runner.go 38 KB
Newer Older
Jesse Gross's avatar
Jesse Gross committed
1
package ollamarunner
2
3

import (
4
	"bytes"
5
6
7
8
9
	"context"
	"encoding/json"
	"errors"
	"flag"
	"fmt"
10
	"hash/maphash"
11
	"image"
12
13
14
15
16
	"log"
	"log/slog"
	"net"
	"net/http"
	"os"
Jesse Gross's avatar
Jesse Gross committed
17
	"reflect"
18
19
20
21
22
23
	"regexp"
	"runtime"
	"strconv"
	"strings"
	"sync"
	"time"
24
	"unicode/utf8"
25

26
	"golang.org/x/image/bmp"
27
28
	"golang.org/x/sync/semaphore"

29
	"github.com/ollama/ollama/api"
30
	"github.com/ollama/ollama/envconfig"
31
	"github.com/ollama/ollama/fs/ggml"
32
	"github.com/ollama/ollama/llm"
33
	"github.com/ollama/ollama/logutil"
34
	"github.com/ollama/ollama/ml"
Michael Yang's avatar
Michael Yang committed
35
	"github.com/ollama/ollama/ml/nn/pooling"
Jesse Gross's avatar
Jesse Gross committed
36
	"github.com/ollama/ollama/model"
37
	"github.com/ollama/ollama/model/input"
Jesse Gross's avatar
Jesse Gross committed
38
39
40
41
	"github.com/ollama/ollama/runner/common"
	"github.com/ollama/ollama/sample"

	_ "github.com/ollama/ollama/model/models"
42
43
44
)

type Sequence struct {
45
	// ctxs are used for allocating tensors that last the lifetime of the sequence, such as
46
	// multimodal embeddings
47
	ctxs []ml.Context
48

49
50
51
	// mmStore holds multimodal embeddings to mange memory and enable splitting across batches
	mmStore multimodalStore

52
53
54
55
	// batch index
	iBatch int

	// prompt inputs left to evaluate
56
	inputs []*input.Input
57

Jesse Gross's avatar
Jesse Gross committed
58
	// inputs that have been added to a batch but not yet submitted to Forward
59
	pendingInputs []*input.Input
60

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
	// tokens that have been generated but not returned yet (e.g. for stop sequences)
	pendingResponses []string

	// input cache being used by this sequence
	cache *InputCacheSlot

	// channel to send responses over
	responses chan string

	// channel to stop decoding (such as if the remote connection is closed)
	quit chan bool

	// number of tokens to predict
	numPredict int

76
77
	// sampler with transforms to run on generated logits
	sampler sample.Sampler
78
79
80
81
82
83
84
85

	// channel to send back the embedding if embedding only
	embedding chan []float32

	// stop sequences
	stop []string

	// number of inputs to keep at the beginning when shifting context window
Jesse Gross's avatar
Jesse Gross committed
86
	numKeep int32
87
88
89
90

	// true if an embedding are to be returned instead of text generation
	embeddingOnly bool

91
92
93
	// shift if context window is exceeded
	shift bool

94
	doneReason llm.DoneReason
95
96

	// Metrics
97
98
99
100
101
	startedAt, lastUpdatedAt time.Time
	processingDuration       time.Duration
	samplingDuration         time.Duration
	numPredicted             int
	numPromptInputs          int
102
103
104
}

type NewSequenceParams struct {
Jesse Gross's avatar
Jesse Gross committed
105
106
107
	numPredict int
	stop       []string
	numKeep    int32
108
	sampler    sample.Sampler
Jesse Gross's avatar
Jesse Gross committed
109
	embedding  bool
110
111
	shift      bool
	truncate   bool
112
113
}

114
115
var errorInputTooLong = errors.New("the input length exceeds the context length")

116
func (s *Server) NewSequence(prompt string, images []llm.ImageData, params NewSequenceParams) (*Sequence, error) {
117
118
	s.ready.Wait()

119
	inputs, ctxs, mmStore, err := s.inputs(prompt, images)
120
121
122
123
124
125
126
	if err != nil {
		return nil, fmt.Errorf("failed to process inputs: %w", err)
	} else if len(inputs) == 0 {
		return nil, errors.New("no input provided")
	}

	if params.numKeep < 0 {
Jesse Gross's avatar
Jesse Gross committed
127
		params.numKeep = int32(len(inputs))
128
129
	}

130
131
132
	// Ensure that at least 1 input can be discarded during shift
	params.numKeep = min(params.numKeep, s.cache.numCtx-1)

Jesse Gross's avatar
Jesse Gross committed
133
134
	if int32(len(inputs)) > s.cache.numCtx {
		discard := int32(len(inputs)) - s.cache.numCtx
135
136
137
138
139

		if !params.truncate {
			return nil, errorInputTooLong
		}

140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
		promptStart := params.numKeep + discard

		// If we need to truncate in the middle of a unbreakable batch, remove the entire batch
		sameBatch := 0
		for i, inp := range inputs {
			if sameBatch > 0 {
				sameBatch--

				if promptStart == int32(i) {
					promptStart++
				}
			} else if promptStart == int32(i) {
				break
			}

			if inp.SameBatch != 0 {
				if int32(i) < params.numKeep {
					return nil, fmt.Errorf("SameBatch may not be specified within numKeep (index: %v numKeep: %v SameBatch: %v)", i, params.numKeep, inp.SameBatch)
				}

				sameBatch = inp.SameBatch
			}
		}

		if promptStart >= int32(len(inputs)) {
			return nil, errors.New("entire prompt removed by truncation")
		}

168
		newInputs := inputs[:params.numKeep]
169
		newInputs = append(newInputs, inputs[promptStart:]...)
170
171

		slog.Warn("truncating input prompt", "limit", s.cache.numCtx, "prompt", len(inputs), "keep", params.numKeep, "new", len(newInputs))
172
		inputs = newInputs
173
174
	}

Jesse Gross's avatar
Jesse Gross committed
175
	// TODO(jessegross): Ingest cached history for grammar
176
177

	return &Sequence{
178
179
180
181
182
183
184
185
186
187
188
189
190
		ctxs:             ctxs,
		mmStore:          mmStore,
		inputs:           inputs,
		numPromptInputs:  len(inputs),
		numPredict:       params.numPredict,
		pendingResponses: make([]string, 0),
		responses:        make(chan string, 100),
		quit:             make(chan bool, 1),
		embedding:        make(chan []float32, 1),
		sampler:          params.sampler,
		embeddingOnly:    params.embedding,
		stop:             params.stop,
		numKeep:          params.numKeep,
191
		shift:            params.shift,
192
193
194
195
196
	}, nil
}

