runner.go 22.9 KB
Newer Older
Jesse Gross's avatar
Jesse Gross committed
1
package ollamarunner
2
3
4
5
6
7
8

import (
	"context"
	"encoding/json"
	"errors"
	"flag"
	"fmt"
9
	"hash/maphash"
10
11
12
13
14
15
16
17
18
19
20
	"log"
	"log/slog"
	"net"
	"net/http"
	"os"
	"regexp"
	"runtime"
	"strconv"
	"strings"
	"sync"
	"time"
21
	"unicode/utf8"
22

23
24
	"golang.org/x/sync/semaphore"

25
	"github.com/ollama/ollama/api"
26
	"github.com/ollama/ollama/envconfig"
27
	"github.com/ollama/ollama/llm"
28
	"github.com/ollama/ollama/logutil"
29
	"github.com/ollama/ollama/ml"
Jesse Gross's avatar
Jesse Gross committed
30
	"github.com/ollama/ollama/model"
31
	"github.com/ollama/ollama/model/input"
Jesse Gross's avatar
Jesse Gross committed
32
33
34
35
	"github.com/ollama/ollama/runner/common"
	"github.com/ollama/ollama/sample"

	_ "github.com/ollama/ollama/model/models"
36
37
38
)

type Sequence struct {
39
	// ctxs are used for allocating tensors that last the lifetime of the sequence, such as
40
	// multimodal embeddings
41
	ctxs []ml.Context
42

43
44
45
46
	// batch index
	iBatch int

	// prompt inputs left to evaluate
47
	inputs []input.Input
48

Jesse Gross's avatar
Jesse Gross committed
49
	// inputs that have been added to a batch but not yet submitted to Forward
50
	pendingInputs []input.Input
51

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
	// tokens that have been generated but not returned yet (e.g. for stop sequences)
	pendingResponses []string

	// input cache being used by this sequence
	cache *InputCacheSlot

	// channel to send responses over
	responses chan string

	// channel to stop decoding (such as if the remote connection is closed)
	quit chan bool

	// number of tokens to predict
	numPredict int

67
68
	// sampler with transforms to run on generated logits
	sampler sample.Sampler
69
70
71
72
73
74
75
76

	// channel to send back the embedding if embedding only
	embedding chan []float32

	// stop sequences
	stop []string

	// number of inputs to keep at the beginning when shifting context window
Jesse Gross's avatar
Jesse Gross committed
77
	numKeep int32
78
79
80
81

	// true if an embedding are to be returned instead of text generation
	embeddingOnly bool

82
	doneReason llm.DoneReason
83
84
85
86

	// Metrics
	startProcessingTime time.Time
	startGenerationTime time.Time
Jesse Gross's avatar
Jesse Gross committed
87
	numPredicted        int
88
89
90
91
	numPromptInputs     int
}

type NewSequenceParams struct {
Jesse Gross's avatar
Jesse Gross committed
92
93
94
	numPredict int
	stop       []string
	numKeep    int32
95
	sampler    sample.Sampler
Jesse Gross's avatar
Jesse Gross committed
96
	embedding  bool
97
98
}

99
func (s *Server) NewSequence(prompt string, images []llm.ImageData, params NewSequenceParams) (*Sequence, error) {
100
101
102
103
	s.ready.Wait()

	startTime := time.Now()

104
	inputs, ctxs, err := s.inputs(prompt, images)
105
106
107
108
109
110
111
	if err != nil {
		return nil, fmt.Errorf("failed to process inputs: %w", err)
	} else if len(inputs) == 0 {
		return nil, errors.New("no input provided")
	}

	if params.numKeep < 0 {
Jesse Gross's avatar
Jesse Gross committed
112
		params.numKeep = int32(len(inputs))
113
114
	}

115
116
117
	// Ensure that at least 1 input can be discarded during shift
	params.numKeep = min(params.numKeep, s.cache.numCtx-1)

