(Serialize, ToSchema)]
OlivierDehaene's avatar
OlivierDehaene committed
1337
pub(crate) struct Details {
1338
1339
1340
    #[schema(example = "length")]
    pub finish_reason: FinishReason,
    #[schema(example = 1)]
OlivierDehaene's avatar
OlivierDehaene committed
1341
    pub generated_tokens: u32,
1342
    #[schema(nullable = true, example = 42)]
1343
    pub seed: Option<u64>,
1344
1345
    pub prefill: Vec<PrefillToken>,
    pub tokens: Vec<Token>,
1346
1347
    #[serde(skip_serializing_if = "Option::is_none")]
    pub best_of_sequences: Option<Vec<BestOfSequence>>,
Nicolas Patry's avatar
Nicolas Patry committed
1348
1349
    #[serde(skip_serializing_if = "Vec::is_empty")]
    pub top_tokens: Vec<Vec<Token>>,
OlivierDehaene's avatar
OlivierDehaene committed
1350
1351
}

1352
#[derive(Serialize, ToSchema)]
1353
pub(crate) struct GenerateResponse {
1354
    #[schema(example = "test")]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1355
    pub generated_text: String,
OlivierDehaene's avatar
OlivierDehaene committed
1356
1357
    #[serde(skip_serializing_if = "Option::is_none")]
    pub details: Option<Details>,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1358
}
1359

1360
1361
1362
1363
1364
1365
#[derive(Serialize, ToSchema)]
pub(crate) struct ChatTokenizeResponse {
    pub(crate) tokenize_response: TokenizeResponse,
    pub(crate) templated_text: String,
}

1366
1367
1368
1369
#[derive(Serialize, ToSchema)]
#[serde(transparent)]
pub(crate) struct TokenizeResponse(Vec<SimpleToken>);

1370
1371
1372
1373
1374
1375
#[derive(Serialize, ToSchema)]
pub(crate) struct StreamDetails {
    #[schema(example = "length")]
    pub finish_reason: FinishReason,
    #[schema(example = 1)]
    pub generated_tokens: u32,
1376
    #[schema(nullable = true, example = 42)]
1377
    pub seed: Option<u64>,
1378
1379
    #[schema(example = 1)]
    pub input_length: u32,
1380
1381
1382
}

#[derive(Serialize, ToSchema)]
1383
pub(crate) struct StreamResponse {
1384
    pub index: u32,
1385
    pub token: Token,
Nicolas Patry's avatar
Nicolas Patry committed
1386
1387
    #[serde(skip_serializing_if = "Vec::is_empty")]
    pub top_tokens: Vec<Token>,
1388
    #[schema(nullable = true, default = "null", example = "test")]
1389
    pub generated_text: Option<String>,
1390
1391
    #[schema(nullable = true, default = "null")]
    pub details: Option<StreamDetails>,
1392
1393
}

1394
#[derive(Serialize, ToSchema)]
1395
1396
pub(crate) struct ErrorResponse {
    pub error: String,
1397
    pub error_type: String,
1398
}
1399

drbh's avatar
drbh committed
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
#[derive(Serialize, Deserialize, ToSchema)]
pub(crate) struct ModelInfo {
    #[schema(example = "gpt2")]
    pub id: String,
    #[schema(example = "model")]
    pub object: String,
    #[schema(example = 1686935002)]
    pub created: u64,
    #[schema(example = "openai")]
    pub owned_by: String,
}

#[derive(Serialize, Deserialize, ToSchema)]
pub(crate) struct ModelsInfo {
    #[schema(example = "list")]
    pub object: String,
    pub data: Vec<ModelInfo>,
}

impl Default for ModelsInfo {
    fn default() -> Self {
        ModelsInfo {
            object: "list".to_string(),
            data: Vec::new(),
        }
    }
}

1428
#[cfg(test)]
1429
mod tests {
1430
    use super::*;
Nicolas Patry's avatar
Nicolas Patry committed
1431
    use serde_json::json;
1432

