"driver/device_direct_convolution_1.hpp" did not exist on "fee92fb636a7f1a6144a5358f22985502529160b"
runner.go 37 KB
Newer Older
Jesse Gross's avatar
Jesse Gross committed
1
package ollamarunner
2
3

import (
4
	"bytes"
5
6
7
8
9
	"context"
	"encoding/json"
	"errors"
	"flag"
	"fmt"
10
	"hash/maphash"
11
	"image"
12
13
14
15
16
	"log"
	"log/slog"
	"net"
	"net/http"
	"os"
Jesse Gross's avatar
Jesse Gross committed
17
	"reflect"
18
19
20
21
22
23
	"regexp"
	"runtime"
	"strconv"
	"strings"
	"sync"
	"time"
24
	"unicode/utf8"
25

26
	"golang.org/x/image/bmp"
27
28
	"golang.org/x/sync/semaphore"

29
	"github.com/ollama/ollama/api"
30
	"github.com/ollama/ollama/envconfig"
31
	"github.com/ollama/ollama/fs/ggml"
32
	"github.com/ollama/ollama/llm"
33
	"github.com/ollama/ollama/logutil"
34
	"github.com/ollama/ollama/ml"
Michael Yang's avatar
Michael Yang committed
35
	"github.com/ollama/ollama/ml/nn/pooling"
Jesse Gross's avatar
Jesse Gross committed
36
	"github.com/ollama/ollama/model"
37
	"github.com/ollama/ollama/model/input"
Jesse Gross's avatar
Jesse Gross committed
38
39
40
41
	"github.com/ollama/ollama/runner/common"
	"github.com/ollama/ollama/sample"

	_ "github.com/ollama/ollama/model/models"
42
43
44
)

type Sequence struct {
45
	// ctxs are used for allocating tensors that last the lifetime of the sequence, such as
46
	// multimodal embeddings
47
	ctxs []ml.Context
48

49
50
51
	// mmStore holds multimodal embeddings to mange memory and enable splitting across batches
	mmStore multimodalStore

52
53
54
55
	// batch index
	iBatch int

	// prompt inputs left to evaluate
56
	inputs []*input.Input
57

Jesse Gross's avatar
Jesse Gross committed
58
	// inputs that have been added to a batch but not yet submitted to Forward
59
	pendingInputs []*input.Input
60

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
	// tokens that have been generated but not returned yet (e.g. for stop sequences)
	pendingResponses []string

	// input cache being used by this sequence
	cache *InputCacheSlot

	// channel to send responses over
	responses chan string

	// channel to stop decoding (such as if the remote connection is closed)
	quit chan bool

	// number of tokens to predict
	numPredict int

76
77
	// sampler with transforms to run on generated logits
	sampler sample.Sampler
78
79
80
81
82
83
84
85

	// channel to send back the embedding if embedding only
	embedding chan []float32

	// stop sequences
	stop []string

	// number of inputs to keep at the beginning when shifting context window
Jesse Gross's avatar
Jesse Gross committed
86
	numKeep int32
87
88
89
90

	// true if an embedding are to be returned instead of text generation
	embeddingOnly bool

91
	doneReason llm.DoneReason
92
93
94
95

	// Metrics
	startProcessingTime time.Time
	startGenerationTime time.Time
Jesse Gross's avatar
Jesse Gross committed
96
	numPredicted        int
97
98
99
100
	numPromptInputs     int
}

type NewSequenceParams struct {
Jesse Gross's avatar
Jesse Gross committed
101
102
103
	numPredict int
	stop       []string
	numKeep    int32
104
	sampler    sample.Sampler
Jesse Gross's avatar
Jesse Gross committed
105
	embedding  bool
106
107
}

108
func (s *Server) NewSequence(prompt string, images []llm.ImageData, params NewSequenceParams) (*Sequence, error) {
109
110
111
112
	s.ready.Wait()

	startTime := time.Now()

113
	inputs, ctxs, mmStore, err := s.inputs(prompt, images)
114
115
116
117
118
119
120
	if err != nil {
		return nil, fmt.Errorf("failed to process inputs: %w", err)
	} else if len(inputs) == 0 {
		return nil, errors.New("no input provided")
	}

	if params.numKeep < 0 {
Jesse Gross's avatar
Jesse Gross committed
121
		params.numKeep = int32(len(inputs))
122
123
	}

124
125
126
	// Ensure that at least 1 input can be discarded during shift
	params.numKeep = min(params.numKeep, s.cache.numCtx-1)

Jesse Gross's avatar
Jesse Gross committed
127
128
	if int32(len(inputs)) > s.cache.numCtx {
		discard := int32(len(inputs)) - s.cache.numCtx
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
		promptStart := params.numKeep + discard

		// If we need to truncate in the middle of a unbreakable batch, remove the entire batch
		sameBatch := 0
		for i, inp := range inputs {
			if sameBatch > 0 {
				sameBatch--

				if promptStart == int32(i) {
					promptStart++
				}
			} else if promptStart == int32(i) {
				break
			}

			if inp.SameBatch != 0 {
				if int32(i) < params.numKeep {
					return nil, fmt.Errorf("SameBatch may not be specified within numKeep (index: %v numKeep: %v SameBatch: %v)", i, params.numKeep, inp.SameBatch)
				}

				sameBatch = inp.SameBatch
			}
		}

		if promptStart >= int32(len(inputs)) {
			return nil, errors.New("entire prompt removed by truncation")
		}

157
		newInputs := inputs[:params.numKeep]
158
		newInputs = append(newInputs, inputs[promptStart:]...)
159
160

		slog.Warn("truncating input prompt", "limit", s.cache.numCtx, "prompt", len(inputs), "keep", params.numKeep, "new", len(newInputs))
161
		inputs = newInputs
162
163
	}

Jesse Gross's avatar
Jesse Gross committed
164
	// TODO(jessegross): Ingest cached history for grammar
165
166

	return &Sequence{
167
		ctxs:                ctxs,
168
		mmStore:             mmStore,
169
170
171
172
173
174
175
176
		inputs:              inputs,
		numPromptInputs:     len(inputs),
		startProcessingTime: startTime,
		numPredict:          params.numPredict,
		pendingResponses:    make([]string, 0),
		responses:           make(chan string, 100),
		quit:                make(chan bool, 1),
		embedding:           make(chan []float32, 1),
177
		sampler:             params.sampler,
178
179
180
181
182
183
184
185
		embeddingOnly:       params.embedding,
		stop:                params.stop,
		numKeep:             params.numKeep,
	}, nil
}