Jesse Gross's avatar
Jesse Gross committed
118
119
	if int32(len(inputs)) > s.cache.numCtx {
		discard := int32(len(inputs)) - s.cache.numCtx
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
		promptStart := params.numKeep + discard

		// If we need to truncate in the middle of a unbreakable batch, remove the entire batch
		sameBatch := 0
		for i, inp := range inputs {
			if sameBatch > 0 {
				sameBatch--

				if promptStart == int32(i) {
					promptStart++
				}
			} else if promptStart == int32(i) {
				break
			}

			if inp.SameBatch != 0 {
				if int32(i) < params.numKeep {
					return nil, fmt.Errorf("SameBatch may not be specified within numKeep (index: %v numKeep: %v SameBatch: %v)", i, params.numKeep, inp.SameBatch)
				}

				sameBatch = inp.SameBatch
			}
		}

		if promptStart >= int32(len(inputs)) {
			return nil, errors.New("entire prompt removed by truncation")
		}

148
		newInputs := inputs[:params.numKeep]
149
		newInputs = append(newInputs, inputs[promptStart:]...)
150
151

		slog.Warn("truncating input prompt", "limit", s.cache.numCtx, "prompt", len(inputs), "keep", params.numKeep, "new", len(newInputs))
152
		inputs = newInputs
153
154
	}

Jesse Gross's avatar
Jesse Gross committed
155
	// TODO(jessegross): Ingest cached history for grammar
156
157

	return &Sequence{
158
		ctxs:                ctxs,
159
160
161
162
163
164
165
166
		inputs:              inputs,
		numPromptInputs:     len(inputs),
		startProcessingTime: startTime,
		numPredict:          params.numPredict,
		pendingResponses:    make([]string, 0),
		responses:           make(chan string, 100),
		quit:                make(chan bool, 1),
		embedding:           make(chan []float32, 1),
167
		sampler:             params.sampler,
168
169
170
171
172
173
174
175
		embeddingOnly:       params.embedding,
		stop:                params.stop,
		numKeep:             params.numKeep,
	}, nil
}

// inputs processes the prompt and images into a list of inputs
// by splitting the prompt on [img-<n>] tags, tokenizing text and
Jesse Gross's avatar
Jesse Gross committed
176
// decoding images
177
func (s *Server) inputs(prompt string, images []llm.ImageData) ([]input.Input, []ml.Context, error) {
178
	var inputs []input.Input
179
180
	var ctxs []ml.Context

181
182
183
	var parts []string
	var matches [][]string

184
	multimodalProcessor, visionModel := s.model.(model.MultimodalProcessor)
185

186
187
188
189
190
191
192
193
194
	if visionModel {
		re := regexp.MustCompile(`\[img-(\d+)\]`)
		parts = re.Split(prompt, -1)
		matches = re.FindAllStringSubmatch(prompt, -1)
	} else {
		parts = []string{prompt}
	}

	postTokenize := false
195
196
	for i, part := range parts {
		// text - tokenize
197
		tokens, err := s.model.(model.TextProcessor).Encode(part, i == 0)
198
		if err != nil {
199
			return nil, nil, err
200
		}
201

202
		for _, t := range tokens {
203
			inputs = append(inputs, input.Input{Token: t})
204
205
		}

Jesse Gross's avatar
Jesse Gross committed
206
		// image - decode and store
207
208
209
210
211
212
213
214
215
216
217
218
		if i < len(matches) {
			n, _ := strconv.Atoi(matches[i][1])

			imageIndex := -1
			for j := range images {
				if images[j].ID == n {
					imageIndex = j
					break
				}
			}

			if imageIndex < 0 {
219
				return nil, nil, fmt.Errorf("invalid image index: %d", n)
220
221
			}

222
			ctx := s.model.Backend().NewContext()
223
224
			runtime.SetFinalizer(ctx, func(c ml.Context) { c.Close() })
			ctxs = append(ctxs, ctx)
225
			imageEmbeddings, err := multimodalProcessor.EncodeMultimodal(ctx, images[imageIndex].Data)
Jesse Gross's avatar
Jesse Gross committed
226
			if err != nil {
227
				return nil, nil, err
Jesse Gross's avatar
Jesse Gross committed
228
229
			}