// inputs processes the prompt and images into a list of inputs
// by splitting the prompt on [img-<n>] tags, tokenizing text and
Jesse Gross's avatar
Jesse Gross committed
197
// decoding images
198
199
func (s *Server) inputs(prompt string, images []llm.ImageData) ([]*input.Input, []ml.Context, multimodalStore, error) {
	var inputs []*input.Input
200
	var ctxs []ml.Context
201
	var mmStore multimodalStore
202

203
204
205
	var parts []string
	var matches [][]string

206
	multimodalProcessor, visionModel := s.model.(model.MultimodalProcessor)
207

208
209
210
211
	if visionModel {
		re := regexp.MustCompile(`\[img-(\d+)\]`)
		parts = re.Split(prompt, -1)
		matches = re.FindAllStringSubmatch(prompt, -1)
212
		mmStore = newMultimodalStore()
213
214
215
216
	} else {
		parts = []string{prompt}
	}

217
218
	for i, part := range parts {
		// text - tokenize
219
		tokens, err := s.model.(model.TextProcessor).Encode(part, i == 0)
220
		if err != nil {
221
			return nil, nil, nil, err
222
		}
223

224
		for _, t := range tokens {
225
			inputs = append(inputs, &input.Input{Token: t})
226
227
		}

Jesse Gross's avatar
Jesse Gross committed
228
		// image - decode and store
229
230
231
232
233
234
235
236
237
238
239
240
		if i < len(matches) {
			n, _ := strconv.Atoi(matches[i][1])

			imageIndex := -1
			for j := range images {
				if images[j].ID == n {
					imageIndex = j
					break
				}
			}

			if imageIndex < 0 {
241
				return nil, nil, nil, fmt.Errorf("invalid image index: %d", n)
242
243
			}

244
			ctx := s.model.Backend().NewContext()
245
246
			runtime.SetFinalizer(ctx, func(c ml.Context) { c.Close() })
			ctxs = append(ctxs, ctx)
247
			imageEmbeddings, err := multimodalProcessor.EncodeMultimodal(ctx, images[imageIndex].Data)
Jesse Gross's avatar
Jesse Gross committed
248
			if err != nil {
249
				return nil, nil, nil, err
Jesse Gross's avatar
Jesse Gross committed
250
251
			}

252
253
254
255
			s.multimodalHash.Reset()
			_, _ = s.multimodalHash.Write(images[imageIndex].Data)
			imageHash := s.multimodalHash.Sum64()

256
257
			mmStore.addMultimodal(imageEmbeddings)

258
			inputs = append(inputs, &input.Input{Multimodal: imageEmbeddings, MultimodalHash: imageHash})
259
260
261
		}
	}

262
	if visionModel {
263
		var err error
264
		inputs, err = multimodalProcessor.PostTokenize(inputs)
265
		if err != nil {
266
			return nil, nil, nil, err
267
268
269
		}
	}

270
	return inputs, ctxs, mmStore, nil
271
272
}

273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
type batchState struct {
	// id provides a counter for trace logging batches
	id int

	// ctx holds the backend context used for this batch
	ctx ml.Context

	// modelOutput holds the outputs from this batch
	modelOutput ml.Tensor

	// batchInputs holds the input token pointers which may start as
	// placeholders later filled in before calling ctx.Compute
	batchInputs []*input.Input

	// batch contains the inputs for a model forward pass
	batch input.Batch

	// full set of seqs at the time this batch was initiated
	seqs []*Sequence

	// Signaled when this batches inputs are ready and compute can proceed
	inputsReadyCh chan struct{}

	// Signaling when Compute is about to begin on this batch, and
	// seqs have been updated to prepare for the next batch
	computeStartedCh chan struct{}

	// Signaled when this batches outputs are complete and the next batch can proceed
	outputsReadyCh chan struct{}
}

304
type Server struct {
Jesse Gross's avatar
Jesse Gross committed
305
306
307
308
309
310
311
312
313
314
	// modelPath is the location of the model to be loaded
	modelPath string

	// loadMu prevents more than one load attempt from occurring at a time
	loadMu sync.Mutex

	// lastLoad is the load request from the previous load attempt. Used to
	// detect if we can reuse an existing memory allocation.
	lastLoad llm.LoadRequest

315
316
317
318
319
	// is the server ready to process requests?
	// protects access to model and image
	ready sync.WaitGroup

	// loaded model
Jesse Gross's avatar
Jesse Gross committed
320
	model model.Model
321

322
	// status for external health reporting - loading, ready to serve, etc.
323
	status llm.ServerStatus
324
325
326
327
328
329
330
331

	// current progress on loading the model
	progress float32

	// number of simultaneous requests to handle
	parallel int

	// maximum number of elements in a batch (per sequence)
332
	// TODO (jmorganca): make this n_batch
333
334
	batchSize int

335
336
337
	// Simple counter used only for trace logging batches
	batchID int

338
339
340
341
342
343
344
345
	// protects access to everything below this line
	// this is context state needed for decoding
	mu sync.Mutex

	// indicates that data is ready for processing
	cond *sync.Cond

	// the list of simultaneous sequences being evaluated
346
347
	seqs []*Sequence

348
349
350
351
	// seqs can have a maximum of parallel entries, which
	// is enfoced by seqSem
	seqsSem *semaphore.Weighted

352
353
354
	// KV cache
	cache *InputCache

355
356
357
	// next sequence for prompt processing to avoid starvation
	nextSeq int

358
359
360
	// multimodalHash generates hashes for comparing equality
	// of non-text data
	multimodalHash maphash.Hash
361
362
363
364
365
366
367
368
369
370
371
372
}

func (s *Server) allNil() bool {
	for _, item := range s.seqs {
		if item != nil {
			return false
		}
	}
	return true
}

func flushPending(seq *Sequence) bool {
373
374
375
376
377
378
379
380
381
382
383
	joined := strings.Join(seq.pendingResponses, "")
	seq.pendingResponses = []string{}

	// Check if there are any partial UTF-8 characters remaining.
	// We already check and queue as we are generating but some may
	// still make it here:
	// - Sequence is ending, e.g. generation limit has been hit
	// - Invalid characters in the middle of a string
	// This is a stricter check to ensure we never output invalid Unicode.
	for !utf8.ValidString(joined) {
		joined = joined[:len(joined)-1]
384
385
	}

386
387
388
389
390
391
392
393
394
395
	if len(joined) == 0 {
		return true
	}

	select {
	case seq.responses <- joined:
		return true
	case <-seq.quit:
		return false
	}
396
397
}

398
func (s *Server) removeSequence(seqIndex int, reason llm.DoneReason) {
399
400
401
402
403
404
405
406
	seq := s.seqs[seqIndex]

	flushPending(seq)
	seq.doneReason = reason
	close(seq.responses)
	close(seq.embedding)
	seq.cache.InUse = false
	s.seqs[seqIndex] = nil
407
	s.seqsSem.Release(1)
408
409
}