// inputs processes the prompt and images into a list of inputs
// by splitting the prompt on [img-<n>] tags, tokenizing text and
Jesse Gross's avatar
Jesse Gross committed
186
// decoding images
187
188
func (s *Server) inputs(prompt string, images []llm.ImageData) ([]*input.Input, []ml.Context, multimodalStore, error) {
	var inputs []*input.Input
189
	var ctxs []ml.Context
190
	var mmStore multimodalStore
191

192
193
194
	var parts []string
	var matches [][]string

195
	multimodalProcessor, visionModel := s.model.(model.MultimodalProcessor)
196

197
198
199
200
	if visionModel {
		re := regexp.MustCompile(`\[img-(\d+)\]`)
		parts = re.Split(prompt, -1)
		matches = re.FindAllStringSubmatch(prompt, -1)
201
		mmStore = newMultimodalStore()
202
203
204
205
206
	} else {
		parts = []string{prompt}
	}

	postTokenize := false
207
208
	for i, part := range parts {
		// text - tokenize
209
		tokens, err := s.model.(model.TextProcessor).Encode(part, i == 0)
210
		if err != nil {
211
			return nil, nil, nil, err
212
		}
213

214
		for _, t := range tokens {
215
			inputs = append(inputs, &input.Input{Token: t})
216
217
		}

Jesse Gross's avatar
Jesse Gross committed
218
		// image - decode and store
219
220
221
222
223
224
225
226
227
228
229
230
		if i < len(matches) {
			n, _ := strconv.Atoi(matches[i][1])

			imageIndex := -1
			for j := range images {
				if images[j].ID == n {
					imageIndex = j
					break
				}
			}

			if imageIndex < 0 {
231
				return nil, nil, nil, fmt.Errorf("invalid image index: %d", n)
232
233
			}

234
			ctx := s.model.Backend().NewContext()
235
236
			runtime.SetFinalizer(ctx, func(c ml.Context) { c.Close() })
			ctxs = append(ctxs, ctx)
237
			imageEmbeddings, err := multimodalProcessor.EncodeMultimodal(ctx, images[imageIndex].Data)
Jesse Gross's avatar
Jesse Gross committed
238
			if err != nil {
239
				return nil, nil, nil, err
Jesse Gross's avatar
Jesse Gross committed
240
241
			}

242
243
244
245
			s.multimodalHash.Reset()
			_, _ = s.multimodalHash.Write(images[imageIndex].Data)
			imageHash := s.multimodalHash.Sum64()

246
247
			mmStore.addMultimodal(imageEmbeddings)

248
			inputs = append(inputs, &input.Input{Multimodal: imageEmbeddings, MultimodalHash: imageHash})
249
250
251
252
253
254
			postTokenize = true
		}
	}

	if visionModel && postTokenize {
		var err error
255
		inputs, err = multimodalProcessor.PostTokenize(inputs)
256
		if err != nil {
257
			return nil, nil, nil, err
258
259
260
		}
	}

261
	return inputs, ctxs, mmStore, nil
262
263
}

264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
type batchState struct {
	// id provides a counter for trace logging batches
	id int

	// ctx holds the backend context used for this batch
	ctx ml.Context

	// modelOutput holds the outputs from this batch
	modelOutput ml.Tensor

	// batchInputs holds the input token pointers which may start as
	// placeholders later filled in before calling ctx.Compute
	batchInputs []*input.Input

	// batch contains the inputs for a model forward pass
	batch input.Batch

	// full set of seqs at the time this batch was initiated
	seqs []*Sequence

	// Signaled when this batches inputs are ready and compute can proceed
	inputsReadyCh chan struct{}

	// Signaling when Compute is about to begin on this batch, and
	// seqs have been updated to prepare for the next batch
	computeStartedCh chan struct{}

	// Signaled when this batches outputs are complete and the next batch can proceed
	outputsReadyCh chan struct{}
}

295
type Server struct {
Jesse Gross's avatar
Jesse Gross committed
296
297
298
299
300
301
302
303
304
305
	// modelPath is the location of the model to be loaded
	modelPath string

	// loadMu prevents more than one load attempt from occurring at a time
	loadMu sync.Mutex

	// lastLoad is the load request from the previous load attempt. Used to
	// detect if we can reuse an existing memory allocation.
	lastLoad llm.LoadRequest

306
307
308
309
310
	// is the server ready to process requests?
	// protects access to model and image
	ready sync.WaitGroup

	// loaded model
Jesse Gross's avatar
Jesse Gross committed
311
	model model.Model
312

313
	// status for external health reporting - loading, ready to serve, etc.
314
	status llm.ServerStatus
315
316
317
318
319
320
321
322

	// current progress on loading the model
	progress float32

	// number of simultaneous requests to handle
	parallel int

	// maximum number of elements in a batch (per sequence)
323
	// TODO (jmorganca): make this n_batch
324
325
	batchSize int

326
327
328
329
330
331
	// Used to signal a hard failure during async processing which will panic the runner
	hardErrCh chan error

	// Simple counter used only for trace logging batches
	batchID int

332
333
334
335
336
337
338
339
	// protects access to everything below this line
	// this is context state needed for decoding
	mu sync.Mutex

	// indicates that data is ready for processing
	cond *sync.Cond

	// the list of simultaneous sequences being evaluated
340
341
	seqs []*Sequence

342
343
344
345
	// seqs can have a maximum of parallel entries, which
	// is enfoced by seqSem
	seqsSem *semaphore.Weighted

346
347
348
	// KV cache
	cache *InputCache

349
350
351
	// next sequence for prompt processing to avoid starvation
	nextSeq int

352
353
354
	// multimodalHash generates hashes for comparing equality
	// of non-text data
	multimodalHash maphash.Hash
355
356
357
358
359
360
361
362
363
364
365
366
}

func (s *Server) allNil() bool {
	for _, item := range s.seqs {
		if item != nil {
			return false
		}
	}
	return true
}

func flushPending(seq *Sequence) bool {
367
368
369
370
371
372
373
374
375
376
377
	joined := strings.Join(seq.pendingResponses, "")
	seq.pendingResponses = []string{}

	// Check if there are any partial UTF-8 characters remaining.
	// We already check and queue as we are generating but some may
	// still make it here:
	// - Sequence is ending, e.g. generation limit has been hit
	// - Invalid characters in the middle of a string
	// This is a stricter check to ensure we never output invalid Unicode.
	for !utf8.ValidString(joined) {
		joined = joined[:len(joined)-1]
378
379
	}