230
231
232
233
			s.multimodalHash.Reset()
			_, _ = s.multimodalHash.Write(images[imageIndex].Data)
			imageHash := s.multimodalHash.Sum64()

234
			inputs = append(inputs, input.Input{Multimodal: imageEmbeddings, MultimodalHash: imageHash})
235
236
237
238
239
240
			postTokenize = true
		}
	}

	if visionModel && postTokenize {
		var err error
241
		inputs, err = multimodalProcessor.PostTokenize(inputs)
242
		if err != nil {
243
			return nil, nil, err
244
245
246
		}
	}

247
	return inputs, ctxs, nil
248
249
250
}

type Server struct {
251
252
253
254
255
	// is the server ready to process requests?
	// protects access to model and image
	ready sync.WaitGroup

	// loaded model
Jesse Gross's avatar
Jesse Gross committed
256
	model model.Model
257

258
	// status for external health reporting - loading, ready to serve, etc.
259
	status llm.ServerStatus
260
261
262
263
264
265
266
267

	// current progress on loading the model
	progress float32

	// number of simultaneous requests to handle
	parallel int

	// maximum number of elements in a batch (per sequence)
268
	// TODO (jmorganca): make this n_batch
269
270
	batchSize int

271
272
273
274
275
276
277
278
	// protects access to everything below this line
	// this is context state needed for decoding
	mu sync.Mutex

	// indicates that data is ready for processing
	cond *sync.Cond

	// the list of simultaneous sequences being evaluated
279
280
	seqs []*Sequence

281
282
283
284
	// seqs can have a maximum of parallel entries, which
	// is enfoced by seqSem
	seqsSem *semaphore.Weighted

285
286
287
	// KV cache
	cache *InputCache

288
289
290
	// next sequence for prompt processing to avoid starvation
	nextSeq int

291
292
293
	// multimodalHash generates hashes for comparing equality
	// of non-text data
	multimodalHash maphash.Hash
294
295
296
297
298
299
300
301
302
303
304
305
}

func (s *Server) allNil() bool {
	for _, item := range s.seqs {
		if item != nil {
			return false
		}
	}
	return true
}

func flushPending(seq *Sequence) bool {
306
307
308
309
310
311
312
313
314
315
316
	joined := strings.Join(seq.pendingResponses, "")
	seq.pendingResponses = []string{}

	// Check if there are any partial UTF-8 characters remaining.
	// We already check and queue as we are generating but some may
	// still make it here:
	// - Sequence is ending, e.g. generation limit has been hit
	// - Invalid characters in the middle of a string
	// This is a stricter check to ensure we never output invalid Unicode.
	for !utf8.ValidString(joined) {
		joined = joined[:len(joined)-1]
317
318
	}

319
320
321
322
323
324
325
326
327
328
	if len(joined) == 0 {
		return true
	}

	select {
	case seq.responses <- joined:
		return true
	case <-seq.quit:
		return false
	}
329
330
}

331
func (s *Server) removeSequence(seqIndex int, reason llm.DoneReason) {
332
333
334
335
336
337
338
339
	seq := s.seqs[seqIndex]

	flushPending(seq)
	seq.doneReason = reason
	close(seq.responses)
	close(seq.embedding)
	seq.cache.InUse = false
	s.seqs[seqIndex] = nil
340
	s.seqsSem.Release(1)
341
342
343
344
345
346
347
348
349
350
}

func (s *Server) run(ctx context.Context) {
	s.ready.Wait()

	for {
		select {
		case <-ctx.Done():
			return
		default:
Jesse Gross's avatar
Jesse Gross committed
351
			err := s.processBatch()
352
353
354
			if err != nil {
				panic(err)
			}
355
356
357
358
		}
	}
}

Jesse Gross's avatar
Jesse Gross committed
359
func (s *Server) processBatch() error {
360
361
362
363
364
365
	s.mu.Lock()
	for s.allNil() {
		s.cond.Wait() // Wait until an item is added
	}
	defer s.mu.Unlock()