410
411
// track batch state between forwardBatch, computeBatch and predictForwardBatch

412
413
414
func (s *Server) run(ctx context.Context) {
	s.ready.Wait()

Michael Yang's avatar
Michael Yang committed
415
	supportsAsync := pooling.Type(s.model.Backend().Config().Uint("pooling_type")) == pooling.TypeNone
Michael Yang's avatar
Michael Yang committed
416

417
	var previousBatch batchState
418
419
420
421
422
	for {
		select {
		case <-ctx.Done():
			return
		default:
423
			var err error
424
			nextBatch, err := s.forwardBatch(previousBatch)
425
426
427
			if err != nil {
				panic(err)
			}
Michael Yang's avatar
Michael Yang committed
428
429

			if supportsAsync {
430
				go s.computeBatch(nextBatch)
Michael Yang's avatar
Michael Yang committed
431
			} else {
432
				s.computeBatch(nextBatch)
Michael Yang's avatar
Michael Yang committed
433
			}
434
435

			previousBatch = nextBatch
436
437
438
439
		}
	}
}

440
441
442
443
444
445
// forwardBatch will calculate a batch.
func (s *Server) forwardBatch(pendingBatch batchState) (nextBatch batchState, err error) {
	// If we have a pending batch still processing, wait until Compute has started
	// before setting up the next batch so the seqs inputs are ready to receive their
	// token values and we get the correct input pointers for the batchInputs
	if pendingBatch.ctx != nil {
Michael Yang's avatar
Michael Yang committed
446
		logutil.Trace("forwardBatch waiting for compute to start", "pendingBatch.id", pendingBatch.id)
447
		<-pendingBatch.computeStartedCh
Michael Yang's avatar
Michael Yang committed
448
		logutil.Trace("forwardBatch compute started, setting up next batch", "pendingBatch.id", pendingBatch.id, "id", s.batchID)
449
450
		nextBatch.inputsReadyCh = pendingBatch.outputsReadyCh // Chain the ouputs from the pending batch to the next inputs batch
	} else {
Michael Yang's avatar
Michael Yang committed
451
		logutil.Trace("forwardBatch no pending batch detected", "batchID", s.batchID)
452
453
454
455
456
		// No pendingBatch, so the inputs will be ready in the seqs immediately
		nextBatch.inputsReadyCh = make(chan struct{}, 1)
		nextBatch.inputsReadyCh <- struct{}{}
	}

457
458
459
460
461
462
	s.mu.Lock()
	for s.allNil() {
		s.cond.Wait() // Wait until an item is added
	}
	defer s.mu.Unlock()

463
464
465
466
467
468
469
470
471
472
473
	nextBatch.ctx = s.model.Backend().NewContext()
	defer func() {
		if err != nil {
			nextBatch.ctx.Close()
			nextBatch.ctx = nil
		}
	}()
	nextBatch.id = s.batchID
	nextBatch.seqs = append([]*Sequence{}, s.seqs...)
	nextBatch.computeStartedCh = make(chan struct{}, 1)
	nextBatch.outputsReadyCh = make(chan struct{}, 1)
474

475
476
	// Prepare the seqs and batch, but defer the input token values as we may not be ready yet
	var batchInputs []*input.Input
477
	var batchOutputs []int32
Jesse Gross's avatar
Jesse Gross committed
478
	var batch input.Batch
479

480
481
482
483
484
	resumeSeq := -1
	seqIdx := s.nextSeq - 1
	for range s.seqs {
		seqIdx = (seqIdx + 1) % len(s.seqs)
		seq := s.seqs[seqIdx]
485
486
487
488
489
		if seq == nil {
			continue
		}

		// if past the num predict limit
490
		if seq.numPredict > 0 && seq.numPredicted >= seq.numPredict {
491
			s.removeSequence(seqIdx, llm.DoneReasonLength)
492
			nextBatch.seqs[seqIdx] = nil
493
494
495
			continue
		}

Jesse Gross's avatar
Jesse Gross committed
496
497
		if !s.cache.enabled {
			seq.inputs = append(seq.cache.Inputs, seq.inputs...)
498
			seq.cache.Inputs = []*input.Input{}
Jesse Gross's avatar
Jesse Gross committed
499
500
		}

501
502
		batchSize := s.batchSize

503
		for i, inp := range seq.inputs {
504
505
			// If we are required to put following inputs into a single batch then extend the
			// batch size. Since we are only extending the size the minimum amount possible, this
506
			// will cause a break if we have existing inputs.
507
508
509
510
511
			minBatch := 1 + inp.SameBatch
			if minBatch > batchSize {
				batchSize = minBatch
			}

512
513
514
515
516
517
518
519
			// Stop if the required batch would put us over the total batch size (including tokens
			// added by other sequences). If we haven't been able to add anything yet then pick up
			// here again for the next batch to avoid starvation, though we can opportunistically
			// check if other sequences can still squeeze something in.
			if len(batchInputs)+minBatch > batchSize {
				if len(seq.pendingInputs) == 0 && resumeSeq == -1 {
					resumeSeq = seqIdx
				}
520
521
				break
			}
Jesse Gross's avatar
Jesse Gross committed
522

523
524
525
526
527
528
529
530
			// If the sum of our working set (already processed tokens, tokens we added to this
			// batch, required following tokens) exceeds the context size, then trigger a shift
			// now so we don't have to do one later when we can't break the batch.
			if int32(len(seq.cache.Inputs)+len(seq.pendingInputs)+minBatch) > s.cache.numCtx {
				if len(seq.pendingInputs) != 0 {
					break
				}

531
532
533
534
535
536
				if !seq.shift {
					s.removeSequence(seqIdx, llm.DoneReasonLength)
					nextBatch.seqs[seqIdx] = nil
					break
				}

537
				err = s.cache.ShiftCacheSlot(seq.cache, seq.numKeep)
538
				if err != nil {
539
540
541
542
543
					var reprocess *ErrReprocessInputs
					if errors.As(err, &reprocess) {
						// Prepend these inputs to the sequence's inputs queue for reprocessing
						seq.inputs = append(reprocess.Inputs, seq.inputs...)
						// Skip this sequence but continue processing the rest
544
545
						nextBatch.seqs[seqIdx] = nil // clear this sequence for this batch
						err = nil
546
547
						continue
					} else {
548
						return
549
					}
550
551
552
				}
			}

553
			batchInputs = append(batchInputs, seq.inputs[i])
554
			if inp.Multimodal != nil {
555
556
				var mm []input.Multimodal
				mm, err = seq.mmStore.getMultimodal(s.model.Backend(), nextBatch.ctx, inp.Multimodal, false)
557
				if err != nil {
558
					return
559
560
				}
				batch.Multimodal = append(batch.Multimodal, input.MultimodalIndex{Index: len(batchInputs) - 1, Multimodal: mm})
561
562
			}