380
381
382
383
384
385
386
387
388
389
	if len(joined) == 0 {
		return true
	}

	select {
	case seq.responses <- joined:
		return true
	case <-seq.quit:
		return false
	}
390
391
}

392
func (s *Server) removeSequence(seqIndex int, reason llm.DoneReason) {
393
394
395
396
397
398
399
400
	seq := s.seqs[seqIndex]

	flushPending(seq)
	seq.doneReason = reason
	close(seq.responses)
	close(seq.embedding)
	seq.cache.InUse = false
	s.seqs[seqIndex] = nil
401
	s.seqsSem.Release(1)
402
403
}

404
405
// track batch state between forwardBatch, computeBatch and predictForwardBatch

406
407
408
func (s *Server) run(ctx context.Context) {
	s.ready.Wait()

Michael Yang's avatar
Michael Yang committed
409
	supportsAsync := pooling.Type(s.model.Backend().Config().Uint("pooling_type")) == pooling.TypeNone
Michael Yang's avatar
Michael Yang committed
410

411
	var activeBatch batchState
412
413
414
415
	for {
		select {
		case <-ctx.Done():
			return
416
417
		case err := <-s.hardErrCh:
			panic(err)
418
		default:
419
420
			var err error
			activeBatch, err = s.forwardBatch(activeBatch)
421
422
423
			if err != nil {
				panic(err)
			}
Michael Yang's avatar
Michael Yang committed
424
425
426
427
428
429

			if supportsAsync {
				go s.computeBatch(activeBatch)
			} else {
				s.computeBatch(activeBatch)
			}
430
431
432
433
		}
	}
}

434
435
436
437
438
439
// forwardBatch will calculate a batch.
func (s *Server) forwardBatch(pendingBatch batchState) (nextBatch batchState, err error) {
	// If we have a pending batch still processing, wait until Compute has started
	// before setting up the next batch so the seqs inputs are ready to receive their
	// token values and we get the correct input pointers for the batchInputs
	if pendingBatch.ctx != nil {
Michael Yang's avatar
Michael Yang committed
440
		logutil.Trace("forwardBatch waiting for compute to start", "pendingBatch.id", pendingBatch.id)
441
		<-pendingBatch.computeStartedCh
Michael Yang's avatar
Michael Yang committed
442
		logutil.Trace("forwardBatch compute started, setting up next batch", "pendingBatch.id", pendingBatch.id, "id", s.batchID)
443
444
		nextBatch.inputsReadyCh = pendingBatch.outputsReadyCh // Chain the ouputs from the pending batch to the next inputs batch
	} else {
Michael Yang's avatar
Michael Yang committed
445
		logutil.Trace("forwardBatch no pending batch detected", "batchID", s.batchID)
446
447
448
449
450
		// No pendingBatch, so the inputs will be ready in the seqs immediately
		nextBatch.inputsReadyCh = make(chan struct{}, 1)
		nextBatch.inputsReadyCh <- struct{}{}
	}

451
452
453
454
455
456
	s.mu.Lock()
	for s.allNil() {
		s.cond.Wait() // Wait until an item is added
	}
	defer s.mu.Unlock()

457
458
459
460
461
462
463
464
465
466
467
	nextBatch.ctx = s.model.Backend().NewContext()
	defer func() {
		if err != nil {
			nextBatch.ctx.Close()
			nextBatch.ctx = nil
		}
	}()
	nextBatch.id = s.batchID
	nextBatch.seqs = append([]*Sequence{}, s.seqs...)
	nextBatch.computeStartedCh = make(chan struct{}, 1)
	nextBatch.outputsReadyCh = make(chan struct{}, 1)
468

469
470
	// Prepare the seqs and batch, but defer the input token values as we may not be ready yet
	var batchInputs []*input.Input
471
	var batchOutputs []int32
Jesse Gross's avatar
Jesse Gross committed
472
	var batch input.Batch
473

474
475
476
477
478
	resumeSeq := -1
	seqIdx := s.nextSeq - 1
	for range s.seqs {
		seqIdx = (seqIdx + 1) % len(s.seqs)
		seq := s.seqs[seqIdx]
479
480
481
482
483
		if seq == nil {
			continue
		}

		// if past the num predict limit
484
		if seq.numPredict > 0 && seq.numPredicted >= seq.numPredict {
485
			s.removeSequence(seqIdx, llm.DoneReasonLength)
486
			nextBatch.seqs[seqIdx] = nil
487
488
489
			continue
		}

Jesse Gross's avatar
Jesse Gross committed
490
491
		if !s.cache.enabled {
			seq.inputs = append(seq.cache.Inputs, seq.inputs...)
492
			seq.cache.Inputs = []*input.Input{}
Jesse Gross's avatar
Jesse Gross committed
493
494
		}

495
496
		batchSize := s.batchSize

497
		for i, inp := range seq.inputs {
498
499
			// If we are required to put following inputs into a single batch then extend the
			// batch size. Since we are only extending the size the minimum amount possible, this
500
			// will cause a break if we have existing inputs.
501
502
503
504
505
			minBatch := 1 + inp.SameBatch
			if minBatch > batchSize {
				batchSize = minBatch
			}

506
507
508
509
510
511
512
513
			// Stop if the required batch would put us over the total batch size (including tokens
			// added by other sequences). If we haven't been able to add anything yet then pick up
			// here again for the next batch to avoid starvation, though we can opportunistically
			// check if other sequences can still squeeze something in.
			if len(batchInputs)+minBatch > batchSize {
				if len(seq.pendingInputs) == 0 && resumeSeq == -1 {
					resumeSeq = seqIdx
				}
514
515
				break
			}
Jesse Gross's avatar
Jesse Gross committed
516

517
518
519
520
521
522
523
524
			// If the sum of our working set (already processed tokens, tokens we added to this
			// batch, required following tokens) exceeds the context size, then trigger a shift
			// now so we don't have to do one later when we can't break the batch.
			if int32(len(seq.cache.Inputs)+len(seq.pendingInputs)+minBatch) > s.cache.numCtx {
				if len(seq.pendingInputs) != 0 {
					break
				}

525
				err = s.cache.ShiftCacheSlot(seq.cache, seq.numKeep)
526
				if err != nil {
527
528
529
530
531
					var reprocess *ErrReprocessInputs
					if errors.As(err, &reprocess) {
						// Prepend these inputs to the sequence's inputs queue for reprocessing
						seq.inputs = append(reprocess.Inputs, seq.inputs...)
						// Skip this sequence but continue processing the rest
532
533
						nextBatch.seqs[seqIdx] = nil // clear this sequence for this batch
						err = nil
534
535
						continue
					} else {
536
						return
537
					}
538
539
540
				}
			}