366
	var batchInputs []int32
Jesse Gross's avatar
Jesse Gross committed
367
	var batch input.Batch
368

369
370
371
372
373
374
	resumeSeq := -1
	seqIdx := s.nextSeq - 1
	for range s.seqs {
		seqIdx = (seqIdx + 1) % len(s.seqs)
		seq := s.seqs[seqIdx]

375
376
377
378
379
		if seq == nil {
			continue
		}

		// if past the num predict limit
380
		if seq.numPredict > 0 && seq.numPredicted >= seq.numPredict {
381
			s.removeSequence(seqIdx, llm.DoneReasonLength)
382
383
384
			continue
		}

Jesse Gross's avatar
Jesse Gross committed
385
386
		if !s.cache.enabled {
			seq.inputs = append(seq.cache.Inputs, seq.inputs...)
387
			seq.cache.Inputs = []input.Input{}
Jesse Gross's avatar
Jesse Gross committed
388
389
		}

390
391
		batchSize := s.batchSize

392
		for i, inp := range seq.inputs {
393
394
			// If we are required to put following inputs into a single batch then extend the
			// batch size. Since we are only extending the size the minimum amount possible, this
395
			// will cause a break if we have existing inputs.
396
397
398
399
400
			minBatch := 1 + inp.SameBatch
			if minBatch > batchSize {
				batchSize = minBatch
			}

401
402
403
404
405
406
407
408
			// Stop if the required batch would put us over the total batch size (including tokens
			// added by other sequences). If we haven't been able to add anything yet then pick up
			// here again for the next batch to avoid starvation, though we can opportunistically
			// check if other sequences can still squeeze something in.
			if len(batchInputs)+minBatch > batchSize {
				if len(seq.pendingInputs) == 0 && resumeSeq == -1 {
					resumeSeq = seqIdx
				}
409
410
				break
			}
Jesse Gross's avatar
Jesse Gross committed
411

412
413
414
415
416
417
418
419
420
421
			// If the sum of our working set (already processed tokens, tokens we added to this
			// batch, required following tokens) exceeds the context size, then trigger a shift
			// now so we don't have to do one later when we can't break the batch.
			if int32(len(seq.cache.Inputs)+len(seq.pendingInputs)+minBatch) > s.cache.numCtx {
				if len(seq.pendingInputs) != 0 {
					break
				}

				err := s.cache.ShiftCacheSlot(seq.cache, seq.numKeep)
				if err != nil {
422
423
424
425
426
427
428
429
430
					var reprocess *ErrReprocessInputs
					if errors.As(err, &reprocess) {
						// Prepend these inputs to the sequence's inputs queue for reprocessing
						seq.inputs = append(reprocess.Inputs, seq.inputs...)
						// Skip this sequence but continue processing the rest
						continue
					} else {
						return err
					}
431
432
433
				}
			}

434
			batchInputs = append(batchInputs, inp.Token)
435
			if inp.Multimodal != nil {
436
				batch.Multimodal = append(batch.Multimodal, input.MultimodalIndex{Index: len(batchInputs) - 1, Multimodal: inp.Multimodal})
437
438
			}

Jesse Gross's avatar
Jesse Gross committed
439
440
			batch.Positions = append(batch.Positions, int32(len(seq.cache.Inputs)+len(seq.pendingInputs)))
			batch.Sequences = append(batch.Sequences, seq.cache.Id)
Jesse Gross's avatar
Jesse Gross committed
441

Jesse Gross's avatar
Jesse Gross committed
442
			seq.iBatch = len(batch.Outputs)
443
			if i+1 == len(seq.inputs) {
444
				batch.Outputs = append(batch.Outputs, int32(len(batchInputs)-1))
Jesse Gross's avatar
Jesse Gross committed
445
			}
446
			seq.pendingInputs = append(seq.pendingInputs, inp)
447
		}
448
449

		seq.inputs = seq.inputs[len(seq.pendingInputs):]
450
451
	}

452
453
454
455
456
457
	if resumeSeq != -1 {
		s.nextSeq = resumeSeq
	} else {
		s.nextSeq = seqIdx + 1
	}

