main.rs 57.7 KB
Newer Older
1
use clap::{Parser, ValueEnum};
2
use hf_hub::{api::sync::Api, Repo, RepoType};
3
4
use nix::sys::signal::{self, Signal};
use nix::unistd::Pid;
5
use serde::Deserialize;
Nicolas Patry's avatar
Nicolas Patry committed
6
use std::env;
7
use std::ffi::OsString;
8
use std::io::{BufRead, BufReader, Lines};
9
use std::os::unix::process::{CommandExt, ExitStatusExt};
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
10
use std::path::Path;
OlivierDehaene's avatar
OlivierDehaene committed
11
use std::process::{Child, Command, ExitStatus, Stdio};
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
12
13
use std::sync::atomic::{AtomicBool, Ordering};
use std::sync::mpsc::TryRecvError;
14
use std::sync::{mpsc, Arc};
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
15
16
17
18
use std::thread;
use std::thread::sleep;
use std::time::{Duration, Instant};
use std::{fs, io};
19
use thiserror::Error;
20
use tracing_subscriber::{filter::LevelFilter, EnvFilter};
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
21

22
23
mod env_runtime;

24
#[derive(Deserialize)]
25
struct RawConfig {
26
    max_position_embeddings: Option<usize>,
27
    n_positions: Option<usize>,
28
29
30
    max_seq_len: Option<usize>,
}

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
#[derive(Deserialize)]
struct Config {
    max_position_embeddings: Option<usize>,
}

impl From<RawConfig> for Config {
    fn from(other: RawConfig) -> Self {
        let max_position_embeddings = other
            .max_position_embeddings
            .or(other.max_seq_len)
            .or(other.n_positions);
        Config {
            max_position_embeddings,
        }
    }
}

48
49
#[derive(Clone, Copy, Debug, ValueEnum)]
enum Quantization {
50
    /// 4 bit quantization. Requires a specific AWQ quantized model:
51
    ///   <https://hf.co/models?search=awq>.
52
    /// Should replace GPTQ models wherever possible because of the better latency
53
54
55
    Awq,
    /// 8 bit quantization, doesn't require specific model.
    /// Should be a drop-in replacement to bitsandbytes with much better performance.
56
    /// Kernels are from <https://github.com/NetEase-FuXi/EETQ.git>
57
    Eetq,
58
59
60
61
    /// Variable bit quantization. Requires a specific EXL2 quantized model:
    /// <https://hf.co/models?search=exl2>. Requires exllama2 kernels and does
    /// not support tensor parallelism (num_shard > 1).
    Exl2,
62
    /// 4 bit quantization. Requires a specific GTPQ quantized model: <https://hf.co/models?search=gptq>.
63
    /// text-generation-inference will use exllama (faster) kernels wherever possible, and use
64
65
66
    /// triton kernel (wider support) when it's not.
    /// AWQ has faster kernels.
    Gptq,
67
68
    /// 4 bit quantization. Requires a specific Marlin quantized model: <https://hf.co/models?search=marlin>.
    Marlin,
69
70
71
72
73
74
    /// Bitsandbytes 8bit. Can be applied on any model, will cut the memory requirement in half,
    /// but it is known that the model will be much slower to run than the native f16.
    #[deprecated(
        since = "1.1.0",
        note = "Use `eetq` instead, which provides better latencies overall and is drop-in in most cases"
    )]
75
    Bitsandbytes,
76
77
    /// Bitsandbytes 4bit. Can be applied on any model, will cut the memory requirement by 4x,
    /// but it is known that the model will be much slower to run than the native f16.
Nicolas Patry's avatar
Nicolas Patry committed
78
    BitsandbytesNF4,
79
80
    /// Bitsandbytes 4bit. nf4 should be preferred in most cases but maybe this one has better
    /// perplexity performance for you model
Nicolas Patry's avatar
Nicolas Patry committed
81
    BitsandbytesFP4,
Nicolas Patry's avatar
Nicolas Patry committed
82
83
84
85
86
    /// [FP8](https://developer.nvidia.com/blog/nvidia-arm-and-intel-publish-fp8-specification-for-standardization-as-an-interchange-format-for-ai/) (e4m3) works on H100 and above
    /// This dtype has native ops should be the fastest if available.
    /// This is currently not the fastest because of local unpacking + padding to satisfy matrix
    /// multiplication limitations.
    Fp8,
87
88
89
90
91
92
}

impl std::fmt::Display for Quantization {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        // To keep in track with `server`.
        match self {
93
94
            #[allow(deprecated)]
            // Use `eetq` instead, which provides better latencies overall and is drop-in in most cases
95
96
97
            Quantization::Bitsandbytes => {
                write!(f, "bitsandbytes")
            }
Nicolas Patry's avatar
Nicolas Patry committed
98
99
100
101
102
103
            Quantization::BitsandbytesNF4 => {
                write!(f, "bitsandbytes-nf4")
            }
            Quantization::BitsandbytesFP4 => {
                write!(f, "bitsandbytes-fp4")
            }
104
105
106
            Quantization::Exl2 => {
                write!(f, "exl2")
            }
107
108
109
            Quantization::Gptq => {
                write!(f, "gptq")
            }
110
111
112
            Quantization::Marlin => {
                write!(f, "marlin")
            }
113
114
115
            Quantization::Awq => {
                write!(f, "awq")
            }
116
117
118
            Quantization::Eetq => {
                write!(f, "eetq")
            }
Nicolas Patry's avatar
Nicolas Patry committed
119
120
121
            Quantization::Fp8 => {
                write!(f, "fp8")
            }
122
123
124
125
        }
    }
}

126
127
128
#[derive(Clone, Copy, Debug, ValueEnum)]
enum Dtype {
    Float16,
129
    #[clap(name = "bfloat16")]
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
    BFloat16,
}

impl std::fmt::Display for Dtype {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        // To keep in track with `server`.
        match self {
            Dtype::Float16 => {
                write!(f, "float16")
            }
            Dtype::BFloat16 => {
                write!(f, "bfloat16")
            }
        }
    }
}

Nicolas Patry's avatar
Nicolas Patry committed
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
#[derive(Clone, Copy, Debug, ValueEnum)]
enum RopeScaling {
    Linear,
    Dynamic,
}

impl std::fmt::Display for RopeScaling {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        // To keep in track with `server`.
        match self {
            RopeScaling::Linear => {
                write!(f, "linear")
            }
            RopeScaling::Dynamic => {
                write!(f, "dynamic")
            }
        }
    }
}

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
167
168
169
170
/// App Configuration
#[derive(Parser, Debug)]
#[clap(author, version, about, long_about = None)]
struct Args {
171
172
173
174
175
    /// The name of the model to load.
    /// Can be a MODEL_ID as listed on <https://hf.co/models> like
    /// `gpt2` or `OpenAssistant/oasst-sft-1-pythia-12b`.
    /// Or it can be a local directory containing the necessary files
    /// as saved by `save_pretrained(...)` methods of transformers
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
176
    #[clap(default_value = "bigscience/bloom-560m", long, env)]
177
    model_id: String,
178
179
180

    /// The actual revision of the model if you're referring to a model
    /// on the hub. You can use a specific commit id or a branch like `refs/pr/2`.
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
181
    #[clap(long, env)]
182
    revision: Option<String>,
183

184
185
186
187
188
    /// The number of tokenizer workers used for payload validation and truncation inside the
    /// router.
    #[clap(default_value = "2", long, env)]
    validation_workers: usize,

189
    /// Whether to shard the model across multiple GPUs
190
191
    /// By default text-generation-inference will use all available GPUs to run
    /// the model. Setting it to `false` deactivates `num_shard`.
192
193
    #[clap(long, env)]
    sharded: Option<bool>,
194
195

    /// The number of shards to use if you don't want to use all GPUs on a given machine.
196
197
    /// You can use `CUDA_VISIBLE_DEVICES=0,1 text-generation-launcher... --num_shard 2`
    /// and `CUDA_VISIBLE_DEVICES=2,3 text-generation-launcher... --num_shard 2` to
198
    /// launch 2 copies with 2 shard each on a given machine with 4 GPUs for instance.
199
200
    #[clap(long, env)]
    num_shard: Option<usize>,
201

202
    /// Whether you want the model to be quantized.
203
204
    #[clap(long, env, value_enum)]
    quantize: Option<Quantization>,
205

Nicolas Patry's avatar
Nicolas Patry committed
206
207
208
209
210
211
212
    /// The number of input_ids to speculate on
    /// If using a medusa model, the heads will be picked up automatically
    /// Other wise, it will use n-gram speculation which is relatively free
    /// in terms of compute, but the speedup heavily depends on the task.
    #[clap(long, env)]
    speculate: Option<usize>,