541
			batchInputs = append(batchInputs, seq.inputs[i])
542
			if inp.Multimodal != nil {
543
544
				var mm []input.Multimodal
				mm, err = seq.mmStore.getMultimodal(s.model.Backend(), nextBatch.ctx, inp.Multimodal, false)
545
				if err != nil {
546
					return
547
548
				}
				batch.Multimodal = append(batch.Multimodal, input.MultimodalIndex{Index: len(batchInputs) - 1, Multimodal: mm})
549
550
			}

Jesse Gross's avatar
Jesse Gross committed
551
552
			batch.Positions = append(batch.Positions, int32(len(seq.cache.Inputs)+len(seq.pendingInputs)))
			batch.Sequences = append(batch.Sequences, seq.cache.Id)
Jesse Gross's avatar
Jesse Gross committed
553

554
555
556
			seq.iBatch = len(batchOutputs)
			if i+1 == len(seq.inputs) || seq.embeddingOnly {
				batchOutputs = append(batchOutputs, int32(len(batchInputs)-1))
Jesse Gross's avatar
Jesse Gross committed
557
			}
Michael Yang's avatar
Michael Yang committed
558
			logutil.Trace("forwardBatch iBatch", "batchID", s.batchID, "seqIdx", seqIdx, "seq.iBatch", seq.iBatch, "i+1", i+1, "len(seq.inputs)", len(seq.inputs))
559
			seq.pendingInputs = append(seq.pendingInputs, inp)
560
		}
561
562

		seq.inputs = seq.inputs[len(seq.pendingInputs):]
563
564
	}

565
566
567
568
569
570
	if resumeSeq != -1 {
		s.nextSeq = resumeSeq
	} else {
		s.nextSeq = seqIdx + 1
	}

571
	if len(batchInputs) == 0 {
Michael Yang's avatar
Michael Yang committed
572
		logutil.Trace("forwardBatch no batchInputs, going idle", "batchID", s.batchID)
573
574
575
		nextBatch.ctx.Close()
		nextBatch.ctx = nil
		return
576
	}
577
	s.batchID++
578

579
580
	// Actual batchInputs values will be injected into the batch.Inputs tensor before calling Compute
	batch.Inputs = nextBatch.ctx.Input().Empty(ml.DTypeI32, len(batchInputs))
581
	batch.Outputs = nextBatch.ctx.Input().FromIntSlice(batchOutputs, len(batchOutputs))
582
	nextBatch.modelOutput, err = model.Forward(nextBatch.ctx, s.model, batch)
583
	if err != nil {
584
585
		err = fmt.Errorf("failed to build graph: %w", err)
		return
586
	}
587
588
	nextBatch.batchInputs = batchInputs
	nextBatch.batch = batch
589

590
591
592
593
594
595
596
597
598
599
600
601
	return
}

// Async processing of the next batch
func (s *Server) computeBatch(activeBatch batchState) {
	if activeBatch.ctx == nil {
		// Nothing to compute
		return
	}
	defer activeBatch.ctx.Close()

	// Wait until inputs are ready
Michael Yang's avatar
Michael Yang committed
602
	logutil.Trace("computeBatch: waiting for inputs to be ready", "batchID", activeBatch.id)
603
	<-activeBatch.inputsReadyCh
Michael Yang's avatar
Michael Yang committed
604
	logutil.Trace("computeBatch: inputs are ready", "batchID", activeBatch.id)
605

606
607
608
	// Once we complete, signal the next batch of inputs are ready
	// This will unblock the next computeBatch, or forwardBatch if new seqs come in
	defer func() {
Michael Yang's avatar
Michael Yang committed
609
		logutil.Trace("computeBatch: outputs are ready", "batchID", activeBatch.id)
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
		activeBatch.outputsReadyCh <- struct{}{}
	}()

	s.mu.Lock()

	// Gather the actual input token values now that they're ready
	batchInputs := make([]int32, len(activeBatch.batchInputs))
	for i := range batchInputs {
		batchInputs[i] = activeBatch.batchInputs[i].Token
	}

	// Now we run part of the decoding algorithm to adjust the seq.inputs with placeholder tokens
	// so that forwardBatch can build a batchInputs set which will eventually contain the actual
	// decoded tokens.
	nextBatchTokens := make([]*input.Input, len(s.seqs))
	iBatches := make([]int, len(s.seqs)) // Record the iBatch values before releasing the lock
626
	for i, seq := range s.seqs {
627
		iBatches[i] = -1
628
629
630
		if seq == nil {
			continue
		}
631
632
633
634
		// Skip over any newly added or skipped sequences
		if activeBatch.seqs[i] == nil {
			continue
		}
635

636
637
638
		// Detect if the sequence we're processing has already been completed and replaced
		// with a new sequence
		if seq != activeBatch.seqs[i] {
Michael Yang's avatar
Michael Yang committed
639
			logutil.Trace("computeBatch: sequence replaced, discarding its results", "batchID", activeBatch.id, "seqIdx", i)
640
641
642
643
644
645
646
647
648
649
650
			continue
		}

		// Pending inputs will actually be in the cache after we call Compute.
		// However, we have already resolved any placeholder tokens.
		//
		// It's possible for incoming sequences to look at the values that we've
		// added to the cache here and start relying on them before we've done
		// the computation. This is OK as long as we ensure that this batch's
		// computation happens before any future batch's and we never fail
		// (unless we take down the whole runner).
651
652
		if len(seq.pendingInputs) > 0 {
			seq.cache.Inputs = append(seq.cache.Inputs, seq.pendingInputs...)
653
			seq.pendingInputs = []*input.Input{}
654
655
		}

656
657
		// don't sample prompt processing
		if len(seq.inputs) != 0 {
Jesse Gross's avatar
Jesse Gross committed
658
			if !s.cache.enabled {
659
660
661
				s.hardErrCh <- fmt.Errorf("caching disabled but unable to fit entire input in a batch")
				s.mu.Unlock()
				return
Jesse Gross's avatar
Jesse Gross committed
662
			}
663
664
665
			continue
		}

Jesse Gross's avatar
Jesse Gross committed
666
		seq.numPredicted++
667
668
669
670
671
672
673
674
675
676
677
678
		nextToken := &input.Input{Token: 0} // placeholder we'll fill in after Compute/Floats
		seq.inputs = []*input.Input{nextToken}
		nextBatchTokens[i] = nextToken
		iBatches[i] = seq.iBatch
	}