1433
    pub(crate) fn get_tokenizer() -> Tokenizer {
1434
1435
1436
        let api = hf_hub::api::sync::Api::new().unwrap();
        let repo = api.model("gpt2".to_string());
        let filename = repo.get("tokenizer.json").unwrap();
1437
        Tokenizer::Rust(tokenizers::Tokenizer::from_file(filename).unwrap())
1438
    }
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452

    #[test]
    fn test_hub_nested_tokens_tokenizer_config() {
        // this is a subset of the tokenizer.json file
        // in this case we expect the tokens to be encoded as simple strings
        let json_content = r#"{
            "chat_template": "test",
            "bos_token": "<|begin▁of▁sentence|>",
            "eos_token": "<|end▁of▁sentence|>"
        }"#;

        let config: HubTokenizerConfig = serde_json::from_str(json_content).unwrap();

        // check that we successfully parsed the tokens
1453
1454
1455
1456
        assert_eq!(
            config.chat_template,
            Some(ChatTemplateVersions::Single("test".to_string()))
        );
1457
1458
        assert_eq!(
            config.bos_token,
1459
1460
1461
1462
1463
1464
1465
1466
1467
            Some(TokenizerConfigToken::String(
                "<|begin▁of▁sentence|>".to_string()
            ))
        );
        assert_eq!(
            config.eos_token,
            Some(TokenizerConfigToken::String(
                "<|end▁of▁sentence|>".to_string()
            ))
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
        );

        // in this case we expect the tokens to be encoded as structured tokens
        // we want the content of the structured token
        let json_content = r#"{
            "chat_template": "test",
            "bos_token": {
              "__type": "AddedToken",
              "content": "<|begin▁of▁sentence|>",
              "lstrip": false,
              "normalized": true,
              "rstrip": false,
              "single_word": false
            },
            "eos_token": {
              "__type": "AddedToken",
              "content": "<|end▁of▁sentence|>",
              "lstrip": false,
              "normalized": true,
              "rstrip": false,
              "single_word": false
            }
        }"#;

        let config: HubTokenizerConfig = serde_json::from_str(json_content).unwrap();

        // check that we successfully parsed the tokens
1495
1496
1497
1498
        assert_eq!(
            config.chat_template,
            Some(ChatTemplateVersions::Single("test".to_string()))
        );
1499
1500
        assert_eq!(
            config.bos_token,
1501
1502
1503
1504
1505
1506
1507
1508
1509
            Some(TokenizerConfigToken::Object {
                content: "<|begin▁of▁sentence|>".to_string()
            })
        );
        assert_eq!(
            config.eos_token,
            Some(TokenizerConfigToken::Object {
                content: "<|end▁of▁sentence|>".to_string()
            })
1510
1511
        );
    }
Nicolas Patry's avatar
Nicolas Patry committed
1512
1513
1514

    #[test]
    fn test_chat_simple_string() {
Nicolas Patry's avatar
Nicolas Patry committed
1515
        let json = json!({
Nicolas Patry's avatar
Nicolas Patry committed
1516
            "model": "",
Nicolas Patry's avatar
Nicolas Patry committed
1517
1518
            "messages": [{
                "role": "user",
Nicolas Patry's avatar
Nicolas Patry committed
1519
                "content": "What is Deep Learning?"
Nicolas Patry's avatar
Nicolas Patry committed
1520
            }]
Nicolas Patry's avatar
Nicolas Patry committed
1521
1522
1523
1524
1525
1526
1527
        });
        let request: ChatRequest = serde_json::from_str(json.to_string().as_str()).unwrap();

        assert_eq!(
            request.messages[0],
            Message {
                role: "user".to_string(),
1528
                content: MessageContent::SingleText("What is Deep Learning?".to_string()),
Nicolas Patry's avatar
Nicolas Patry committed
1529
1530
1531
1532
1533
                name: None
            }
        );
    }

drbh's avatar
drbh committed
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
    #[test]
    fn test_message_content_append() {
        let mut content = MessageContent::SingleText("Initial text".to_string());
        let chunk = MessageChunk::Text {
            text: "Additional text".to_string(),
        };

        content.push(chunk);

        match content {
            MessageContent::MultipleChunks(chunks) => {
                assert_eq!(chunks.len(), 2);
                assert_eq!(
                    chunks[0],
                    MessageChunk::Text {
                        text: "Initial text".to_string()
                    }
                );
                assert_eq!(
                    chunks[1],
                    MessageChunk::Text {
                        text: "Additional text".to_string()
                    }
                );
            }
            _ => panic!("Expected MultipleChunks, but got a different variant"),
        }
    }