458
	if len(batchInputs) == 0 {
459
		return nil
460
461
	}

Jesse Gross's avatar
Jesse Gross committed
462
463
	ctx := s.model.Backend().NewContext()
	defer ctx.Close()
464

465
	modelOutput, err := model.Forward(ctx, s.model, batchInputs, batch)
466
	if err != nil {
467
		return fmt.Errorf("failed to decode batch: %w", err)
468
469
	}

470
	logits := modelOutput.Floats()
471

472
473
474
475
476
	for i, seq := range s.seqs {
		if seq == nil {
			continue
		}

Jesse Gross's avatar
Jesse Gross committed
477
		// After calling Forward, pending inputs are now in the cache
478
479
		if len(seq.pendingInputs) > 0 {
			seq.cache.Inputs = append(seq.cache.Inputs, seq.pendingInputs...)
480
			seq.pendingInputs = []input.Input{}
481
482
		}

483
484
		// don't sample prompt processing
		if len(seq.inputs) != 0 {
Jesse Gross's avatar
Jesse Gross committed
485
486
487
			if !s.cache.enabled {
				return errors.New("caching disabled but unable to fit entire input in a batch")
			}
488
489
490
			continue
		}

Jesse Gross's avatar
Jesse Gross committed
491
492
		seq.numPredicted++
		if seq.numPredicted == 1 {
493
494
495
496
497
			seq.startGenerationTime = time.Now()
		}

		// if done processing the prompt, generate an embedding and return
		if seq.embeddingOnly {
Jesse Gross's avatar
Jesse Gross committed
498
			// TODO(jessegross): Embedding support
499
			slog.Warn("generation of embedding outputs not yet supported")
500
			s.removeSequence(i, llm.DoneReasonStop)
501
			continue
502
503
504
		}

		// sample a token
Jesse Gross's avatar
Jesse Gross committed
505
		vocabSize := len(logits) / len(batch.Outputs)
506
507

		token, err := seq.sampler.Sample(logits[seq.iBatch*vocabSize : (seq.iBatch+1)*vocabSize])
Jesse Gross's avatar
Jesse Gross committed
508
		if err != nil {
509
			return fmt.Errorf("failed to sample token: %w", err)
Jesse Gross's avatar
Jesse Gross committed
510
		}
511
512

		// if it's an end of sequence token, break
Jesse Gross's avatar
Jesse Gross committed
513
		if s.model.(model.TextProcessor).Is(token, model.SpecialEOS) {
514
515
516
517
			// TODO (jmorganca): we should send this back
			// as it's important for the /api/generate context
			// seq.responses <- piece

518
			s.removeSequence(i, llm.DoneReasonStop)
519
520
521
			continue
		}

Jesse Gross's avatar
Jesse Gross committed
522
523
524
525
526
		piece, err := s.model.(model.TextProcessor).Decode([]int32{token})
		if err != nil {
			return err
		}

527
		seq.inputs = []input.Input{{Token: token}}
528
529
530
531

		seq.pendingResponses = append(seq.pendingResponses, piece)
		sequence := strings.Join(seq.pendingResponses, "")

Jesse Gross's avatar
Jesse Gross committed
532
		if ok, stop := common.FindStop(sequence, seq.stop); ok {
533
534
535
536
			slog.Debug("hit stop token", "pending", seq.pendingResponses, "stop", stop)

			var tokenTruncated bool
			origLen := len(seq.pendingResponses)
Jesse Gross's avatar
Jesse Gross committed
537
			seq.pendingResponses, tokenTruncated = common.TruncateStop(seq.pendingResponses, stop)
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
			newLen := len(seq.pendingResponses)