213
214
215
216
    /// The dtype to be forced upon the model. This option cannot be used with `--quantize`.
    #[clap(long, env, value_enum)]
    dtype: Option<Dtype>,

217
218
219
220
221
222
    /// Whether you want to execute hub modelling code. Explicitly passing a `revision` is
    /// encouraged when loading a model with custom code to ensure no malicious code has been
    /// contributed in a newer revision.
    #[clap(long, env, value_enum)]
    trust_remote_code: bool,

223
224
225
    /// The maximum amount of concurrent requests for this particular deployment.
    /// Having a low limit will refuse clients requests instead of having them
    /// wait for too long and is usually good to handle backpressure correctly.
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
226
227
    #[clap(default_value = "128", long, env)]
    max_concurrent_requests: usize,
228
229
230
231

    /// This is the maximum allowed value for clients to set `best_of`.
    /// Best of makes `n` generations at the same time, and return the best
    /// in terms of overall log probability over the entire generated sequence
232
233
    #[clap(default_value = "2", long, env)]
    max_best_of: usize,
234
235
236
237
238
239

    /// This is the maximum allowed value for clients to set `stop_sequences`.
    /// Stop sequences are used to allow the model to stop on more than just
    /// the EOS token, and enable more complex "prompting" where users can preprompt
    /// the model in a specific way and define their "own" stop token aligned with
    /// their prompt.
240
241
    #[clap(default_value = "4", long, env)]
    max_stop_sequences: usize,
242

Nicolas Patry's avatar
Nicolas Patry committed
243
    /// This is the maximum allowed value for clients to set `top_n_tokens`.
244
    /// `top_n_tokens` is used to return information about the the `n` most likely
Nicolas Patry's avatar
Nicolas Patry committed
245
246
247
248
249
250
    /// tokens at each generation step, instead of just the sampled token. This
    /// information can be used for downstream tasks like for classification or
    /// ranking.
    #[clap(default_value = "5", long, env)]
    max_top_n_tokens: u32,

251
252
253
254
    /// This is the maximum allowed input length (expressed in number of tokens)
    /// for users. The larger this value, the longer prompt users can send which
    /// can impact the overall memory required to handle the load.
    /// Please note that some models have a finite range of sequence they can handle.
255
256
257
258
259
260
261
    /// Default to min(max_position_embeddings - 1, 4095)
    #[clap(long, env)]
    max_input_tokens: Option<usize>,

    /// Legacy version of [`Args::max_input_tokens`].
    #[clap(long, env)]
    max_input_length: Option<usize>,
262
263
264
265
266
267
268
269
270

    /// This is the most important value to set as it defines the "memory budget"
    /// of running clients requests.
    /// Clients will send input sequences and ask to generate `max_new_tokens`
    /// on top. with a value of `1512` users can send either a prompt of
    /// `1000` and ask for `512` new tokens, or send a prompt of `1` and ask for
    /// `1511` max_new_tokens.
    /// The larger this value, the larger amount each request will be in your RAM
    /// and the less effective batching can be.
271
272
273
    /// Default to min(max_position_embeddings, 4096)
    #[clap(long, env)]
    max_total_tokens: Option<usize>,
274
275
276
277
278
279
280
281
282
283
284

    /// This represents the ratio of waiting queries vs running queries where
    /// you want to start considering pausing the running queries to include the waiting
    /// ones into the same batch.
    /// `waiting_served_ratio=1.2` Means when 12 queries are waiting and there's
    /// only 10 queries left in the current batch we check if we can fit those 12
    /// waiting queries into the batching strategy, and if yes, then batching happens
    /// delaying the 10 running queries by a `prefill` run.
    ///
    /// This setting is only applied if there is room in the batch
    /// as defined by `max_batch_total_tokens`.
285
    #[clap(default_value = "0.3", long, env)]
286
    waiting_served_ratio: f32,
287

288
289
290
    /// Limits the number of tokens for the prefill operation.
    /// Since this operation take the most memory and is compute bound, it is interesting
    /// to limit the number of requests that can be sent.
291
292
293
    /// Default to `max_input_tokens + 50` to give a bit of room.
    #[clap(long, env)]
    max_batch_prefill_tokens: Option<u32>,
294

295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
    /// **IMPORTANT** This is one critical control to allow maximum usage
    /// of the available hardware.
    ///
    /// This represents the total amount of potential tokens within a batch.
    /// When using padding (not recommended) this would be equivalent of
    /// `batch_size` * `max_total_tokens`.
    ///
    /// However in the non-padded (flash attention) version this can be much finer.
    ///
    /// For `max_batch_total_tokens=1000`, you could fit `10` queries of `total_tokens=100`
    /// or a single query of `1000` tokens.
    ///
    /// Overall this number should be the largest possible amount that fits the
    /// remaining memory (after the model is loaded). Since the actual memory overhead
    /// depends on other parameters like if you're using quantization, flash attention
    /// or the model implementation, text-generation-inference cannot infer this number
    /// automatically.
312
313
    #[clap(long, env)]
    max_batch_total_tokens: Option<u32>,
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331

    /// This setting defines how many tokens can be passed before forcing the waiting
    /// queries to be put on the batch (if the size of the batch allows for it).
    /// New queries require 1 `prefill` forward, which is different from `decode`
    /// and therefore you need to pause the running batch in order to run `prefill`
    /// to create the correct values for the waiting queries to be able to join the batch.
    ///
    /// With a value too small, queries will always "steal" the compute to run `prefill`
    /// and running queries will be delayed by a lot.
    ///
    /// With a value too big, waiting queries could wait for a very long time
    /// before being allowed a slot in the running batch. If your server is busy
    /// that means that requests that could run in ~2s on an empty server could
    /// end up running in ~20s because the query had to wait for 18s.
    ///
    /// This number is expressed in number of tokens to make it a bit more
    /// "model" agnostic, but what should really matter is the overall latency
    /// for end users.
332
333
    #[clap(default_value = "20", long, env)]
    max_waiting_tokens: usize,
334

335
336
337
338
339
    /// Enforce a maximum number of requests per batch
    /// Specific flag for hardware targets that do not support unpadded inference
    #[clap(long, env)]
    max_batch_size: Option<usize>,

340
341
    /// Specify the batch sizes to compute cuda graphs for.
    /// Use "0" to disable.
342
343
344
    /// Default = "1,2,4,8,16,32"
    #[clap(long, env, value_delimiter = ',')]
    cuda_graphs: Option<Vec<usize>>,
345

346
347
348
349
    /// The IP address to listen on
    #[clap(default_value = "0.0.0.0", long, env)]
    hostname: String,

350
    /// The port to listen on.
351
    #[clap(default_value = "3000", long, short, env)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
352
    port: u16,
353
354
355

    /// The name of the socket for gRPC communication between the webserver
    /// and the shards.
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
356
357
    #[clap(default_value = "/tmp/text-generation-server", long, env)]
    shard_uds_path: String,
358
359

    /// The address the master shard will listen on. (setting used by torch distributed)
360
    #[clap(default_value = "localhost", long, env)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
361
    master_addr: String,
362
363

    /// The address the master port will listen on. (setting used by torch distributed)
364
    #[clap(default_value = "29500", long, env)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
365
    master_port: usize,
366
367
368

    /// The location of the huggingface hub cache.
    /// Used to override the location if you want to provide a mounted disk for instance
369
    #[clap(long, env)]
370
    huggingface_hub_cache: Option<String>,
371
372
373

    /// The location of the huggingface hub cache.
    /// Used to override the location if you want to provide a mounted disk for instance
374
375
    #[clap(long, env)]
    weights_cache_override: Option<String>,
376
377
378
379
380

    /// For some models (like bloom), text-generation-inference implemented custom
    /// cuda kernels to speed up inference. Those kernels were only tested on A100.
    /// Use this flag to disable them if you're running on different hardware and
    /// encounter issues.
381
    #[clap(long, env)]
382
    disable_custom_kernels: bool,
383

384
385
386
387
388
    /// Limit the CUDA available memory.
    /// The allowed value equals the total visible memory multiplied by cuda-memory-fraction.
    #[clap(default_value = "1.0", long, env)]
    cuda_memory_fraction: f32,