Jesse Gross's avatar
Jesse Gross committed
563
564
			batch.Positions = append(batch.Positions, int32(len(seq.cache.Inputs)+len(seq.pendingInputs)))
			batch.Sequences = append(batch.Sequences, seq.cache.Id)
Jesse Gross's avatar
Jesse Gross committed
565

566
567
568
			seq.iBatch = len(batchOutputs)
			if i+1 == len(seq.inputs) || seq.embeddingOnly {
				batchOutputs = append(batchOutputs, int32(len(batchInputs)-1))
Jesse Gross's avatar
Jesse Gross committed
569
			}
Michael Yang's avatar
Michael Yang committed
570
			logutil.Trace("forwardBatch iBatch", "batchID", s.batchID, "seqIdx", seqIdx, "seq.iBatch", seq.iBatch, "i+1", i+1, "len(seq.inputs)", len(seq.inputs))
571
			seq.pendingInputs = append(seq.pendingInputs, inp)
572
		}
573
574

		seq.inputs = seq.inputs[len(seq.pendingInputs):]
575
576
	}

577
578
579
580
581
582
583
	startedAt := time.Now()
	for i := range nextBatch.seqs {
		if nextBatch.seqs[i] != nil && nextBatch.seqs[i].startedAt.IsZero() {
			nextBatch.seqs[i].startedAt = startedAt
		}
	}

584
585
586
587
588
589
	if resumeSeq != -1 {
		s.nextSeq = resumeSeq
	} else {
		s.nextSeq = seqIdx + 1
	}

590
	if len(batchInputs) == 0 {
Michael Yang's avatar
Michael Yang committed
591
		logutil.Trace("forwardBatch no batchInputs, going idle", "batchID", s.batchID)
592
593
594
		nextBatch.ctx.Close()
		nextBatch.ctx = nil
		return
595
	}
596
	s.batchID++
597

598
599
	// Actual batchInputs values will be injected into the batch.Inputs tensor before calling Compute
	batch.Inputs = nextBatch.ctx.Input().Empty(ml.DTypeI32, len(batchInputs))
Michael Yang's avatar
Michael Yang committed
600
	batch.Outputs = nextBatch.ctx.Input().FromInts(batchOutputs, len(batchOutputs))
601
	nextBatch.ctx.SetBatchSize(len(batchInputs))
602
	nextBatch.modelOutput, err = model.Forward(nextBatch.ctx, s.model, batch)
603
	if err != nil {
604
605
		err = fmt.Errorf("failed to build graph: %w", err)
		return
606
	}
607
608
	nextBatch.batchInputs = batchInputs
	nextBatch.batch = batch
609

610
611
612
613
614
615
616
617
618
619
620
621
	return
}

// Async processing of the next batch
func (s *Server) computeBatch(activeBatch batchState) {
	if activeBatch.ctx == nil {
		// Nothing to compute
		return
	}
	defer activeBatch.ctx.Close()

	// Wait until inputs are ready
Michael Yang's avatar
Michael Yang committed
622
	logutil.Trace("computeBatch: waiting for inputs to be ready", "batchID", activeBatch.id)
623
	<-activeBatch.inputsReadyCh
Michael Yang's avatar
Michael Yang committed
624
	logutil.Trace("computeBatch: inputs are ready", "batchID", activeBatch.id)
625

626
627
628
	// Once we complete, signal the next batch of inputs are ready
	// This will unblock the next computeBatch, or forwardBatch if new seqs come in
	defer func() {
Michael Yang's avatar
Michael Yang committed
629
		logutil.Trace("computeBatch: outputs are ready", "batchID", activeBatch.id)
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
		activeBatch.outputsReadyCh <- struct{}{}
	}()

	s.mu.Lock()

	// Gather the actual input token values now that they're ready
	batchInputs := make([]int32, len(activeBatch.batchInputs))
	for i := range batchInputs {
		batchInputs[i] = activeBatch.batchInputs[i].Token
	}

	// Now we run part of the decoding algorithm to adjust the seq.inputs with placeholder tokens
	// so that forwardBatch can build a batchInputs set which will eventually contain the actual
	// decoded tokens.
	nextBatchTokens := make([]*input.Input, len(s.seqs))
	iBatches := make([]int, len(s.seqs)) // Record the iBatch values before releasing the lock
646
	for i, seq := range s.seqs {
647
		iBatches[i] = -1
648
649
650
		if seq == nil {
			continue
		}
651
652
653
654
		// Skip over any newly added or skipped sequences
		if activeBatch.seqs[i] == nil {
			continue
		}
655

656
657
658
		// Detect if the sequence we're processing has already been completed and replaced
		// with a new sequence
		if seq != activeBatch.seqs[i] {
Michael Yang's avatar
Michael Yang committed
659
			logutil.Trace("computeBatch: sequence replaced, discarding its results", "batchID", activeBatch.id, "seqIdx", i)
660
661
662
663
664
665
666
667
668
669
670
			continue
		}

		// Pending inputs will actually be in the cache after we call Compute.
		// However, we have already resolved any placeholder tokens.
		//
		// It's possible for incoming sequences to look at the values that we've
		// added to the cache here and start relying on them before we've done
		// the computation. This is OK as long as we ensure that this batch's
		// computation happens before any future batch's and we never fail
		// (unless we take down the whole runner).
671
672
		if len(seq.pendingInputs) > 0 {
			seq.cache.Inputs = append(seq.cache.Inputs, seq.pendingInputs...)
673
			seq.pendingInputs = []*input.Input{}
674
675
		}

676
677
		// don't sample prompt processing
		if len(seq.inputs) != 0 {
Jesse Gross's avatar
Jesse Gross committed
678
			if !s.cache.enabled {
Michael Yang's avatar
Michael Yang committed
679
				panic("caching disabled but unable to fit entire input in a batch")
Jesse Gross's avatar
Jesse Gross committed
680
			}
681
682
683
			continue
		}

Jesse Gross's avatar
Jesse Gross committed
684
		seq.numPredicted++
685
686
687
688
689
690
691
692
693
		nextToken := &input.Input{Token: 0} // placeholder we'll fill in after Compute/Floats
		seq.inputs = []*input.Input{nextToken}
		nextBatchTokens[i] = nextToken
		iBatches[i] = seq.iBatch
	}

	// At this point the seqs are ready for forwardBatch to move forward so unblock
	s.mu.Unlock()