			// Update the cache based on the tokens that will be returned:
			// - We have 1 token more than is currently in the cache because
			// the last one generated wasn't submitted to Decode
			// - Remove any stop sequences that we stripped out
			// - If truncateStop removed a portion of a token, drop that
			// - As defense-in-depth, if truncatedToken didn't find a stop token
			// remove the extra one that we added to the cache len
			tokenLen := len(seq.cache.Inputs) + 1
			tokenLen -= origLen - newLen
			if tokenTruncated || origLen == newLen {
				tokenLen--
			}
			seq.cache.Inputs = seq.cache.Inputs[:tokenLen]
553

554
			s.removeSequence(i, llm.DoneReasonStop)
555
556
557
			continue
		}

Jesse Gross's avatar
Jesse Gross committed
558
		if common.ContainsStopSuffix(sequence, seq.stop) {
559
560
561
			continue
		}

Jesse Gross's avatar
Jesse Gross committed
562
		if common.IncompleteUnicode(sequence) {
563
564
565
566
			continue
		}

		if !flushPending(seq) {
567
			s.removeSequence(i, llm.DoneReasonConnectionClosed)
568
569
		}
	}
570
571

	return nil
572
573
574
}

func (s *Server) completion(w http.ResponseWriter, r *http.Request) {
575
	var req llm.CompletionRequest
576
577
578
579
580
	if err := json.NewDecoder(r.Body).Decode(&req); err != nil {
		http.Error(w, "Bad request", http.StatusBadRequest)
		return
	}

581
582
583
584
585
	if req.Options == nil {
		opts := api.DefaultOptions()
		req.Options = &opts
	}

586
587
588
589
590
591
592
593
594
595
	// Set the headers to indicate streaming
	w.Header().Set("Content-Type", "application/json")
	w.Header().Set("Transfer-Encoding", "chunked")

	flusher, ok := w.(http.Flusher)
	if !ok {
		http.Error(w, "Streaming not supported", http.StatusInternalServerError)
		return
	}

596
	var grammar *sample.GrammarSampler
597
598
	var err error
	if req.Grammar != "" {
599
		grammar, err = sample.NewGrammarSampler(s.model.(model.TextProcessor), req.Grammar)
600
601
602
603
		if err != nil {
			http.Error(w, "failed to load model vocabulary required for format", http.StatusInternalServerError)
			return
		}
604
		defer grammar.Free()
605
606
	}

607
	sampler := sample.NewSampler(
608
609
610
611
612
		req.Options.Temperature,
		req.Options.TopK,
		req.Options.TopP,
		req.Options.MinP,
		req.Options.Seed,
613
		grammar,
614
615
	)

616
	seq, err := s.NewSequence(req.Prompt, req.Images, NewSequenceParams{
617
618
619
		numPredict: req.Options.NumPredict,
		stop:       req.Options.Stop,
		numKeep:    int32(req.Options.NumKeep),
620
		sampler:    sampler,
Jesse Gross's avatar
Jesse Gross committed
621
		embedding:  false,
622
623
624
625
626
627
	})
	if err != nil {
		http.Error(w, fmt.Sprintf("Failed to create new sequence: %v", err), http.StatusInternalServerError)
		return
	}

628
	// Ensure there is a place to put the sequence, released when removed from s.seqs
629
	if err := s.seqsSem.Acquire(r.Context(), 1); err != nil {
630
631
632
		if errors.Is(err, context.Canceled) {
			slog.Info("aborting completion request due to client closing the connection")
		} else {
633
			http.Error(w, fmt.Sprintf("Failed to acquire semaphore: %v", err), http.StatusInternalServerError)
634
		}
635
636
637
		return
	}

638
	s.mu.Lock()
639
	found := false
640
641
	for i, sq := range s.seqs {
		if sq == nil {
642
			seq.cache, seq.inputs, err = s.cache.LoadCacheSlot(seq.inputs)
643
644
			if err != nil {
				s.mu.Unlock()
645
				s.seqsSem.Release(1)
646
647
648
				http.Error(w, fmt.Sprintf("Failed to load cache: %v", err), http.StatusInternalServerError)
				return
			}
649