Nicolas Patry's avatar
Nicolas Patry committed
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
    /// Rope scaling will only be used for RoPE models
    /// and allow rescaling the position rotary to accomodate for
    /// larger prompts.
    ///
    /// Goes together with `rope_factor`.
    ///
    /// `--rope-factor 2.0` gives linear scaling with a factor of 2.0
    /// `--rope-scaling dynamic` gives dynamic scaling with a factor of 1.0
    /// `--rope-scaling linear` gives linear scaling with a factor of 1.0 (Nothing will be changed
    /// basically)
    ///
    /// `--rope-scaling linear --rope-factor` fully describes the scaling you want
    #[clap(long, env)]
    rope_scaling: Option<RopeScaling>,

    /// Rope scaling will only be used for RoPE models
    /// See `rope_scaling`
    #[clap(long, env)]
    rope_factor: Option<f32>,

409
    /// Outputs the logs in JSON format (useful for telemetry)
410
    #[clap(long, env)]
411
    json_output: bool,
412

413
414
    #[clap(long, env)]
    otlp_endpoint: Option<String>,
415

416
417
418
    #[clap(default_value = "text-generation-inference.router", long, env)]
    otlp_service_name: String,

419
420
    #[clap(long, env)]
    cors_allow_origin: Vec<String>,
421
422
423
424
    #[clap(long, env)]
    watermark_gamma: Option<f32>,
    #[clap(long, env)]
    watermark_delta: Option<f32>,
425

426
427
428
429
430
431
432
433
    /// Enable ngrok tunneling
    #[clap(long, env)]
    ngrok: bool,

    /// ngrok authentication token
    #[clap(long, env)]
    ngrok_authtoken: Option<String>,

434
    /// ngrok edge
435
    #[clap(long, env)]
436
    ngrok_edge: Option<String>,
437

438
439
440
441
442
    /// The path to the tokenizer config file. This path is used to load the tokenizer configuration which may
    /// include a `chat_template`. If not provided, the default config will be used from the model hub.
    #[clap(long, env)]
    tokenizer_config_path: Option<String>,

drbh's avatar
drbh committed
443
444
445
446
447
    /// Disable outlines grammar constrained generation.
    /// This is a feature that allows you to generate text that follows a specific grammar.
    #[clap(long, env)]
    disable_grammar_support: bool,

448
449
450
    /// Display a lot of information about your runtime environment
    #[clap(long, short, action)]
    env: bool,
451
452
453
454

    /// Control the maximum number of inputs that a client can send in a single request
    #[clap(default_value = "4", long, env)]
    max_client_batch_size: usize,
drbh's avatar
drbh committed
455
456
457
458
459

    /// Lora Adapters a list of adapter ids i.e. `repo/adapter1,repo/adapter2` to load during
    /// startup that will be available to callers via the `adapter_id` field in a request.
    #[clap(long, env)]
    lora_adapters: Option<String>,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
460
461
}

462
463
464
#[derive(Debug)]
enum ShardStatus {
    Ready,
465
    Failed(usize),
466
}
467

468
469
470
471
#[allow(clippy::too_many_arguments)]
fn shard_manager(
    model_id: String,
    revision: Option<String>,
472
    quantize: Option<Quantization>,
Nicolas Patry's avatar
Nicolas Patry committed
473
    speculate: Option<usize>,
474
    dtype: Option<Dtype>,
475
    trust_remote_code: bool,
476
477
478
479
480
481
482
483
484
485
    uds_path: String,
    rank: usize,
    world_size: usize,
    master_addr: String,
    master_port: usize,
    huggingface_hub_cache: Option<String>,
    weights_cache_override: Option<String>,
    disable_custom_kernels: bool,
    watermark_gamma: Option<f32>,
    watermark_delta: Option<f32>,
486
    cuda_graphs: Vec<usize>,
487
    cuda_memory_fraction: f32,
Nicolas Patry's avatar
Nicolas Patry committed
488
489
    rope_scaling: Option<RopeScaling>,
    rope_factor: Option<f32>,
490
491
    max_total_tokens: usize,
    max_batch_size: Option<usize>,
492
    max_input_tokens: usize,
drbh's avatar
drbh committed
493
    lora_adapters: Option<String>,
494
    otlp_endpoint: Option<String>,
495
    otlp_service_name: String,
496
    log_level: LevelFilter,
497
    status_sender: mpsc::Sender<ShardStatus>,
498
    shutdown: Arc<AtomicBool>,
499
500
    _shutdown_sender: mpsc::Sender<()>,
) {
501
502
503
    // Enter shard-manager tracing span
    let _span = tracing::span!(tracing::Level::INFO, "shard-manager", rank = rank).entered();

504
505
506
507
    // Get UDS path
    let uds_string = format!("{uds_path}-{rank}");
    let uds = Path::new(&uds_string);
    // Clean previous runs
508
509
510
    if uds.exists() {
        fs::remove_file(uds).unwrap();
    }
511
512

    // Process args
OlivierDehaene's avatar
OlivierDehaene committed
513
    let mut shard_args = vec![
514
515
516
517
518
        "serve".to_string(),
        model_id,
        "--uds-path".to_string(),
        uds_path,
        "--logger-level".to_string(),
519
        log_level.to_string().to_uppercase(),
520
521
522
        "--json-output".to_string(),
    ];

523
524
    // Activate trust remote code
    if trust_remote_code {
OlivierDehaene's avatar
OlivierDehaene committed
525
        shard_args.push("--trust-remote-code".to_string());
526
527
    }

528
529
    // Activate tensor parallelism
    if world_size > 1 {
OlivierDehaene's avatar
OlivierDehaene committed
530
        shard_args.push("--sharded".to_string());
531
532
    }

533
    if let Some(quantize) = quantize {
OlivierDehaene's avatar
OlivierDehaene committed
534
535
        shard_args.push("--quantize".to_string());
        shard_args.push(quantize.to_string())
536
    }
537

Nicolas Patry's avatar
Nicolas Patry committed
538
539
540
541
542
    if let Some(speculate) = speculate {
        shard_args.push("--speculate".to_string());
        shard_args.push(speculate.to_string())
    }

543
    if let Some(dtype) = dtype {
OlivierDehaene's avatar
OlivierDehaene committed
544
545
        shard_args.push("--dtype".to_string());
        shard_args.push(dtype.to_string())
546
547
    }

548
549
    // Model optional revision
    if let Some(revision) = revision {
OlivierDehaene's avatar
OlivierDehaene committed
550
551
        shard_args.push("--revision".to_string());
        shard_args.push(revision)
552
    }
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
553

Nicolas Patry's avatar
Nicolas Patry committed
554
555
556
557
558
559
    let rope = match (rope_scaling, rope_factor) {
        (None, None) => None,
        (Some(scaling), None) => Some((scaling, 1.0)),
        (Some(scaling), Some(factor)) => Some((scaling, factor)),
        (None, Some(factor)) => Some((RopeScaling::Linear, factor)),
    };
560

561
    // OpenTelemetry Endpoint
562
    if let Some(otlp_endpoint) = otlp_endpoint {
OlivierDehaene's avatar
OlivierDehaene committed
563
564
        shard_args.push("--otlp-endpoint".to_string());
        shard_args.push(otlp_endpoint);
565
566
    }

567
568
569
570
    // OpenTelemetry Service Name
    shard_args.push("--otlp-service-name".to_string());
    shard_args.push(otlp_service_name);

571
572
573
574
    // In case we use sliding window, we may ignore the sliding in flash for some backends depending on the parameter.
    shard_args.push("--max-input-tokens".to_string());
    shard_args.push(max_input_tokens.to_string());

575
    // Copy current process env
OlivierDehaene's avatar
OlivierDehaene committed
576
    let mut envs: Vec<(OsString, OsString)> = env::vars_os().collect();
577

578
579
580
    // Remove LOG_LEVEL if present
    envs.retain(|(name, _)| name != "LOG_LEVEL");

581
    // Torch Distributed Env vars
OlivierDehaene's avatar
OlivierDehaene committed
582
583
584
585
    envs.push(("RANK".into(), rank.to_string().into()));
    envs.push(("WORLD_SIZE".into(), world_size.to_string().into()));
    envs.push(("MASTER_ADDR".into(), master_addr.into()));
    envs.push(("MASTER_PORT".into(), master_port.to_string().into()));
586
    envs.push(("TORCH_NCCL_AVOID_RECORD_STREAMS".into(), "1".into()));
587

588
589
590
591
592
593
    // CUDA memory fraction
    envs.push((
        "CUDA_MEMORY_FRACTION".into(),
        cuda_memory_fraction.to_string().into(),
    ));

594
    // Safetensors load fast
OlivierDehaene's avatar
OlivierDehaene committed
595
    envs.push(("SAFETENSORS_FAST_GPU".into(), "1".into()));
596

597
598
599
    // Disable progress bar
    envs.push(("HF_HUB_DISABLE_PROGRESS_BARS".into(), "1".into()));