Michael Yang's avatar
Michael Yang committed
694
	activeBatch.batch.Inputs.FromInts(batchInputs)
695
696
	activeBatch.ctx.ComputeWithNotify(
		func() {
Michael Yang's avatar
Michael Yang committed
697
			logutil.Trace("computeBatch: signaling computeStartedCh", "batchID", activeBatch.id)
698
699
700
			activeBatch.computeStartedCh <- struct{}{}
		},
		activeBatch.modelOutput)
Michael Yang's avatar
Michael Yang committed
701
702

	outputs := activeBatch.modelOutput.Floats()
703
	t := time.Now()
704

Michael Yang's avatar
Michael Yang committed
705
	logutil.Trace("computeBatch: logits ready", "batchID", activeBatch.id)
706
707
708
709

	s.mu.Lock()
	defer s.mu.Unlock()

Michael Yang's avatar
Michael Yang committed
710
	logutil.Trace("computeBatch: decoding", "batchID", activeBatch.id)
711
712
713
714
715
	for i, seq := range s.seqs {
		if seq == nil || nextBatchTokens[i] == nil {
			continue
		}

716
		seq.lastUpdatedAt = t
Jesse Gross's avatar
Jesse Gross committed
717
		if seq.numPredicted == 1 {
718
719
			seq.processingDuration = seq.lastUpdatedAt.Sub(seq.startedAt)
			seq.startedAt = seq.lastUpdatedAt
720
721
722
723
		}

		// if done processing the prompt, generate an embedding and return
		if seq.embeddingOnly {
Michael Yang's avatar
Michael Yang committed
724
			seq.embedding <- outputs
725
			s.removeSequence(i, llm.DoneReasonStop)
726
			continue
727
728
729
		}

		// sample a token
730
731
		vocabSize := len(outputs) / activeBatch.batch.Outputs.Dim(0)
		logutil.Trace("computeBatch: vocab details", "batchID", activeBatch.id, "seqIdx", i, "len(logits)", len(outputs), "len(activeBatch.batch.Outputs)", activeBatch.batch.Outputs.Dim(0), "vocabSize", vocabSize, "iBatches", iBatches)
Michael Yang's avatar
Michael Yang committed
732
		token, err := seq.sampler.Sample(outputs[iBatches[i]*vocabSize : (iBatches[i]+1)*vocabSize])
Jesse Gross's avatar
Jesse Gross committed
733
		if err != nil {
Michael Yang's avatar
Michael Yang committed
734
			panic("failed to sample token")
Jesse Gross's avatar
Jesse Gross committed
735
		}
736

737
738
		nextBatchTokens[i].Token = token

739
		// if it's an end of sequence token, break
Jesse Gross's avatar
Jesse Gross committed
740
		if s.model.(model.TextProcessor).Is(token, model.SpecialEOS) {
741
742
743
			// TODO (jmorganca): we should send this back
			// as it's important for the /api/generate context
			// seq.responses <- piece
Michael Yang's avatar
Michael Yang committed
744
			logutil.Trace("computeBatch: EOS", "batchID", activeBatch.id, "seqIdx", i)
745
			s.removeSequence(i, llm.DoneReasonStop)
746
747
748
			continue
		}

Jesse Gross's avatar
Jesse Gross committed
749
750
		piece, err := s.model.(model.TextProcessor).Decode([]int32{token})
		if err != nil {
Michael Yang's avatar
Michael Yang committed
751
			panic("failed to decode token")
Jesse Gross's avatar
Jesse Gross committed
752
753
		}

754
755
756
		seq.pendingResponses = append(seq.pendingResponses, piece)
		sequence := strings.Join(seq.pendingResponses, "")

Jesse Gross's avatar
Jesse Gross committed
757
		if ok, stop := common.FindStop(sequence, seq.stop); ok {
758
759
760
761
			slog.Debug("hit stop token", "pending", seq.pendingResponses, "stop", stop)

			var tokenTruncated bool
			origLen := len(seq.pendingResponses)
Jesse Gross's avatar
Jesse Gross committed
762
			seq.pendingResponses, tokenTruncated = common.TruncateStop(seq.pendingResponses, stop)
763
764
765
766
767
768
769
770
771
772
773
774
775
776
			newLen := len(seq.pendingResponses)

			// Update the cache based on the tokens that will be returned:
			// - We have 1 token more than is currently in the cache because
			// the last one generated wasn't submitted to Decode
			// - Remove any stop sequences that we stripped out
			// - If truncateStop removed a portion of a token, drop that
			// - As defense-in-depth, if truncatedToken didn't find a stop token
			// remove the extra one that we added to the cache len
			tokenLen := len(seq.cache.Inputs) + 1
			tokenLen -= origLen - newLen
			if tokenTruncated || origLen == newLen {
				tokenLen--
			}
777

778
			seq.cache.Inputs = seq.cache.Inputs[:tokenLen]
779

780
			s.removeSequence(i, llm.DoneReasonStop)
781
782
783
			continue
		}

Jesse Gross's avatar
Jesse Gross committed
784
		if common.ContainsStopSuffix(sequence, seq.stop) {
785
786
787
			continue
		}

Jesse Gross's avatar
Jesse Gross committed
788
		if common.IncompleteUnicode(sequence) {
789
790
791
792
			continue
		}

		if !flushPending(seq) {
793
			s.removeSequence(i, llm.DoneReasonConnectionClosed)
794
795
		}
	}
796
797
798
799
800
801
802

	samplingDuration := time.Since(t)
	for i, seq := range s.seqs {
		if seq != nil && nextBatchTokens[i] != nil {
			s.seqs[i].samplingDuration += samplingDuration
		}
	}
803
804
805
}

func (s *Server) completion(w http.ResponseWriter, r *http.Request) {
806
	var req llm.CompletionRequest
807
808
809
810
811
	if err := json.NewDecoder(r.Body).Decode(&req); err != nil {
		http.Error(w, "Bad request", http.StatusBadRequest)
		return
	}

812
813
814
815
816
	if req.Options == nil {
		opts := api.DefaultOptions()
		req.Options = &opts
	}

817
818
819
820
821
822
823
824
825
826
	// Set the headers to indicate streaming
	w.Header().Set("Content-Type", "application/json")
	w.Header().Set("Transfer-Encoding", "chunked")

	flusher, ok := w.(http.Flusher)
	if !ok {
		http.Error(w, "Streaming not supported", http.StatusInternalServerError)
		return
	}

827
	var grammar *sample.GrammarSampler
828
829
	var err error
	if req.Grammar != "" {
830
		grammar, err = sample.NewGrammarSampler(s.model.(model.TextProcessor), req.Grammar)
831
832
833
834
		if err != nil {
			http.Error(w, "failed to load model vocabulary required for format", http.StatusInternalServerError)
			return
		}
835
		defer grammar.Free()
836
837
	}

838
	sampler := sample.NewSampler(
839
840
841
842
843
		req.Options.Temperature,
		req.Options.TopK,
		req.Options.TopP,
		req.Options.MinP,
		req.Options.Seed,
844
		grammar,
845
846
	)