	// At this point the seqs are ready for forwardBatch to move forward so unblock
	s.mu.Unlock()

	activeBatch.batch.Inputs.SetValueFromIntSlice(batchInputs)
	activeBatch.ctx.ComputeWithNotify(
		func() {
Michael Yang's avatar
Michael Yang committed
679
			logutil.Trace("computeBatch: signaling computeStartedCh", "batchID", activeBatch.id)
680
681
682
			activeBatch.computeStartedCh <- struct{}{}
		},
		activeBatch.modelOutput)
Michael Yang's avatar
Michael Yang committed
683
684

	outputs := activeBatch.modelOutput.Floats()
685

Michael Yang's avatar
Michael Yang committed
686
	logutil.Trace("computeBatch: logits ready", "batchID", activeBatch.id)
687
688
689
690

	s.mu.Lock()
	defer s.mu.Unlock()

Michael Yang's avatar
Michael Yang committed
691
	logutil.Trace("computeBatch: decoding", "batchID", activeBatch.id)
692
693
694
695
696
	for i, seq := range s.seqs {
		if seq == nil || nextBatchTokens[i] == nil {
			continue
		}

Jesse Gross's avatar
Jesse Gross committed
697
		if seq.numPredicted == 1 {
698
699
700
701
702
			seq.startGenerationTime = time.Now()
		}

		// if done processing the prompt, generate an embedding and return
		if seq.embeddingOnly {
Michael Yang's avatar
Michael Yang committed
703
			seq.embedding <- outputs
704
			s.removeSequence(i, llm.DoneReasonStop)
705
			continue
706
707
708
		}

		// sample a token
709
710
		vocabSize := len(outputs) / activeBatch.batch.Outputs.Dim(0)
		logutil.Trace("computeBatch: vocab details", "batchID", activeBatch.id, "seqIdx", i, "len(logits)", len(outputs), "len(activeBatch.batch.Outputs)", activeBatch.batch.Outputs.Dim(0), "vocabSize", vocabSize, "iBatches", iBatches)
Michael Yang's avatar
Michael Yang committed
711
		token, err := seq.sampler.Sample(outputs[iBatches[i]*vocabSize : (iBatches[i]+1)*vocabSize])
Jesse Gross's avatar
Jesse Gross committed
712
		if err != nil {
713
714
			s.hardErrCh <- fmt.Errorf("failed to sample token: %w", err)
			return
Jesse Gross's avatar
Jesse Gross committed
715
		}
716

717
718
		nextBatchTokens[i].Token = token

719
		// if it's an end of sequence token, break
Jesse Gross's avatar
Jesse Gross committed
720
		if s.model.(model.TextProcessor).Is(token, model.SpecialEOS) {
721
722
723
			// TODO (jmorganca): we should send this back
			// as it's important for the /api/generate context
			// seq.responses <- piece
Michael Yang's avatar
Michael Yang committed
724
			logutil.Trace("computeBatch: EOS", "batchID", activeBatch.id, "seqIdx", i)
725
			s.removeSequence(i, llm.DoneReasonStop)
726
727
728
			continue
		}

Jesse Gross's avatar
Jesse Gross committed
729
730
		piece, err := s.model.(model.TextProcessor).Decode([]int32{token})
		if err != nil {
731
732
			s.hardErrCh <- fmt.Errorf("failed to decode token: %w", err)
			return
Jesse Gross's avatar
Jesse Gross committed
733
734
		}

735
736
737
		seq.pendingResponses = append(seq.pendingResponses, piece)
		sequence := strings.Join(seq.pendingResponses, "")

Jesse Gross's avatar
Jesse Gross committed
738
		if ok, stop := common.FindStop(sequence, seq.stop); ok {
739
740
741
742
			slog.Debug("hit stop token", "pending", seq.pendingResponses, "stop", stop)

			var tokenTruncated bool
			origLen := len(seq.pendingResponses)
Jesse Gross's avatar
Jesse Gross committed
743
			seq.pendingResponses, tokenTruncated = common.TruncateStop(seq.pendingResponses, stop)
744
745
746
747
748
749
750
751
752
753
754
755
756
757
			newLen := len(seq.pendingResponses)

			// Update the cache based on the tokens that will be returned:
			// - We have 1 token more than is currently in the cache because
			// the last one generated wasn't submitted to Decode
			// - Remove any stop sequences that we stripped out
			// - If truncateStop removed a portion of a token, drop that
			// - As defense-in-depth, if truncatedToken didn't find a stop token
			// remove the extra one that we added to the cache len
			tokenLen := len(seq.cache.Inputs) + 1
			tokenLen -= origLen - newLen
			if tokenTruncated || origLen == newLen {
				tokenLen--
			}
758

759
			seq.cache.Inputs = seq.cache.Inputs[:tokenLen]
760

761
			s.removeSequence(i, llm.DoneReasonStop)
762
763
764
			continue
		}

Jesse Gross's avatar
Jesse Gross committed
765
		if common.ContainsStopSuffix(sequence, seq.stop) {
766
767
768
			continue
		}

Jesse Gross's avatar
Jesse Gross committed
769
		if common.IncompleteUnicode(sequence) {
770
771
772
773
			continue
		}

		if !flushPending(seq) {
774
			s.removeSequence(i, llm.DoneReasonConnectionClosed)
775
776
777
778
779
		}
	}
}

func (s *Server) completion(w http.ResponseWriter, r *http.Request) {
780
	var req llm.CompletionRequest
781
782
783
784
785
	if err := json.NewDecoder(r.Body).Decode(&req); err != nil {
		http.Error(w, "Bad request", http.StatusBadRequest)
		return
	}

786
787
788
789
790
	if req.Options == nil {
		opts := api.DefaultOptions()
		req.Options = &opts
	}

791
792
793
794
795
796
797
798
799
800
	// Set the headers to indicate streaming
	w.Header().Set("Content-Type", "application/json")
	w.Header().Set("Transfer-Encoding", "chunked")

	flusher, ok := w.(http.Flusher)
	if !ok {
		http.Error(w, "Streaming not supported", http.StatusInternalServerError)
		return
	}

801
	var grammar *sample.GrammarSampler
802
803
	var err error
	if req.Grammar != "" {
804
		grammar, err = sample.NewGrammarSampler(s.model.(model.TextProcessor), req.Grammar)
805
806
807
808
		if err != nil {
			http.Error(w, "failed to load model vocabulary required for format", http.StatusInternalServerError)
			return
		}
809
		defer grammar.Free()
810
811
	}

812
	sampler := sample.NewSampler(
813
814
815
816
817
		req.Options.Temperature,
		req.Options.TopK,
		req.Options.TopP,
		req.Options.MinP,
		req.Options.Seed,
818
		grammar,
819
820
	)