600
601
    // Enable hf transfer for insane download speeds
    let enable_hf_transfer = env::var("HF_HUB_ENABLE_HF_TRANSFER").unwrap_or("1".to_string());
OlivierDehaene's avatar
OlivierDehaene committed
602
    envs.push((
603
604
605
606
607
608
        "HF_HUB_ENABLE_HF_TRANSFER".into(),
        enable_hf_transfer.into(),
    ));

    // Parse Inference API token
    if let Ok(api_token) = env::var("HF_API_TOKEN") {
609
        envs.push(("HF_TOKEN".into(), api_token.into()))
610
611
    };

Nicolas Patry's avatar
Nicolas Patry committed
612
613
614
615
616
617
618
619
620
    // Detect rope scaling
    // Sending as env instead of CLI args to not bloat everything
    // those only can be used by RoPE models, so passing information around
    // for all models will complexify code unnecessarily
    if let Some((scaling, factor)) = rope {
        envs.push(("ROPE_SCALING".into(), scaling.to_string().into()));
        envs.push(("ROPE_FACTOR".into(), factor.to_string().into()));
    }

621
622
623
624
625
626
627
628
    envs.push((
        "MAX_TOTAL_TOKENS".into(),
        max_total_tokens.to_string().into(),
    ));
    if let Some(max_batch_size) = max_batch_size {
        envs.push(("MAX_BATCH_SIZE".into(), max_batch_size.to_string().into()));
    }

drbh's avatar
drbh committed
629
630
631
632
633
    // Lora Adapters
    if let Some(lora_adapters) = lora_adapters {
        envs.push(("LORA_ADAPTERS".into(), lora_adapters.into()));
    }

634
635
636
    // If huggingface_hub_cache is some, pass it to the shard
    // Useful when running inside a docker container
    if let Some(huggingface_hub_cache) = huggingface_hub_cache {
OlivierDehaene's avatar
OlivierDehaene committed
637
        envs.push(("HUGGINGFACE_HUB_CACHE".into(), huggingface_hub_cache.into()));
638
639
640
641
642
    };

    // If weights_cache_override is some, pass it to the shard
    // Useful when running inside a HuggingFace Inference Endpoint
    if let Some(weights_cache_override) = weights_cache_override {
OlivierDehaene's avatar
OlivierDehaene committed
643
        envs.push((
644
645
646
647
648
            "WEIGHTS_CACHE_OVERRIDE".into(),
            weights_cache_override.into(),
        ));
    };

649
    // Enable experimental support for cuda graphs
650
651
652
653
654
655
656
657
658
659
    if !cuda_graphs.is_empty() {
        envs.push((
            "CUDA_GRAPHS".into(),
            cuda_graphs
                .into_iter()
                .map(|c| c.to_string())
                .collect::<Vec<_>>()
                .join(",")
                .into(),
        ));
660
661
    }

662
663
    // If disable_custom_kernels is true, pass it to the shard as an env var
    if disable_custom_kernels {
OlivierDehaene's avatar
OlivierDehaene committed
664
        envs.push(("DISABLE_CUSTOM_KERNELS".into(), "True".into()))
665
666
667
668
    }

    // Watermark Gamma
    if let Some(watermark_gamma) = watermark_gamma {
OlivierDehaene's avatar
OlivierDehaene committed
669
        envs.push(("WATERMARK_GAMMA".into(), watermark_gamma.to_string().into()))
670
671
672
673
    }

    // Watermark Delta
    if let Some(watermark_delta) = watermark_delta {
OlivierDehaene's avatar
OlivierDehaene committed
674
        envs.push(("WATERMARK_DELTA".into(), watermark_delta.to_string().into()))
675
676
677
    }

    // Start process
678
    tracing::info!("Starting shard");
679
    let mut p = match Command::new("text-generation-server")
OlivierDehaene's avatar
OlivierDehaene committed
680
        .args(shard_args)
681
        .env_clear()
OlivierDehaene's avatar
OlivierDehaene committed
682
        .envs(envs)
683
684
685
686
687
        .stdout(Stdio::piped())
        .stderr(Stdio::piped())
        .process_group(0)
        .spawn()
    {
688
689
        Ok(p) => p,
        Err(err) => {
690
691
692
            if err.kind() == io::ErrorKind::NotFound {
                tracing::error!("text-generation-server not found in PATH");
                tracing::error!("Please install it with `make install-server`")
693
694
            }
            {
695
                tracing::error!("{}", err);
696
            }
697

698
            status_sender.send(ShardStatus::Failed(rank)).unwrap();
699
700
701
702
703
            return;
        }
    };

    // Redirect STDOUT to the console
704
    let shard_stdout_reader = BufReader::new(p.stdout.take().unwrap());
705
    let shard_stderr_reader = BufReader::new(p.stderr.take().unwrap());
706

707
    //stdout tracing thread
708
    thread::spawn(move || {
709
        log_lines(shard_stdout_reader.lines());
710
    });
711
712
713
    // We read stderr in another thread as it seems that lines() can block in some cases
    let (err_sender, err_receiver) = mpsc::channel();
    thread::spawn(move || {
OlivierDehaene's avatar
OlivierDehaene committed
714
        for line in shard_stderr_reader.lines().map_while(Result::ok) {
715
716
717
            err_sender.send(line).unwrap_or(());
        }
    });
718
719
720
721
722
723

    let mut ready = false;
    let start_time = Instant::now();
    let mut wait_time = Instant::now();
    loop {
        // Process exited
724
        if let Some(exit_status) = p.try_wait().unwrap() {
725
726
727
728
            let mut err = String::new();
            while let Ok(line) = err_receiver.recv_timeout(Duration::from_millis(10)) {
                err = err + "\n" + &line;
            }
729

730
            tracing::error!("Shard complete standard error output:\n{err}");
731

732
            if let Some(signal) = exit_status.signal() {
733
734
735
                tracing::error!("Shard process was signaled to shutdown with signal {signal}");
            }

736
            status_sender.send(ShardStatus::Failed(rank)).unwrap();
737
738
739
740
            return;
        }

        // We received a shutdown signal
741
        if shutdown.load(Ordering::SeqCst) {
742
            terminate("shard", p, Duration::from_secs(90)).unwrap();
743
744
745
746
747
            return;
        }

        // Shard is ready
        if uds.exists() && !ready {
748
            tracing::info!("Shard ready in {:?}", start_time.elapsed());
749
750
751
            status_sender.send(ShardStatus::Ready).unwrap();
            ready = true;
        } else if !ready && wait_time.elapsed() > Duration::from_secs(10) {
752
            tracing::info!("Waiting for shard to be ready...");
753
754
755
756
757
758
            wait_time = Instant::now();
        }
        sleep(Duration::from_millis(100));
    }
}

759
fn shutdown_shards(shutdown: Arc<AtomicBool>, shutdown_receiver: &mpsc::Receiver<()>) {
760
761
762
    tracing::info!("Shutting down shards");
    // Update shutdown value to true
    // This will be picked up by the shard manager
763
    shutdown.store(true, Ordering::SeqCst);
764
765
766
767
768
769
770

    // Wait for shards to shutdown
    // This will block till all shutdown_sender are dropped
    let _ = shutdown_receiver.recv();
}

fn num_cuda_devices() -> Option<usize> {
771
772
    let devices = match env::var("CUDA_VISIBLE_DEVICES") {
        Ok(devices) => devices,
773
774
775
        Err(_) => match env::var("NVIDIA_VISIBLE_DEVICES") {
            Ok(devices) => devices,
            Err(_) => env::var("ZE_AFFINITY_MASK").ok()?,
Nicolas Patry's avatar
Nicolas Patry committed
776
        },
777
    };
778
779
    let n_devices = devices.split(',').count();
    Some(n_devices)
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
}

#[derive(Deserialize)]
#[serde(rename_all = "UPPERCASE")]
enum PythonLogLevelEnum {
    Trace,
    Debug,
    Info,
    Success,
    Warning,
    Error,
    Critical,
}