847
	seq, err := s.NewSequence(req.Prompt, req.Images, NewSequenceParams{
848
849
850
		numPredict: req.Options.NumPredict,
		stop:       req.Options.Stop,
		numKeep:    int32(req.Options.NumKeep),
851
		sampler:    sampler,
Jesse Gross's avatar
Jesse Gross committed
852
		embedding:  false,
853
854
		shift:      req.Shift,
		truncate:   req.Truncate,
855
856
	})
	if err != nil {
857
858
859
860
		if errors.Is(err, errorInputTooLong) {
			http.Error(w, err.Error(), http.StatusBadRequest)
			return
		}
861
862
863
864
		http.Error(w, fmt.Sprintf("Failed to create new sequence: %v", err), http.StatusInternalServerError)
		return
	}

865
	// Ensure there is a place to put the sequence, released when removed from s.seqs
866
	if err := s.seqsSem.Acquire(r.Context(), 1); err != nil {
867
868
869
		if errors.Is(err, context.Canceled) {
			slog.Info("aborting completion request due to client closing the connection")
		} else {
870
			http.Error(w, fmt.Sprintf("Failed to acquire semaphore: %v", err), http.StatusInternalServerError)
871
		}
872
873
874
		return
	}

875
	s.mu.Lock()
876
	found := false
877
878
	for i, sq := range s.seqs {
		if sq == nil {
Michael Yang's avatar
Michael Yang committed
879
			seq.cache, seq.inputs, err = s.cache.LoadCacheSlot(seq.inputs, true)
880
881
			if err != nil {
				s.mu.Unlock()
882
				s.seqsSem.Release(1)
883
884
885
				http.Error(w, fmt.Sprintf("Failed to load cache: %v", err), http.StatusInternalServerError)
				return
			}
886

887
888
			s.seqs[i] = seq
			s.cond.Signal()
889
			found = true
890
891
892
893
894
			break
		}
	}
	s.mu.Unlock()

895
	if !found {
896
		s.seqsSem.Release(1)
897
898
899
900
		http.Error(w, "could not find an available sequence", http.StatusInternalServerError)
		return
	}

901
902
903
904
905
906
907
	for {
		select {
		case <-r.Context().Done():
			close(seq.quit)
			return
		case content, ok := <-seq.responses:
			if ok {
908
				if err := json.NewEncoder(w).Encode(&llm.CompletionResponse{
909
					Content: content,
910
911
912
913
914
915
916
917
				}); err != nil {
					http.Error(w, fmt.Sprintf("failed to encode response: %v", err), http.StatusInternalServerError)
					close(seq.quit)
					return
				}

				flusher.Flush()
			} else {
918
919
				if err := json.NewEncoder(w).Encode(&llm.CompletionResponse{
					Done:               true,
920
					DoneReason:         seq.doneReason,
921
					PromptEvalCount:    seq.numPromptInputs,
922
					PromptEvalDuration: seq.processingDuration,
923
					EvalCount:          seq.numPredicted,
924
					EvalDuration:       seq.lastUpdatedAt.Sub(seq.startedAt) - seq.samplingDuration,
925
926
927
928
929
930
931
932
933
934
				}); err != nil {
					http.Error(w, fmt.Sprintf("failed to encode final response: %v", err), http.StatusInternalServerError)
				}

				return
			}
		}
	}
}

Michael Yang's avatar
Michael Yang committed
935
func (s *Server) embeddings(w http.ResponseWriter, r *http.Request) {
Michael Yang's avatar
Michael Yang committed
936
	if pooling.Type(s.model.Backend().Config().Uint("pooling_type")) == pooling.TypeNone {
Michael Yang's avatar
Michael Yang committed
937
938
939
940
941
942
943
944
945
946
947
		http.Error(w, "this model does not support embeddings", http.StatusNotImplemented)
		return
	}

	var req llm.EmbeddingRequest
	if err := json.NewDecoder(r.Body).Decode(&req); err != nil {
		http.Error(w, fmt.Sprintf("bad request: %s", err), http.StatusBadRequest)
		return
	}

	w.Header().Set("Content-Type", "application/json")
948
949
	seq, err := s.NewSequence(req.Content, nil, NewSequenceParams{
		embedding: true,
950
951
952
953
954

		// TODO (jmorganca): this should be provided by the server via the
		// request options and truncated here in the runner, instead of relying on
		// the server's truncate logic
		truncate: true,
955
	})
Michael Yang's avatar
Michael Yang committed
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
	if err != nil {
		http.Error(w, fmt.Sprintf("failed to create new sequence: %v", err), http.StatusInternalServerError)
		return
	}

	if err := s.seqsSem.Acquire(r.Context(), 1); err != nil {
		if errors.Is(err, context.Canceled) {
			slog.Info("aborting embedding request due to client closing the connection")
		} else {
			http.Error(w, fmt.Sprintf("failed to acquire semaphore: %v", err), http.StatusInternalServerError)
		}
		return
	}

	s.mu.Lock()
	found := false
	for i, sq := range s.seqs {
		if sq == nil {
			seq.cache, seq.inputs, err = s.cache.LoadCacheSlot(seq.inputs, false)
			if err != nil {
				s.mu.Unlock()
				s.seqsSem.Release(1)
				http.Error(w, fmt.Sprintf("failed to load cache: %v", err), http.StatusInternalServerError)
				return
			}

			s.seqs[i] = seq
			s.cond.Signal()
			found = true
			break
		}
	}
	s.mu.Unlock()

	if !found {
		s.seqsSem.Release(1)
		http.Error(w, "could not find an available sequence", http.StatusInternalServerError)
		return
	}

	if err := json.NewEncoder(w).Encode(&llm.EmbeddingResponse{
997
		Embedding: <-seq.embedding,
Michael Yang's avatar
Michael Yang committed
998
999
1000
1001
1002
	}); err != nil {
		http.Error(w, fmt.Sprintf("failed to encode response: %v", err), http.StatusInternalServerError)
	}
}

1003
1004
func (s *Server) health(w http.ResponseWriter, r *http.Request) {
	w.Header().Set("Content-Type", "application/json")
1005
1006
	if err := json.NewEncoder(w).Encode(&llm.ServerStatusResponse{
		Status:   s.status,
1007
1008
1009
1010
1011
1012
		Progress: s.progress,
	}); err != nil {
		http.Error(w, fmt.Sprintf("failed to encode response: %v", err), http.StatusInternalServerError)
	}
}

1013
func (s *Server) reserveWorstCaseGraph(prompt bool) error {
1014
1015
1016
	ctx := s.model.Backend().NewContext()
	defer ctx.Close()

1017
	var err error
1018
1019
1020
1021
1022
1023
	batchSize := 1
	if prompt {
		batchSize = s.batchSize
	}

	inputs := make([]*input.Input, batchSize)
1024
1025
1026
	for i := range inputs {
		inputs[i] = &input.Input{}
	}
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
	mmStore := newMultimodalStore()