821
	seq, err := s.NewSequence(req.Prompt, req.Images, NewSequenceParams{
822
823
824
		numPredict: req.Options.NumPredict,
		stop:       req.Options.Stop,
		numKeep:    int32(req.Options.NumKeep),
825
		sampler:    sampler,
Jesse Gross's avatar
Jesse Gross committed
826
		embedding:  false,
827
828
829
830
831
832
	})
	if err != nil {
		http.Error(w, fmt.Sprintf("Failed to create new sequence: %v", err), http.StatusInternalServerError)
		return
	}

833
	// Ensure there is a place to put the sequence, released when removed from s.seqs
834
	if err := s.seqsSem.Acquire(r.Context(), 1); err != nil {
835
836
837
		if errors.Is(err, context.Canceled) {
			slog.Info("aborting completion request due to client closing the connection")
		} else {
838
			http.Error(w, fmt.Sprintf("Failed to acquire semaphore: %v", err), http.StatusInternalServerError)
839
		}
840
841
842
		return
	}

843
	s.mu.Lock()
844
	found := false
845
846
	for i, sq := range s.seqs {
		if sq == nil {
Michael Yang's avatar
Michael Yang committed
847
			seq.cache, seq.inputs, err = s.cache.LoadCacheSlot(seq.inputs, true)
848
849
			if err != nil {
				s.mu.Unlock()
850
				s.seqsSem.Release(1)
851
852
853
				http.Error(w, fmt.Sprintf("Failed to load cache: %v", err), http.StatusInternalServerError)
				return
			}
854

855
856
			s.seqs[i] = seq
			s.cond.Signal()
857
			found = true
858
859
860
861
862
			break
		}
	}
	s.mu.Unlock()

863
	if !found {
864
		s.seqsSem.Release(1)
865
866
867
868
		http.Error(w, "could not find an available sequence", http.StatusInternalServerError)
		return
	}

869
870
871
872
873
874
875
	for {
		select {
		case <-r.Context().Done():
			close(seq.quit)
			return
		case content, ok := <-seq.responses:
			if ok {
876
				if err := json.NewEncoder(w).Encode(&llm.CompletionResponse{
877
					Content: content,
878
879
880
881
882
883
884
885
				}); err != nil {
					http.Error(w, fmt.Sprintf("failed to encode response: %v", err), http.StatusInternalServerError)
					close(seq.quit)
					return
				}

				flusher.Flush()
			} else {
886
887
				if err := json.NewEncoder(w).Encode(&llm.CompletionResponse{
					Done:               true,
888
					DoneReason:         seq.doneReason,
889
890
891
892
					PromptEvalCount:    seq.numPromptInputs,
					PromptEvalDuration: seq.startGenerationTime.Sub(seq.startProcessingTime),
					EvalCount:          seq.numPredicted,
					EvalDuration:       time.Since(seq.startGenerationTime),
893
894
895
896
897
898
899
900
901
902
				}); err != nil {
					http.Error(w, fmt.Sprintf("failed to encode final response: %v", err), http.StatusInternalServerError)
				}

				return
			}
		}
	}
}

Michael Yang's avatar
Michael Yang committed
903
func (s *Server) embeddings(w http.ResponseWriter, r *http.Request) {
Michael Yang's avatar
Michael Yang committed
904
	if pooling.Type(s.model.Backend().Config().Uint("pooling_type")) == pooling.TypeNone {
Michael Yang's avatar
Michael Yang committed
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
		http.Error(w, "this model does not support embeddings", http.StatusNotImplemented)
		return
	}

	var req llm.EmbeddingRequest
	if err := json.NewDecoder(r.Body).Decode(&req); err != nil {
		http.Error(w, fmt.Sprintf("bad request: %s", err), http.StatusBadRequest)
		return
	}

	w.Header().Set("Content-Type", "application/json")
	seq, err := s.NewSequence(req.Content, nil, NewSequenceParams{embedding: true})
	if err != nil {
		http.Error(w, fmt.Sprintf("failed to create new sequence: %v", err), http.StatusInternalServerError)
		return
	}

	if err := s.seqsSem.Acquire(r.Context(), 1); err != nil {
		if errors.Is(err, context.Canceled) {
			slog.Info("aborting embedding request due to client closing the connection")
		} else {
			http.Error(w, fmt.Sprintf("failed to acquire semaphore: %v", err), http.StatusInternalServerError)
		}
		return
	}

	s.mu.Lock()
	found := false
	for i, sq := range s.seqs {
		if sq == nil {
			seq.cache, seq.inputs, err = s.cache.LoadCacheSlot(seq.inputs, false)
			if err != nil {
				s.mu.Unlock()
				s.seqsSem.Release(1)
				http.Error(w, fmt.Sprintf("failed to load cache: %v", err), http.StatusInternalServerError)
				return
			}

			s.seqs[i] = seq
			s.cond.Signal()
			found = true
			break
		}
	}
	s.mu.Unlock()

	if !found {
		s.seqsSem.Release(1)
		http.Error(w, "could not find an available sequence", http.StatusInternalServerError)
		return
	}

	if err := json.NewEncoder(w).Encode(&llm.EmbeddingResponse{
		Embedding: <-seq.embedding,
	}); err != nil {
		http.Error(w, fmt.Sprintf("failed to encode response: %v", err), http.StatusInternalServerError)
	}
}

964
965
func (s *Server) health(w http.ResponseWriter, r *http.Request) {
	w.Header().Set("Content-Type", "application/json")
966
967
	if err := json.NewEncoder(w).Encode(&llm.ServerStatusResponse{
		Status:   s.status,
968
969
970
971
972
973
		Progress: s.progress,
	}); err != nil {
		http.Error(w, fmt.Sprintf("failed to encode response: %v", err), http.StatusInternalServerError)
	}
}

974
func (s *Server) reserveWorstCaseGraph() error {
975
976
977
	ctx := s.model.Backend().NewContext()
	defer ctx.Close()

978
	var err error
979
980
981
982
	inputs := make([]*input.Input, s.batchSize)
	for i := range inputs {
		inputs[i] = &input.Input{}
	}
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
	mmStore := newMultimodalStore()