Nicolas Patry's avatar
Nicolas Patry committed
1563
1564
    #[test]
    fn test_chat_request() {
Nicolas Patry's avatar
Nicolas Patry committed
1565
        let json = json!({
Nicolas Patry's avatar
Nicolas Patry committed
1566
            "model": "",
Nicolas Patry's avatar
Nicolas Patry committed
1567
1568
            "messages": [{
                "role": "user",
Nicolas Patry's avatar
Nicolas Patry committed
1569
1570
                "content": [
                    {"type": "text", "text": "Whats in this image?"},
Nicolas Patry's avatar
Nicolas Patry committed
1571
                    {"type": "image_url", "image_url": {"url": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit.png"}},
Nicolas Patry's avatar
Nicolas Patry committed
1572
                ]
Nicolas Patry's avatar
Nicolas Patry committed
1573
            }]
Nicolas Patry's avatar
Nicolas Patry committed
1574
1575
1576
1577
1578
1579
1580
        });
        let request: ChatRequest = serde_json::from_str(json.to_string().as_str()).unwrap();

        assert_eq!(
            request.messages[0],
            Message{
                role: "user".to_string(),
1581
1582
1583
1584
                content: MessageContent::MultipleChunks(vec![
                    MessageChunk::Text { text: "Whats in this image?".to_string() },
                    MessageChunk::ImageUrl { image_url: Url { url: "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit.png".to_string() }},
                ]),
Nicolas Patry's avatar
Nicolas Patry committed
1585
1586
1587
1588
                name: None
            }
        );
    }
Nicolas Patry's avatar
Nicolas Patry committed
1589
1590
1591
1592
1593

    #[test]
    fn text_message_convert() {
        let message = Message{
                role: "user".to_string(),
1594
1595
1596
1597
                content: MessageContent::MultipleChunks(vec![
                    MessageChunk::Text { text: "Whats in this image?".to_string() },
                    MessageChunk::ImageUrl { image_url: Url { url: "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit.png".to_string() } }
                ]),
Nicolas Patry's avatar
Nicolas Patry committed
1598
1599
1600
1601
1602
                name: None
            };
        let textmsg: TextMessage = message.into();
        assert_eq!(textmsg.content, "Whats in this image?![](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit.png)");
    }
Nicolas Patry's avatar
Nicolas Patry committed
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623

    #[test]
    fn test_chat_stream_options() {
        let json = json!({
            "model": "",
            "stream_options": {"include_usage": true},
            "messages": [{
                "role": "user",
                "content": "Hello"
            }]
        });
        let request: ChatRequest = serde_json::from_str(json.to_string().as_str()).unwrap();

        assert!(matches!(
            request.stream_options,
            Some(StreamOptions {
                include_usage: true
            })
        ));
    }

Nicolas Patry's avatar
Nicolas Patry committed
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
    #[test]
    fn openai_output() {
        let message = OutputMessage::ChatMessage(TextMessage {
            role: "assistant".to_string(),
            content: "This is the answer".to_string(),
        });
        let serialized = serde_json::to_string(&message).unwrap();
        assert_eq!(
            serialized,
            r#"{"role":"assistant","content":"This is the answer"}"#
        );

        let message = OutputMessage::ToolCall(ToolCallMessage {
            role: "assistant".to_string(),
            tool_calls: vec![ToolCall {
                id: "0".to_string(),
                r#type: "function".to_string(),
                function: FunctionDefinition {
                    description: None,
                    name: "myfn".to_string(),
                    arguments: json!({
                        "format": "csv"
                    }),
                },
            }],
        });
        let serialized = serde_json::to_string(&message).unwrap();
        assert_eq!(
            serialized,
            r#"{"role":"assistant","tool_calls":[{"id":"0","type":"function","function":{"description":null,"name":"myfn","arguments":{"format":"csv"}}}]}"#
        );
    }
1656
}