	// Multimodal strategy:
	// - Encode a 2048x2048 image. This assumes that a single image of this
	//   size is sufficient to trigger the worst case. This is currently true
	//   because for existing models, only a single image fits in a batch.
	// - Add the embedding to a full batch of tokens - this is necessary because
	//   the model may be looking for non-image data, such as <image> tags.
	// - Run PostTokenize to execute any transformations between generated
	//   embeddings and what the forward pass expects.
	// - The result may now be larger than a batch (images may not fit in a
	//   single batch), so trim based on what will fit and must be grouped together.
	// - Fill out the rest of the space with text tokens.
1040
	if multimodalProcessor, ok := s.model.(model.MultimodalProcessor); prompt && ok {
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
		mmCtx := s.model.Backend().NewContext()
		defer mmCtx.Close()

		img := image.NewGray(image.Rect(0, 0, 2048, 2048))
		var buf bytes.Buffer
		bmp.Encode(&buf, img)

		if inputs[0].Multimodal, err = multimodalProcessor.EncodeMultimodal(mmCtx, buf.Bytes()); err == nil {
			mmStore.addMultimodal(inputs[0].Multimodal)

			inputs, err = multimodalProcessor.PostTokenize(inputs)
			if err != nil {
				return err
			}

			for i, inp := range inputs {
				minBatch := 1 + inp.SameBatch
				if minBatch > s.batchSize {
					inputs = inputs[i:min(i+minBatch, len(inputs))]
					break
				} else if i+minBatch > s.batchSize {
					inputs = inputs[:i]
					break
				}
			}

1067
1068
			if len(inputs) < batchSize {
				newInputs := make([]*input.Input, batchSize)
1069
				copy(newInputs, inputs)
1070
				for i := len(inputs); i < batchSize; i++ {
1071
1072
					newInputs[i] = &input.Input{}
				}
1073
1074
1075
1076
1077
				inputs = newInputs
			}
		}
	}

1078
1079
	var batch input.Batch

1080
	batchInputs := make([]int32, len(inputs))
1081
1082
	batch.Positions = make([]int32, len(inputs))
	batch.Sequences = make([]int, len(inputs))
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
	for i, inp := range inputs {
		batchInputs[i] = inp.Token
		if inp.Multimodal != nil {
			mm, err := mmStore.getMultimodal(s.model.Backend(), ctx, inp.Multimodal, true)
			if err != nil {
				return err
			}
			batch.Multimodal = append(batch.Multimodal, input.MultimodalIndex{Index: i, Multimodal: mm})
		}

1093
1094
1095
		batch.Positions[i] = int32(i)
	}

Michael Yang's avatar
Michael Yang committed
1096
	batch.Inputs = ctx.Input().FromInts(batchInputs, len(batchInputs))
1097
	batch.Outputs = ctx.Input().Empty(ml.DTypeI32, s.parallel)
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111

	cache := s.model.Config().Cache
	if cache != nil {
		err := cache.StartForward(ctx, batch, true)
		if err != nil {
			return err
		}
	}

	t, err := s.model.Forward(ctx, batch)
	if err != nil {
		return err
	}

1112
	ctx.SetBatchSize(batchSize)
1113
	ctx.Forward(t).Reserve()
1114
1115

	return nil
1116
}
1117

Jesse Gross's avatar
Jesse Gross committed
1118
1119
1120
// allocModel pre-allocates the maximum needed memory for a model
// based on the given parameters
func (s *Server) allocModel(
1121
	mpath string,
1122
	params ml.BackendParams,
Jesse Gross's avatar
Jesse Gross committed
1123
	loraPath []string,
Jesse Gross's avatar
Jesse Gross committed
1124
	parallel int,
1125
	kvCacheType string,
Jesse Gross's avatar
Jesse Gross committed
1126
	kvSize int,
1127
	multiUserCache bool,
Jesse Gross's avatar
Jesse Gross committed
1128
1129
1130
1131
1132
) (panicErr error) {
	// Convert memory allocation panics to errors
	defer func() {
		if r := recover(); r != nil {
			if err, ok := r.(error); ok {
1133
1134
1135
1136
1137
1138
				var noMem ml.ErrNoMem
				if errors.As(err, &noMem) {
					panicErr = noMem
				} else {
					panic(r)
				}
Jesse Gross's avatar
Jesse Gross committed
1139
1140
1141
1142
1143
1144
			} else {
				panic(r)
			}
		}
	}()

1145
	var err error
1146
	s.model, err = model.New(mpath, params)
1147
	if err != nil {
1148
		return err
1149
	}
1150

Jesse Gross's avatar
Jesse Gross committed
1151
	// TODO(jessegross): LoRA loading
Jesse Gross's avatar
Jesse Gross committed
1152
	if len(loraPath) > 0 {
1153
		return errors.New("loras are not yet implemented")
1154
1155
	}

1156
	s.cache, err = NewInputCache(s.model, kvCacheType, int32(kvSize), parallel, s.batchSize, multiUserCache)
1157
	if err != nil {
1158
		return err
1159
	}
1160

Jesse Gross's avatar
Jesse Gross committed
1161
1162
1163
1164
1165
1166
1167
1168
1169
	if !s.cache.enabled && parallel > 1 {
		parallel = 1
		slog.Warn("model does not support caching, disabling parallel processing")
	}

	s.parallel = parallel
	s.seqs = make([]*Sequence, s.parallel)
	s.seqsSem = semaphore.NewWeighted(int64(s.parallel))

1170
1171
1172
1173
1174
1175
	err = s.reserveWorstCaseGraph(true)
	if err != nil {
		return nil
	}

	return s.reserveWorstCaseGraph(false)
1176
1177
}

Jesse Gross's avatar
Jesse Gross committed
1178
1179
1180
1181
1182
1183
1184
// closeModel frees all memory associated with a model
func (s *Server) closeModel() {
	s.cache.Close()
	s.cache = nil
	if s.model != nil {
		s.model.Backend().Close()
		s.model = nil
1185
	}
Jesse Gross's avatar
Jesse Gross committed
1186
}
1187

Jesse Gross's avatar
Jesse Gross committed
1188
1189
1190
1191
// loadModel loads the weights for a model. The memory must already
// have been allocated with allocModel
func (s *Server) loadModel() {
	err := s.model.Backend().Load(context.TODO(),
1192
1193
1194
1195
		func(progress float32) {
			s.progress = progress
		})
	if err != nil {
Jesse Gross's avatar
Jesse Gross committed
1196
		panic(fmt.Errorf("failed to load model: %v", err))
1197
1198
	}