#[derive(Deserialize)]
struct PythonLogLevel {
    name: PythonLogLevelEnum,
}

#[derive(Deserialize)]
struct PythonLogRecord {
    level: PythonLogLevel,
}

#[derive(Deserialize)]
struct PythonLogMessage {
    text: String,
    record: PythonLogRecord,
}

impl PythonLogMessage {
    fn trace(&self) {
        match self.record.level.name {
813
814
815
816
817
818
819
            PythonLogLevelEnum::Trace => tracing::trace!("{}", self.text.trim_end()),
            PythonLogLevelEnum::Debug => tracing::debug!("{}", self.text.trim_end()),
            PythonLogLevelEnum::Info => tracing::info!("{}", self.text.trim_end()),
            PythonLogLevelEnum::Success => tracing::info!("{}", self.text.trim_end()),
            PythonLogLevelEnum::Warning => tracing::warn!("{}", self.text.trim_end()),
            PythonLogLevelEnum::Error => tracing::error!("{}", self.text.trim_end()),
            PythonLogLevelEnum::Critical => tracing::error!("{}", self.text.trim_end()),
820
821
822
823
        }
    }
}

824
825
826
827
828
829
830
831
832
impl TryFrom<&String> for PythonLogMessage {
    type Error = serde_json::Error;

    fn try_from(value: &String) -> Result<Self, Self::Error> {
        serde_json::from_str::<Self>(value)
    }
}

fn log_lines<S: Sized + BufRead>(lines: Lines<S>) {
OlivierDehaene's avatar
OlivierDehaene committed
833
    for line in lines.map_while(Result::ok) {
834
835
836
837
838
839
840
        match PythonLogMessage::try_from(&line) {
            Ok(log) => log.trace(),
            Err(_) => tracing::debug!("{line}"),
        }
    }
}

841
842
843
844
fn find_num_shards(
    sharded: Option<bool>,
    num_shard: Option<usize>,
) -> Result<usize, LauncherError> {
845
846
847
848
    // get the number of shards given `sharded` and `num_shard`
    let num_shard = match (sharded, num_shard) {
        (Some(true), None) => {
            // try to default to the number of available GPUs
849
            tracing::info!("Parsing num_shard from CUDA_VISIBLE_DEVICES/NVIDIA_VISIBLE_DEVICES/ZE_AFFINITY_MASK");
850
            let n_devices = num_cuda_devices()
851
                .expect("--num-shard and CUDA_VISIBLE_DEVICES/NVIDIA_VISIBLE_DEVICES/ZE_AFFINITY_MASK are not set");
852
            if n_devices <= 1 {
853
854
855
                return Err(LauncherError::NotEnoughCUDADevices(format!(
                    "`sharded` is true but only found {n_devices} CUDA devices"
                )));
856
            }
857
            n_devices
858
        }
859
860
861
        (Some(true), Some(num_shard)) => {
            // we can't have only one shard while sharded
            if num_shard <= 1 {
862
863
864
                return Err(LauncherError::ArgumentValidation(
                    "`sharded` is true but `num_shard` <= 1".to_string(),
                ));
865
866
            }
            num_shard
867
        }
868
869
870
871
        (Some(false), Some(num_shard)) => num_shard,
        (Some(false), None) => 1,
        (None, None) => num_cuda_devices().unwrap_or(1),
        (None, Some(num_shard)) => num_shard,
872
    };
873
    if num_shard < 1 {
874
875
876
        return Err(LauncherError::ArgumentValidation(
            "`num_shard` cannot be < 1".to_string(),
        ));
877
    }
878
    Ok(num_shard)
879
}
880

881
#[derive(Debug, Error)]
882
enum LauncherError {
883
    #[error("Invalid argument: {0}")]
884
    ArgumentValidation(String),
885
    #[error("not enough cuda devices: {0}")]
886
    NotEnoughCUDADevices(String),
887
    #[error("Download error")]
888
    DownloadError,
889
    #[error("Shard cannot start")]
890
    ShardCannotStart,
891
    #[error("Shard disconnected")]
892
    ShardDisconnected,
893
    #[error("Shard failed")]
894
    ShardFailed,
895
    #[error("Webserver failed")]
896
    WebserverFailed,
897
    #[error("Webserver cannot start")]
898
899
    WebserverCannotStart,
}
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
900

901
902
903
904
905
906
907
908
fn download_convert_model(
    model_id: &str,
    revision: Option<&str>,
    trust_remote_code: bool,
    huggingface_hub_cache: Option<&str>,
    weights_cache_override: Option<&str>,
    running: Arc<AtomicBool>,
) -> Result<(), LauncherError> {
909
910
911
    // Enter download tracing span
    let _span = tracing::span!(tracing::Level::INFO, "download").entered();

OlivierDehaene's avatar
OlivierDehaene committed
912
    let mut download_args = vec![
913
        "download-weights".to_string(),
914
        model_id.to_string(),
915
916
917
918
919
920
        "--extension".to_string(),
        ".safetensors".to_string(),
        "--logger-level".to_string(),
        "INFO".to_string(),
        "--json-output".to_string(),
    ];
921

922
    // Model optional revision
923
    if let Some(revision) = &revision {
OlivierDehaene's avatar
OlivierDehaene committed
924
925
        download_args.push("--revision".to_string());
        download_args.push(revision.to_string())
926
    }
927

928
    // Trust remote code for automatic peft fusion
929
    if trust_remote_code {
930
931
932
        download_args.push("--trust-remote-code".to_string());
    }

933
    // Copy current process env
OlivierDehaene's avatar
OlivierDehaene committed
934
    let mut envs: Vec<(OsString, OsString)> = env::vars_os().collect();
935

936
937
938
    // Remove LOG_LEVEL if present
    envs.retain(|(name, _)| name != "LOG_LEVEL");

939
940
941
    // Disable progress bar
    envs.push(("HF_HUB_DISABLE_PROGRESS_BARS".into(), "1".into()));

942
    // If huggingface_hub_cache is set, pass it to the download process
943
    // Useful when running inside a docker container
944
    if let Some(ref huggingface_hub_cache) = huggingface_hub_cache {
OlivierDehaene's avatar
OlivierDehaene committed
945
        envs.push(("HUGGINGFACE_HUB_CACHE".into(), huggingface_hub_cache.into()));
946
    };
947

948
949
    // Enable hf transfer for insane download speeds
    let enable_hf_transfer = env::var("HF_HUB_ENABLE_HF_TRANSFER").unwrap_or("1".to_string());
OlivierDehaene's avatar
OlivierDehaene committed
950
    envs.push((
951
952
953
        "HF_HUB_ENABLE_HF_TRANSFER".into(),
        enable_hf_transfer.into(),
    ));
954

955
956
    // Parse Inference API token
    if let Ok(api_token) = env::var("HF_API_TOKEN") {
957
        envs.push(("HF_TOKEN".into(), api_token.into()))
958
    };
959

960
961
    // If args.weights_cache_override is some, pass it to the download process
    // Useful when running inside a HuggingFace Inference Endpoint
962
    if let Some(weights_cache_override) = &weights_cache_override {
OlivierDehaene's avatar
OlivierDehaene committed
963
        envs.push((
964
965
966
967
968
            "WEIGHTS_CACHE_OVERRIDE".into(),
            weights_cache_override.into(),
        ));
    };

969
    // Start process
970
    tracing::info!("Starting check and download process for {model_id}");
971
    let mut download_process = match Command::new("text-generation-server")
OlivierDehaene's avatar
OlivierDehaene committed
972
        .args(download_args)
973
        .env_clear()
OlivierDehaene's avatar
OlivierDehaene committed
974
        .envs(envs)
975
976
977
978
979
        .stdout(Stdio::piped())
        .stderr(Stdio::piped())
        .process_group(0)
        .spawn()
    {
980
981
        Ok(p) => p,
        Err(err) => {
982
983
984
            if err.kind() == io::ErrorKind::NotFound {
                tracing::error!("text-generation-server not found in PATH");
                tracing::error!("Please install it with `make install-server`")
985
986
            } else {
                tracing::error!("{}", err);
987
            }
988

989
990
991
            return Err(LauncherError::DownloadError);
        }
    };
992

993
    let download_stdout = BufReader::new(download_process.stdout.take().unwrap());
994

995
    thread::spawn(move || {
996
997
998
999
1000
1001
1002
1003
        log_lines(download_stdout.lines());
    });

    let download_stderr = BufReader::new(download_process.stderr.take().unwrap());

    // We read stderr in another thread as it seems that lines() can block in some cases
    let (err_sender, err_receiver) = mpsc::channel();
    thread::spawn(move || {
OlivierDehaene's avatar
OlivierDehaene committed
1004
        for line in download_stderr.lines().map_while(Result::ok) {
1005
1006
            err_sender.send(line).unwrap_or(());
        }
1007
    });
1008

1009
    loop {
1010
1011
        if let Some(status) = download_process.try_wait().unwrap() {
            if status.success() {
1012
                tracing::info!("Successfully downloaded weights for {model_id}");
1013
                break;
1014
            }
1015
1016

            let mut err = String::new();
1017
1018
1019
1020
            while let Ok(line) = err_receiver.recv_timeout(Duration::from_millis(10)) {
                err = err + "\n" + &line;
            }