	// Multimodal strategy:
	// - Encode a 2048x2048 image. This assumes that a single image of this
	//   size is sufficient to trigger the worst case. This is currently true
	//   because for existing models, only a single image fits in a batch.
	// - Add the embedding to a full batch of tokens - this is necessary because
	//   the model may be looking for non-image data, such as <image> tags.
	// - Run PostTokenize to execute any transformations between generated
	//   embeddings and what the forward pass expects.
	// - The result may now be larger than a batch (images may not fit in a
	//   single batch), so trim based on what will fit and must be grouped together.
	// - Fill out the rest of the space with text tokens.
	if multimodalProcessor, ok := s.model.(model.MultimodalProcessor); ok {
		mmCtx := s.model.Backend().NewContext()
		defer mmCtx.Close()

		img := image.NewGray(image.Rect(0, 0, 2048, 2048))
		var buf bytes.Buffer
		bmp.Encode(&buf, img)

		if inputs[0].Multimodal, err = multimodalProcessor.EncodeMultimodal(mmCtx, buf.Bytes()); err == nil {
			mmStore.addMultimodal(inputs[0].Multimodal)

			inputs, err = multimodalProcessor.PostTokenize(inputs)
			if err != nil {
				return err
			}

			for i, inp := range inputs {
				minBatch := 1 + inp.SameBatch
				if minBatch > s.batchSize {
					inputs = inputs[i:min(i+minBatch, len(inputs))]
					break
				} else if i+minBatch > s.batchSize {
					inputs = inputs[:i]
					break
				}
			}

			if len(inputs) < s.batchSize {
1024
				newInputs := make([]*input.Input, s.batchSize)
1025
				copy(newInputs, inputs)
1026
1027
1028
				for i := len(inputs); i < s.batchSize; i++ {
					newInputs[i] = &input.Input{}
				}
1029
1030
1031
1032
1033
				inputs = newInputs
			}
		}
	}

1034
1035
	var batch input.Batch

1036
	batchInputs := make([]int32, len(inputs))
1037
1038
	batch.Positions = make([]int32, len(inputs))
	batch.Sequences = make([]int, len(inputs))
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
	for i, inp := range inputs {
		batchInputs[i] = inp.Token
		if inp.Multimodal != nil {
			mm, err := mmStore.getMultimodal(s.model.Backend(), ctx, inp.Multimodal, true)
			if err != nil {
				return err
			}
			batch.Multimodal = append(batch.Multimodal, input.MultimodalIndex{Index: i, Multimodal: mm})
		}

1049
1050
1051
		batch.Positions[i] = int32(i)
	}

1052
	batch.Inputs = ctx.Input().FromIntSlice(batchInputs, len(batchInputs))
1053
	batch.Outputs = ctx.Input().Empty(ml.DTypeI32, s.parallel)
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067

	cache := s.model.Config().Cache
	if cache != nil {
		err := cache.StartForward(ctx, batch, true)
		if err != nil {
			return err
		}
	}

	t, err := s.model.Forward(ctx, batch)
	if err != nil {
		return err
	}

1068
	ctx.Forward(t).Reserve()
1069
1070

	return nil
1071
}
1072

Jesse Gross's avatar
Jesse Gross committed
1073
1074
1075
// allocModel pre-allocates the maximum needed memory for a model
// based on the given parameters
func (s *Server) allocModel(
1076
	mpath string,
1077
	params ml.BackendParams,
Jesse Gross's avatar
Jesse Gross committed
1078
	loraPath []string,
Jesse Gross's avatar
Jesse Gross committed
1079
	parallel int,
1080
	kvCacheType string,
Jesse Gross's avatar
Jesse Gross committed
1081
	kvSize int,
1082
	multiUserCache bool,
Jesse Gross's avatar
Jesse Gross committed
1083
1084
1085
1086
1087
) (panicErr error) {
	// Convert memory allocation panics to errors
	defer func() {
		if r := recover(); r != nil {
			if err, ok := r.(error); ok {
1088
1089
1090
1091
1092
1093
				var noMem ml.ErrNoMem
				if errors.As(err, &noMem) {
					panicErr = noMem
				} else {
					panic(r)
				}
Jesse Gross's avatar
Jesse Gross committed
1094
1095
1096
1097
1098
1099
			} else {
				panic(r)
			}
		}
	}()

1100
	var err error
1101
	s.model, err = model.New(mpath, params)
1102
	if err != nil {
1103
		return err
1104
	}
1105

Jesse Gross's avatar
Jesse Gross committed
1106
	// TODO(jessegross): LoRA loading
Jesse Gross's avatar
Jesse Gross committed
1107
	if len(loraPath) > 0 {
1108
		return errors.New("loras are not yet implemented")
1109
1110
	}

1111
	s.cache, err = NewInputCache(s.model, kvCacheType, int32(kvSize), parallel, s.batchSize, multiUserCache)
1112
	if err != nil {
1113
		return err
1114
	}
1115

Jesse Gross's avatar
Jesse Gross committed
1116
1117
1118
1119
1120
1121
1122
1123
1124
	if !s.cache.enabled && parallel > 1 {
		parallel = 1
		slog.Warn("model does not support caching, disabling parallel processing")
	}

	s.parallel = parallel
	s.seqs = make([]*Sequence, s.parallel)
	s.seqsSem = semaphore.NewWeighted(int64(s.parallel))

1125
1126
1127
	return s.reserveWorstCaseGraph()
}

Jesse Gross's avatar
Jesse Gross committed
1128
1129
1130
1131
1132
1133
1134
// closeModel frees all memory associated with a model
func (s *Server) closeModel() {
	s.cache.Close()
	s.cache = nil
	if s.model != nil {
		s.model.Backend().Close()
		s.model = nil
1135
	}
Jesse Gross's avatar
Jesse Gross committed
1136
}
1137

Jesse Gross's avatar
Jesse Gross committed
1138
1139
1140
1141
// loadModel loads the weights for a model. The memory must already
// have been allocated with allocModel
func (s *Server) loadModel() {
	err := s.model.Backend().Load(context.TODO(),
1142
1143
1144
1145
		func(progress float32) {
			s.progress = progress
		})
	if err != nil {
Jesse Gross's avatar
Jesse Gross committed
1146
		panic(fmt.Errorf("failed to load model: %v", err))
1147
1148
	}