1199
	s.status = llm.ServerStatusReady
1200
1201
1202
	s.ready.Done()
}

Jesse Gross's avatar
Jesse Gross committed
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
// load is the handler called by the Ollama server to process different
// load operations
func (s *Server) load(w http.ResponseWriter, r *http.Request) {
	s.loadMu.Lock()
	defer s.loadMu.Unlock()

	w.Header().Set("Content-Type", "application/json")

	if s.status != llm.ServerStatusLaunched {
		http.Error(w, "model already loaded", http.StatusInternalServerError)
		return
	}

	var req llm.LoadRequest
	if err := json.NewDecoder(r.Body).Decode(&req); err != nil {
		http.Error(w, "bad request", http.StatusBadRequest)
		return
	}

	slog.Info("load", "request", req)

	if req.Operation == llm.LoadOperationClose {
		s.closeModel()
		if err := json.NewEncoder(w).Encode(&llm.LoadResponse{}); err != nil {
			http.Error(w, fmt.Sprintf("failed to encode response: %v", err), http.StatusInternalServerError)
		}
		return
	}

	s.lastLoad.Operation = req.Operation
	loadModel := s.model == nil || !reflect.DeepEqual(req, s.lastLoad)

	s.lastLoad = req

	if loadModel {
		s.closeModel()

		params := ml.BackendParams{
			AllocMemory:    req.Operation != llm.LoadOperationFit,
			NumThreads:     req.NumThreads,
			GPULayers:      req.GPULayers,
			FlashAttention: req.FlashAttention,
		}

		s.batchSize = req.BatchSize

		err := s.allocModel(s.modelPath, params, req.LoraPath, req.Parallel, req.KvCacheType, req.KvSize, req.MultiUserCache)
		if err != nil {
			s.closeModel()

			var noMem ml.ErrNoMem
			if errors.As(err, &noMem) {
				resp := llm.LoadResponse{Success: false, Memory: noMem.BackendMemory}
				if err := json.NewEncoder(w).Encode(&resp); err != nil {
					http.Error(w, fmt.Sprintf("failed to encode response: %v", err), http.StatusInternalServerError)
				}

				return
			}

			http.Error(w, fmt.Sprintf("failed to initialize model: %v", err), http.StatusInternalServerError)
			return
		}
	}

	mem := s.model.Backend().BackendMemory()

	switch req.Operation {
	case llm.LoadOperationFit:
		// LoadOperationFit can't be used for anything else, so just close it
		s.closeModel()

	// LoadOperationAlloc should stay open for future operations

	case llm.LoadOperationCommit:
		s.status = llm.ServerStatusLoadingModel
		go s.loadModel()
	}

	resp := llm.LoadResponse{Success: true, Memory: mem}
	if err := json.NewEncoder(w).Encode(&resp); err != nil {
		http.Error(w, fmt.Sprintf("failed to encode response: %v", err), http.StatusInternalServerError)
		return
	}
}

1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
// info is the handler called by the Ollama server to report information
// about the GPU devices in use by this runner
func (s *Server) info(w http.ResponseWriter, r *http.Request) {
	s.loadMu.Lock()
	defer s.loadMu.Unlock()

	w.Header().Set("Content-Type", "application/json")

	m := s.model

	if m == nil {
		startLoad := time.Now()

		// Dummy load to get the backend wired up
		f, err := os.CreateTemp("", "*.bin")
		if err != nil {
			http.Error(w, fmt.Sprintf("failed to initialize baackend: %v", err), http.StatusInternalServerError)
			return
		}
		defer f.Close()
		defer os.Remove(f.Name())

		if err := ggml.WriteGGUF(f, ggml.KV{
			"general.architecture": "llama",
			"tokenizer.ggml.model": "gpt2",
		}, nil); err != nil {
			http.Error(w, fmt.Sprintf("failed to initialize baackend: %v", err), http.StatusInternalServerError)
			return
		}

		m, err = model.New(f.Name(), ml.BackendParams{NumThreads: runtime.NumCPU(), AllocMemory: false, GPULayers: ml.GPULayersList{{}}})
		if err != nil {
			http.Error(w, fmt.Sprintf("failed to initialize baackend: %v", err), http.StatusInternalServerError)
			return
		}
		slog.Debug("dummy model load took", "duration", time.Since(startLoad))
	}

	startDevices := time.Now()
	infos := m.Backend().BackendDevices()
	slog.Debug("gathering device infos took", "duration", time.Since(startDevices))
	if err := json.NewEncoder(w).Encode(&infos); err != nil {
		http.Error(w, fmt.Sprintf("failed to encode response: %v", err), http.StatusInternalServerError)
	}
}

1335
1336
1337
1338
func Execute(args []string) error {
	fs := flag.NewFlagSet("runner", flag.ExitOnError)
	mpath := fs.String("model", "", "Path to model binary file")
	port := fs.Int("port", 8080, "Port to expose the server on")
1339
	_ = fs.Bool("verbose", false, "verbose output (default: disabled)")
1340

1341
1342
1343
1344
1345
1346
	fs.Usage = func() {
		fmt.Fprintf(fs.Output(), "Runner usage\n")
		fs.PrintDefaults()
	}
	if err := fs.Parse(args); err != nil {
		return err
1347
	}
1348
	slog.SetDefault(logutil.NewLogger(os.Stderr, envconfig.LogLevel()))
Jesse Gross's avatar
Jesse Gross committed
1349
	slog.Info("starting ollama engine")
1350

1351
1352
1353
	ctx, cancel := context.WithCancel(context.Background())
	defer cancel()

Jesse Gross's avatar
Jesse Gross committed
1354
1355
1356
	server := &Server{
		modelPath: *mpath,
		status:    llm.ServerStatusLaunched,
1357
1358
	}

Jesse Gross's avatar
Jesse Gross committed
1359
1360
	server.cond = sync.NewCond(&server.mu)
	server.ready.Add(1)
1361
1362
1363
1364
1365
1366
1367

	go server.run(ctx)

	addr := "127.0.0.1:" + strconv.Itoa(*port)
	listener, err := net.Listen("tcp", addr)
	if err != nil {
		fmt.Println("Listen error:", err)
1368
		return err
1369
1370
1371
1372
	}
	defer listener.Close()

	mux := http.NewServeMux()
1373
	// TODO: support embeddings
1374
	mux.HandleFunc("GET /info", server.info)
Jesse Gross's avatar
Jesse Gross committed
1375
	mux.HandleFunc("POST /load", server.load)
Michael Yang's avatar
Michael Yang committed
1376
	mux.HandleFunc("POST /embedding", server.embeddings)
1377
1378
	mux.HandleFunc("POST /completion", server.completion)
	mux.HandleFunc("GET /health", server.health)
1379
1380
1381
1382
1383
1384
1385
1386

	httpServer := http.Server{
		Handler: mux,
	}

	log.Println("Server listening on", addr)
	if err := httpServer.Serve(listener); err != nil {
		log.Fatal("server error:", err)
1387
		return err
1388
1389
	}

1390
	return nil
1391
}