1021
1022
1023
1024
1025
1026
1027
1028
1029
            if let Some(signal) = status.signal() {
                tracing::error!(
                    "Download process was signaled to shutdown with signal {signal}: {err}"
                );
            } else {
                tracing::error!("Download encountered an error: {err}");
            }

            return Err(LauncherError::DownloadError);
1030
        }
1031
        if !running.load(Ordering::SeqCst) {
OlivierDehaene's avatar
OlivierDehaene committed
1032
            terminate("download", download_process, Duration::from_secs(10)).unwrap();
1033
1034
1035
            return Ok(());
        }
        sleep(Duration::from_millis(100));
1036
    }
1037
1038
    Ok(())
}
1039

1040
#[allow(clippy::too_many_arguments)]
1041
1042
1043
fn spawn_shards(
    num_shard: usize,
    args: &Args,
1044
    cuda_graphs: Vec<usize>,
1045
    max_total_tokens: usize,
1046
    max_input_tokens: usize,
1047
    max_log_level: LevelFilter,
1048
    shutdown: Arc<AtomicBool>,
1049
1050
1051
1052
1053
1054
    shutdown_receiver: &mpsc::Receiver<()>,
    shutdown_sender: mpsc::Sender<()>,
    status_receiver: &mpsc::Receiver<ShardStatus>,
    status_sender: mpsc::Sender<ShardStatus>,
    running: Arc<AtomicBool>,
) -> Result<(), LauncherError> {
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1055
1056
    // Start shard processes
    for rank in 0..num_shard {
1057
1058
1059
1060
1061
1062
        let model_id = args.model_id.clone();
        let revision = args.revision.clone();
        let uds_path = args.shard_uds_path.clone();
        let master_addr = args.master_addr.clone();
        let huggingface_hub_cache = args.huggingface_hub_cache.clone();
        let weights_cache_override = args.weights_cache_override.clone();
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1063
1064
1065
        let status_sender = status_sender.clone();
        let shutdown = shutdown.clone();
        let shutdown_sender = shutdown_sender.clone();
1066
        let otlp_endpoint = args.otlp_endpoint.clone();
1067
        let otlp_service_name = args.otlp_service_name.clone();
1068
        let quantize = args.quantize;
Nicolas Patry's avatar
Nicolas Patry committed
1069
        let speculate = args.speculate;
1070
        let dtype = args.dtype;
1071
        let trust_remote_code = args.trust_remote_code;
1072
1073
1074
1075
        let master_port = args.master_port;
        let disable_custom_kernels = args.disable_custom_kernels;
        let watermark_gamma = args.watermark_gamma;
        let watermark_delta = args.watermark_delta;
1076
        let cuda_graphs_clone = cuda_graphs.clone();
1077
        let cuda_memory_fraction = args.cuda_memory_fraction;
Nicolas Patry's avatar
Nicolas Patry committed
1078
1079
        let rope_scaling = args.rope_scaling;
        let rope_factor = args.rope_factor;
1080
        let max_batch_size = args.max_batch_size;
drbh's avatar
drbh committed
1081
        let lora_adapters = args.lora_adapters.clone();
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1082
1083
        thread::spawn(move || {
            shard_manager(
1084
                model_id,
1085
                revision,
1086
                quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1087
                speculate,
1088
                dtype,
1089
                trust_remote_code,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1090
1091
1092
1093
1094
                uds_path,
                rank,
                num_shard,
                master_addr,
                master_port,
1095
1096
                huggingface_hub_cache,
                weights_cache_override,
1097
                disable_custom_kernels,
1098
1099
                watermark_gamma,
                watermark_delta,
1100
                cuda_graphs_clone,
1101
                cuda_memory_fraction,
Nicolas Patry's avatar
Nicolas Patry committed
1102
1103
                rope_scaling,
                rope_factor,
1104
1105
                max_total_tokens,
                max_batch_size,
1106
                max_input_tokens,
drbh's avatar
drbh committed
1107
                lora_adapters,
1108
                otlp_endpoint,
1109
                otlp_service_name,
1110
                max_log_level,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
                status_sender,
                shutdown,
                shutdown_sender,
            )
        });
    }
    drop(shutdown_sender);

    // Wait for shard to start
    let mut shard_ready = 0;
    while running.load(Ordering::SeqCst) {
        match status_receiver.try_recv() {
            Ok(ShardStatus::Ready) => {
                shard_ready += 1;
                if shard_ready == num_shard {
                    break;
                }
            }
            Err(TryRecvError::Empty) => {
                sleep(Duration::from_millis(100));
            }
1132
            Ok(ShardStatus::Failed(rank)) => {
1133
                tracing::error!("Shard {rank} failed to start");
1134
                shutdown_shards(shutdown, shutdown_receiver);
1135
                return Err(LauncherError::ShardCannotStart);
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1136
1137
1138
            }
            Err(TryRecvError::Disconnected) => {
                tracing::error!("Shard status channel disconnected");
1139
                shutdown_shards(shutdown, shutdown_receiver);
1140
                return Err(LauncherError::ShardDisconnected);
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1141
1142
1143
            }
        }
    }
1144
1145
    Ok(())
}
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1146

1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
fn compute_type(num_shard: usize) -> Option<String> {
    let output = Command::new("nvidia-smi")
        .args(["--query-gpu=gpu_name", "--format=csv"])
        .output()
        .ok()?;
    let output = String::from_utf8(output.stdout).ok()?;
    let fullname = output.split('\n').nth(1)?;
    let cardname = fullname.replace(' ', "-").to_lowercase();
    let compute_type = format!("{num_shard}-{cardname}");
    Some(compute_type)
}

1159
fn spawn_webserver(
1160
    num_shard: usize,
1161
    args: Args,
1162
1163
1164
    max_input_tokens: usize,
    max_total_tokens: usize,
    max_batch_prefill_tokens: u32,
1165
    shutdown: Arc<AtomicBool>,
1166
    shutdown_receiver: &mpsc::Receiver<()>,
1167
) -> Result<Child, LauncherError> {
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1168
1169
1170
    // All shard started
    // Start webserver
    tracing::info!("Starting Webserver");
OlivierDehaene's avatar
OlivierDehaene committed
1171
    let mut router_args = vec![
1172
1173
        "--max-client-batch-size".to_string(),
        args.max_client_batch_size.to_string(),
1174
        "--max-concurrent-requests".to_string(),
1175
        args.max_concurrent_requests.to_string(),
1176
        "--max-best-of".to_string(),
1177
        args.max_best_of.to_string(),
1178
        "--max-stop-sequences".to_string(),
1179
        args.max_stop_sequences.to_string(),
Nicolas Patry's avatar
Nicolas Patry committed
1180
1181
        "--max-top-n-tokens".to_string(),
        args.max_top_n_tokens.to_string(),
1182
1183
        "--max-input-tokens".to_string(),
        max_input_tokens.to_string(),
1184
        "--max-total-tokens".to_string(),
1185
        max_total_tokens.to_string(),
1186
        "--max-batch-prefill-tokens".to_string(),
1187
        max_batch_prefill_tokens.to_string(),
1188
        "--waiting-served-ratio".to_string(),
1189
        args.waiting_served_ratio.to_string(),
1190
        "--max-waiting-tokens".to_string(),
1191
        args.max_waiting_tokens.to_string(),
1192
1193
        "--validation-workers".to_string(),
        args.validation_workers.to_string(),
1194
1195
        "--hostname".to_string(),
        args.hostname.to_string(),
1196
        "--port".to_string(),
1197
        args.port.to_string(),
1198
        "--master-shard-uds-path".to_string(),
1199
        format!("{}-0", args.shard_uds_path),
1200
        "--tokenizer-name".to_string(),
1201
        args.model_id,
1202
1203
    ];

drbh's avatar
drbh committed
1204
1205
1206
1207
1208
    // Grammar support
    if args.disable_grammar_support {
        router_args.push("--disable-grammar-support".to_string());
    }

1209
1210
1211
1212
1213
1214
    // Tokenizer config path
    if let Some(ref tokenizer_config_path) = args.tokenizer_config_path {
        router_args.push("--tokenizer-config-path".to_string());
        router_args.push(tokenizer_config_path.to_string());
    }

1215
1216
1217
1218
1219
1220
    // Model optional max batch total tokens
    if let Some(max_batch_total_tokens) = args.max_batch_total_tokens {
        router_args.push("--max-batch-total-tokens".to_string());
        router_args.push(max_batch_total_tokens.to_string());
    }