1149
	s.status = llm.ServerStatusReady
1150
1151
1152
	s.ready.Done()
}

Jesse Gross's avatar
Jesse Gross committed
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
// load is the handler called by the Ollama server to process different
// load operations
func (s *Server) load(w http.ResponseWriter, r *http.Request) {
	s.loadMu.Lock()
	defer s.loadMu.Unlock()

	w.Header().Set("Content-Type", "application/json")

	if s.status != llm.ServerStatusLaunched {
		http.Error(w, "model already loaded", http.StatusInternalServerError)
		return
	}

	var req llm.LoadRequest
	if err := json.NewDecoder(r.Body).Decode(&req); err != nil {
		http.Error(w, "bad request", http.StatusBadRequest)
		return
	}

	slog.Info("load", "request", req)

	if req.Operation == llm.LoadOperationClose {
		s.closeModel()
		if err := json.NewEncoder(w).Encode(&llm.LoadResponse{}); err != nil {
			http.Error(w, fmt.Sprintf("failed to encode response: %v", err), http.StatusInternalServerError)
		}
		return
	}

	s.lastLoad.Operation = req.Operation
	loadModel := s.model == nil || !reflect.DeepEqual(req, s.lastLoad)

	s.lastLoad = req

	if loadModel {
		s.closeModel()

		params := ml.BackendParams{
			AllocMemory:    req.Operation != llm.LoadOperationFit,
			NumThreads:     req.NumThreads,
			GPULayers:      req.GPULayers,
			FlashAttention: req.FlashAttention,
		}

		s.batchSize = req.BatchSize

		err := s.allocModel(s.modelPath, params, req.LoraPath, req.Parallel, req.KvCacheType, req.KvSize, req.MultiUserCache)
		if err != nil {
			s.closeModel()

			var noMem ml.ErrNoMem
			if errors.As(err, &noMem) {
				resp := llm.LoadResponse{Success: false, Memory: noMem.BackendMemory}
				if err := json.NewEncoder(w).Encode(&resp); err != nil {
					http.Error(w, fmt.Sprintf("failed to encode response: %v", err), http.StatusInternalServerError)
				}

				return
			}

			http.Error(w, fmt.Sprintf("failed to initialize model: %v", err), http.StatusInternalServerError)
			return
		}
	}

	mem := s.model.Backend().BackendMemory()

	switch req.Operation {
	case llm.LoadOperationFit:
		// LoadOperationFit can't be used for anything else, so just close it
		s.closeModel()

	// LoadOperationAlloc should stay open for future operations

	case llm.LoadOperationCommit:
		s.status = llm.ServerStatusLoadingModel
		go s.loadModel()
	}

	resp := llm.LoadResponse{Success: true, Memory: mem}
	if err := json.NewEncoder(w).Encode(&resp); err != nil {
		http.Error(w, fmt.Sprintf("failed to encode response: %v", err), http.StatusInternalServerError)
		return
	}
}

1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
// info is the handler called by the Ollama server to report information
// about the GPU devices in use by this runner
func (s *Server) info(w http.ResponseWriter, r *http.Request) {
	s.loadMu.Lock()
	defer s.loadMu.Unlock()

	w.Header().Set("Content-Type", "application/json")

	m := s.model

	if m == nil {
		startLoad := time.Now()

		// Dummy load to get the backend wired up
		f, err := os.CreateTemp("", "*.bin")
		if err != nil {
			http.Error(w, fmt.Sprintf("failed to initialize baackend: %v", err), http.StatusInternalServerError)
			return
		}
		defer f.Close()
		defer os.Remove(f.Name())

		if err := ggml.WriteGGUF(f, ggml.KV{
			"general.architecture": "llama",
			"tokenizer.ggml.model": "gpt2",
		}, nil); err != nil {
			http.Error(w, fmt.Sprintf("failed to initialize baackend: %v", err), http.StatusInternalServerError)
			return
		}

		m, err = model.New(f.Name(), ml.BackendParams{NumThreads: runtime.NumCPU(), AllocMemory: false, GPULayers: ml.GPULayersList{{}}})
		if err != nil {
			http.Error(w, fmt.Sprintf("failed to initialize baackend: %v", err), http.StatusInternalServerError)
			return
		}
		slog.Debug("dummy model load took", "duration", time.Since(startLoad))
	}

	startDevices := time.Now()
	infos := m.Backend().BackendDevices()
	slog.Debug("gathering device infos took", "duration", time.Since(startDevices))
	if err := json.NewEncoder(w).Encode(&infos); err != nil {
		http.Error(w, fmt.Sprintf("failed to encode response: %v", err), http.StatusInternalServerError)
	}
}

1285
1286
1287
1288
func Execute(args []string) error {
	fs := flag.NewFlagSet("runner", flag.ExitOnError)
	mpath := fs.String("model", "", "Path to model binary file")
	port := fs.Int("port", 8080, "Port to expose the server on")
1289
	_ = fs.Bool("verbose", false, "verbose output (default: disabled)")
1290

1291
1292
1293
1294
1295
1296
	fs.Usage = func() {
		fmt.Fprintf(fs.Output(), "Runner usage\n")
		fs.PrintDefaults()
	}
	if err := fs.Parse(args); err != nil {
		return err
1297
	}
1298
	slog.SetDefault(logutil.NewLogger(os.Stderr, envconfig.LogLevel()))
Jesse Gross's avatar
Jesse Gross committed
1299
	slog.Info("starting ollama engine")
1300

1301
1302
1303
	ctx, cancel := context.WithCancel(context.Background())
	defer cancel()

Jesse Gross's avatar
Jesse Gross committed
1304
1305
1306
	server := &Server{
		modelPath: *mpath,
		status:    llm.ServerStatusLaunched,
1307
		hardErrCh: make(chan error, 1),
1308
1309
	}

Jesse Gross's avatar
Jesse Gross committed
1310
1311
	server.cond = sync.NewCond(&server.mu)
	server.ready.Add(1)
1312
1313
1314
1315
1316
1317
1318

	go server.run(ctx)

	addr := "127.0.0.1:" + strconv.Itoa(*port)
	listener, err := net.Listen("tcp", addr)
	if err != nil {
		fmt.Println("Listen error:", err)
1319
		return err
1320
1321
1322
1323
	}
	defer listener.Close()

	mux := http.NewServeMux()
1324
	// TODO: support embeddings
1325
	mux.HandleFunc("GET /info", server.info)
Jesse Gross's avatar
Jesse Gross committed
1326
	mux.HandleFunc("POST /load", server.load)
Michael Yang's avatar
Michael Yang committed
1327
	mux.HandleFunc("POST /embedding", server.embeddings)
1328
1329
	mux.HandleFunc("POST /completion", server.completion)
	mux.HandleFunc("GET /health", server.health)
1330
1331
1332
1333
1334
1335
1336
1337

	httpServer := http.Server{
		Handler: mux,
	}

	log.Println("Server listening on", addr)
	if err := httpServer.Serve(listener); err != nil {
		log.Fatal("server error:", err)
1338
		return err
1339
1340
	}

1341
	return nil
1342
}