1221
1222
1223
1224
1225
1226
    // Router optional max batch size
    if let Some(max_batch_size) = args.max_batch_size {
        router_args.push("--max-batch-size".to_string());
        router_args.push(max_batch_size.to_string());
    }

1227
1228
    // Model optional revision
    if let Some(ref revision) = args.revision {
OlivierDehaene's avatar
OlivierDehaene committed
1229
1230
        router_args.push("--revision".to_string());
        router_args.push(revision.to_string())
1231
1232
    }

1233
    if args.json_output {
OlivierDehaene's avatar
OlivierDehaene committed
1234
        router_args.push("--json-output".to_string());
1235
1236
    }

1237
    // OpenTelemetry
1238
    if let Some(otlp_endpoint) = args.otlp_endpoint {
OlivierDehaene's avatar
OlivierDehaene committed
1239
1240
        router_args.push("--otlp-endpoint".to_string());
        router_args.push(otlp_endpoint);
1241
1242
    }

1243
1244
1245
1246
1247
    // OpenTelemetry
    let otlp_service_name = args.otlp_service_name;
    router_args.push("--otlp-service-name".to_string());
    router_args.push(otlp_service_name);

1248
1249
    // CORS origins
    for origin in args.cors_allow_origin.into_iter() {
OlivierDehaene's avatar
OlivierDehaene committed
1250
1251
        router_args.push("--cors-allow-origin".to_string());
        router_args.push(origin);
1252
1253
    }

1254
1255
    // Ngrok
    if args.ngrok {
OlivierDehaene's avatar
OlivierDehaene committed
1256
1257
        router_args.push("--ngrok".to_string());
        router_args.push("--ngrok-authtoken".to_string());
1258
1259
1260
        router_args.push(args.ngrok_authtoken.unwrap());
        router_args.push("--ngrok-edge".to_string());
        router_args.push(args.ngrok_edge.unwrap());
1261
1262
    }

1263
    // Copy current process env
OlivierDehaene's avatar
OlivierDehaene committed
1264
    let mut envs: Vec<(OsString, OsString)> = env::vars_os().collect();
1265

1266
1267
    // Parse Inference API token
    if let Ok(api_token) = env::var("HF_API_TOKEN") {
1268
        envs.push(("HF_TOKEN".into(), api_token.into()))
1269
    };
1270

1271
1272
1273
1274
1275
1276
1277
    // Parse Compute type
    if let Ok(compute_type) = env::var("COMPUTE_TYPE") {
        envs.push(("COMPUTE_TYPE".into(), compute_type.into()))
    } else if let Some(compute_type) = compute_type(num_shard) {
        envs.push(("COMPUTE_TYPE".into(), compute_type.into()))
    }

1278
    let mut webserver = match Command::new("text-generation-router")
OlivierDehaene's avatar
OlivierDehaene committed
1279
1280
        .args(router_args)
        .envs(envs)
1281
1282
1283
1284
1285
        .stdout(Stdio::piped())
        .stderr(Stdio::piped())
        .process_group(0)
        .spawn()
    {
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1286
1287
        Ok(p) => p,
        Err(err) => {
1288
            tracing::error!("Failed to start webserver: {}", err);
1289
1290
1291
            if err.kind() == io::ErrorKind::NotFound {
                tracing::error!("text-generation-router not found in PATH");
                tracing::error!("Please install it with `make install-router`")
1292
1293
            } else {
                tracing::error!("{}", err);
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1294
            }
1295

1296
            shutdown_shards(shutdown, shutdown_receiver);
1297
            return Err(LauncherError::WebserverCannotStart);
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1298
1299
1300
        }
    };

1301
1302
1303
    // Redirect STDOUT and STDERR to the console
    let webserver_stdout = webserver.stdout.take().unwrap();
    let webserver_stderr = webserver.stderr.take().unwrap();
1304
1305

    thread::spawn(move || {
1306
1307
        let stdout = BufReader::new(webserver_stdout);
        let stderr = BufReader::new(webserver_stderr);
1308
        for line in stdout.lines() {
1309
            println!("{}", line.unwrap());
1310
        }
1311
1312
        for line in stderr.lines() {
            println!("{}", line.unwrap());
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1313
        }
1314
1315
1316
    });
    Ok(webserver)
}
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1317

OlivierDehaene's avatar
OlivierDehaene committed
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
fn terminate(process_name: &str, mut process: Child, timeout: Duration) -> io::Result<ExitStatus> {
    tracing::info!("Terminating {process_name}");

    let terminate_time = Instant::now();
    signal::kill(Pid::from_raw(process.id() as i32), Signal::SIGTERM).unwrap();

    tracing::info!("Waiting for {process_name} to gracefully shutdown");
    while terminate_time.elapsed() < timeout {
        if let Some(status) = process.try_wait()? {
            tracing::info!("{process_name} terminated");
            return Ok(status);
        }
        sleep(Duration::from_millis(100));
    }
    tracing::info!("Killing {process_name}");

    process.kill()?;
    let exit_status = process.wait()?;

    tracing::info!("{process_name} killed");
    Ok(exit_status)
}

1341
1342
fn main() -> Result<(), LauncherError> {
    // Pattern match configuration
1343
    let args: Args = Args::parse();
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1344

1345
    // Filter events with LOG_LEVEL
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
    let varname = "LOG_LEVEL";
    let env_filter = if let Ok(log_level) = std::env::var(varname) {
        // Override to avoid simple logs to be spammed with tokio level informations
        let log_level = match &log_level[..] {
            "warn" => "text_generation_launcher=warn,text_generation_router=warn",
            "info" => "text_generation_launcher=info,text_generation_router=info",
            "debug" => "text_generation_launcher=debug,text_generation_router=debug",
            log_level => log_level,
        };
        EnvFilter::builder()
            .with_default_directive(LevelFilter::INFO.into())
            .parse_lossy(log_level)
    } else {
        EnvFilter::new("info")
    };
    let max_log_level = env_filter.max_level_hint().unwrap_or(LevelFilter::INFO);
1362

1363
    if args.json_output {
1364
1365
1366
1367
        tracing_subscriber::fmt()
            .with_env_filter(env_filter)
            .json()
            .init();
1368
    } else {
1369
1370
1371
1372
        tracing_subscriber::fmt()
            .with_env_filter(env_filter)
            .compact()
            .init();
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1373
1374
    }

1375
1376
1377
1378
1379
    if args.env {
        let env_runtime = env_runtime::Env::new();
        tracing::info!("{}", env_runtime);
    }

Nicolas Patry's avatar
Nicolas Patry committed
1380
    tracing::info!("{:#?}", args);
1381

1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
    let get_max_position_embeddings = || -> Result<usize, Box<dyn std::error::Error>> {
        let model_id = args.model_id.clone();
        let mut path = std::path::Path::new(&args.model_id).to_path_buf();
        let filename = if !path.exists() {
            // Assume it's a hub id
            let api = Api::new()?;
            let repo = if let Some(ref revision) = args.revision {
                api.repo(Repo::with_revision(
                    model_id,
                    RepoType::Model,
                    revision.to_string(),
                ))
            } else {
                api.model(model_id)
            };
            repo.get("config.json")?
        } else {
            path.push("config.json");
            path
        };

        let content = std::fs::read_to_string(filename)?;
1404
1405
        let config: RawConfig = serde_json::from_str(&content)?;
        let config: Config = config.into();
1406
1407
1408
1409

        // Quantization usually means you're even more RAM constrained.
        let max_default = 4096;

1410
1411
1412
1413
1414
1415
1416
1417
        if let Some(max_position_embeddings) = config.max_position_embeddings {
            if max_position_embeddings > max_default {
                let max = max_position_embeddings;
                if args.max_input_tokens.is_none()
                    && args.max_total_tokens.is_none()
                    && args.max_batch_prefill_tokens.is_none()
                {
                    tracing::info!("Model supports up to {max} but tgi will now set its default to {max_default} instead. This is to save VRAM by refusing large prompts in order to allow more users on the same hardware. You can increase that size using `--max-batch-prefill-tokens={} --max-total-tokens={max} --max-input-tokens={}`.", max + 50, max - 1);
1418
                }
1419
1420
1421
                Ok(max_default)
            } else {
                Ok(max_position_embeddings)
1422
            }
1423
1424
1425
1426
1427
        } else {
            Err(Box::new(LauncherError::ArgumentValidation(
                "no max defined".to_string(),
            )))
        }
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
    };
    let max_position_embeddings: usize = get_max_position_embeddings().unwrap_or(4096);

    let max_input_tokens = {
        match (args.max_input_tokens, args.max_input_length) {
            (Some(max_input_tokens), Some(max_input_length)) => {
                return Err(LauncherError::ArgumentValidation(
                    format!("Both `max_input_tokens` ({max_input_tokens}) and `max_input_length` ({max_input_length}) are set. Please define only `max_input_tokens` as `max_input_length is deprecated for naming consistency.",
                )));
            }
            (Some(max_input_tokens), None) | (None, Some(max_input_tokens)) => max_input_tokens,
            (None, None) => {
                let value = max_position_embeddings - 1;
                tracing::info!("Default `max_input_tokens` to {value}");
                value
            }
        }
    };
    let max_total_tokens = {
        match args.max_total_tokens {
            Some(max_total_tokens) => max_total_tokens,
            None => {
                let value = max_position_embeddings;
                tracing::info!("Default `max_total_tokens` to {value}");
                value
            }
        }
    };
    let max_batch_prefill_tokens = {
        match args.max_batch_prefill_tokens {
            Some(max_batch_prefill_tokens) => max_batch_prefill_tokens,
            None => {
                let value: u32 = if let Some(max_batch_size) = args.max_batch_size {
                    max_batch_size * max_input_tokens
                } else {
                    // Adding some edge in order to account for potential block_size alignement
                    // issue.
                    max_input_tokens + 50
                } as u32;
                tracing::info!("Default `max_batch_prefill_tokens` to {value}");
                value
            }
        }
    };

1473
    // Validate args
1474
    if max_input_tokens >= max_total_tokens {
1475
        return Err(LauncherError::ArgumentValidation(
1476
            "`max_input_tokens must be < `max_total_tokens`".to_string(),
1477
1478
        ));
    }
1479
    if max_input_tokens as u32 > max_batch_prefill_tokens {
1480
        return Err(LauncherError::ArgumentValidation(format!(
1481
1482
            "`max_batch_prefill_tokens` must be >= `max_input_tokens`. Given: {} and {}",
            max_batch_prefill_tokens, max_input_tokens
1483
1484
        )));
    }
1485

1486
    let cuda_graphs = match (&args.cuda_graphs, &args.quantize) {
Nicolas Patry's avatar
Nicolas Patry committed
1487
        (Some(cuda_graphs), _) => cuda_graphs.iter().cloned().filter(|&c| c > 0).collect(),
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
        #[allow(deprecated)]
        (
            None,
            Some(
                Quantization::Bitsandbytes
                | Quantization::BitsandbytesNF4
                | Quantization::BitsandbytesFP4,
            ),
        ) => {
            tracing::info!("Bitsandbytes doesn't work with cuda graphs, deactivating them");
            vec![]
        }
        _ => {
            let cuda_graphs = vec![1, 2, 4, 8, 16, 32];
            tracing::info!("Using default cuda graphs {cuda_graphs:?}");
            cuda_graphs
        }
    };

1507
1508
1509
1510
1511
    if args.validation_workers == 0 {
        return Err(LauncherError::ArgumentValidation(
            "`validation_workers` must be > 0".to_string(),
        ));
    }
1512
1513
1514
1515
1516
1517
    if args.trust_remote_code {
        tracing::warn!(
            "`trust_remote_code` is set. Trusting that model `{}` do not contain malicious code.",
            args.model_id
        );
    }
1518
1519

    let num_shard = find_num_shards(args.sharded, args.num_shard)?;
1520
    if num_shard > 1 {
1521
1522
1523
1524
1525
        if matches!(args.quantize, Some(Quantization::Exl2)) {
            return Err(LauncherError::ArgumentValidation(
                "Sharding is currently not supported with `exl2` quantization".into(),
            ));
        }
1526
        tracing::info!("Sharding model on {num_shard} processes");
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1527
1528
    }

1529
    if let Some(ref max_batch_total_tokens) = args.max_batch_total_tokens {
1530
        if max_batch_prefill_tokens > *max_batch_total_tokens {
1531
1532
            return Err(LauncherError::ArgumentValidation(format!(
                "`max_batch_prefill_tokens` must be <= `max_batch_total_tokens`. Given: {} and {}",
1533
                max_batch_prefill_tokens, max_batch_total_tokens
1534
1535
            )));
        }
1536
        if max_total_tokens as u32 > *max_batch_total_tokens {
1537
1538
            return Err(LauncherError::ArgumentValidation(format!(
                "`max_total_tokens` must be <= `max_batch_total_tokens`. Given: {} and {}",
1539
                max_total_tokens, max_batch_total_tokens
1540
1541
1542
1543
            )));
        }
    }

1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
    if args.ngrok {
        if args.ngrok_authtoken.is_none() {
            return Err(LauncherError::ArgumentValidation(
                "`ngrok-authtoken` must be set when using ngrok tunneling".to_string(),
            ));
        }

        if args.ngrok_edge.is_none() {
            return Err(LauncherError::ArgumentValidation(
                "`ngrok-edge` must be set when using ngrok tunneling".to_string(),
            ));
        }
    }

1558
1559
1560
1561
1562
1563
1564
    // Signal handler
    let running = Arc::new(AtomicBool::new(true));
    let r = running.clone();
    ctrlc::set_handler(move || {
        r.store(false, Ordering::SeqCst);
    })
    .expect("Error setting Ctrl-C handler");
1565

1566
    // Download and convert model weights
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
    download_convert_model(
        &args.model_id,
        args.revision.as_deref(),
        args.trust_remote_code,
        args.huggingface_hub_cache.as_deref(),
        args.weights_cache_override.as_deref(),
        running.clone(),
    )?;

    // Download and convert lora adapters if any
    if let Some(lora_adapters) = &args.lora_adapters {
        for adapter in lora_adapters.split(',') {
            download_convert_model(
                adapter,
                None,
                args.trust_remote_code,
                args.huggingface_hub_cache.as_deref(),
                args.weights_cache_override.as_deref(),
                running.clone(),
            )?;
        }
    }
1589

OlivierDehaene's avatar
OlivierDehaene committed
1590
1591
1592
1593
1594
    if !running.load(Ordering::SeqCst) {
        // Launcher was asked to stop
        return Ok(());
    }

1595
    // Shared shutdown bool
1596
    let shutdown = Arc::new(AtomicBool::new(false));
1597
1598
1599
    // Shared shutdown channel
    // When shutting down, the main thread will wait for all senders to be dropped
    let (shutdown_sender, shutdown_receiver) = mpsc::channel();
1600

1601
1602
    // Shared channel to track shard status
    let (status_sender, status_receiver) = mpsc::channel();
1603

1604
1605
1606
    spawn_shards(
        num_shard,
        &args,
1607
        cuda_graphs,
1608
        max_total_tokens,
1609
        max_input_tokens,
1610
        max_log_level,
1611
1612
1613
1614
1615
1616
1617
        shutdown.clone(),
        &shutdown_receiver,
        shutdown_sender,
        &status_receiver,
        status_sender,
        running.clone(),
    )?;
1618

1619
1620
1621
1622
1623
    // We might have received a termination signal
    if !running.load(Ordering::SeqCst) {
        shutdown_shards(shutdown, &shutdown_receiver);
        return Ok(());
    }
1624

1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
    let mut webserver = spawn_webserver(
        num_shard,
        args,
        max_input_tokens,
        max_total_tokens,
        max_batch_prefill_tokens,
        shutdown.clone(),
        &shutdown_receiver,
    )
    .map_err(|err| {
        shutdown_shards(shutdown.clone(), &shutdown_receiver);
        err
    })?;
1638
1639
1640
1641
1642

    // Default exit code
    let mut exit_code = Ok(());

    while running.load(Ordering::SeqCst) {
1643
        if let Ok(ShardStatus::Failed(rank)) = status_receiver.try_recv() {
OlivierDehaene's avatar
OlivierDehaene committed
1644
            tracing::error!("Shard {rank} crashed");
1645
1646
1647
1648
            exit_code = Err(LauncherError::ShardFailed);
            break;
        };

1649
        match webserver.try_wait().unwrap() {
1650
1651
1652
1653
1654
1655
1656
1657
1658
            Some(_) => {
                tracing::error!("Webserver Crashed");
                shutdown_shards(shutdown, &shutdown_receiver);
                return Err(LauncherError::WebserverFailed);
            }
            None => {
                sleep(Duration::from_millis(100));
            }
        };
1659
    }
1660
1661

    // Graceful termination
OlivierDehaene's avatar
OlivierDehaene committed
1662
    terminate("webserver", webserver, Duration::from_secs(90)).unwrap();
1663
1664
1665
    shutdown_shards(shutdown, &shutdown_receiver);

    exit_code
1666
}