650
651
			s.seqs[i] = seq
			s.cond.Signal()
652
			found = true
653
654
655
656
657
			break
		}
	}
	s.mu.Unlock()

658
	if !found {
659
		s.seqsSem.Release(1)
660
661
662
663
		http.Error(w, "could not find an available sequence", http.StatusInternalServerError)
		return
	}

664
665
666
667
668
669
670
	for {
		select {
		case <-r.Context().Done():
			close(seq.quit)
			return
		case content, ok := <-seq.responses:
			if ok {
671
				if err := json.NewEncoder(w).Encode(&llm.CompletionResponse{
672
673
674
675
676
677
678
679
680
					Content: content,
				}); err != nil {
					http.Error(w, fmt.Sprintf("failed to encode response: %v", err), http.StatusInternalServerError)
					close(seq.quit)
					return
				}

				flusher.Flush()
			} else {
681
682
				if err := json.NewEncoder(w).Encode(&llm.CompletionResponse{
					Done:               true,
683
					DoneReason:         seq.doneReason,
684
685
686
687
					PromptEvalCount:    seq.numPromptInputs,
					PromptEvalDuration: seq.startGenerationTime.Sub(seq.startProcessingTime),
					EvalCount:          seq.numPredicted,
					EvalDuration:       time.Since(seq.startGenerationTime),
688
689
690
691
692
693
694
695
696
697
698
699
				}); err != nil {
					http.Error(w, fmt.Sprintf("failed to encode final response: %v", err), http.StatusInternalServerError)
				}

				return
			}
		}
	}
}

func (s *Server) health(w http.ResponseWriter, r *http.Request) {
	w.Header().Set("Content-Type", "application/json")
700
701
	if err := json.NewEncoder(w).Encode(&llm.ServerStatusResponse{
		Status:   s.status,
702
703
704
705
706
707
		Progress: s.progress,
	}); err != nil {
		http.Error(w, fmt.Sprintf("failed to encode response: %v", err), http.StatusInternalServerError)
	}
}

708
709
710
711
712
713
714
715
716
717
718
type multiLPath []string

func (m *multiLPath) Set(value string) error {
	*m = append(*m, value)
	return nil
}

func (m *multiLPath) String() string {
	return strings.Join(*m, ", ")
}

719
func (s *Server) reserveWorstCaseGraph() error {
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
	ctx := s.model.Backend().NewContext()
	defer ctx.Close()

	var batch input.Batch

	inputs := make([]int32, s.batchSize)
	batch.Positions = make([]int32, len(inputs))
	batch.Sequences = make([]int, len(inputs))
	for i := range inputs {
		batch.Positions[i] = int32(i)
	}

	batch.Outputs = make([]int32, s.parallel)
	for i := range batch.Outputs {
		batch.Outputs[i] = int32(i)
	}

	var err error
	batch.Inputs, err = ctx.Input().FromIntSlice(inputs, len(inputs))
	if err != nil {
		return err
	}

	cache := s.model.Config().Cache
	if cache != nil {
		err := cache.StartForward(ctx, batch, true)
		if err != nil {
			return err
		}
	}

	t, err := s.model.Forward(ctx, batch)
	if err != nil {
		return err
	}

	err = ctx.Forward(t).Reserve()
	if err != nil {
		return err
	}

	return nil
762
}
763

764
func (s *Server) loadModel(
765
	ctx context.Context,
766
	mpath string,
767
	params ml.BackendParams,
768
	lpath multiLPath,
Jesse Gross's avatar
Jesse Gross committed
769
	parallel int,
770
	kvCacheType string,
Jesse Gross's avatar
Jesse Gross committed
771
	kvSize int,
772
773
	multiUserCache bool,
) {
774
	var err error
775
	s.model, err = model.New(ctx, mpath, params)
776
777
778
	if err != nil {
		panic(err)
	}
779

Jesse Gross's avatar
Jesse Gross committed
780
	// TODO(jessegross): LoRA loading
781
	if lpath.String() != "" {
Jesse Gross's avatar
Jesse Gross committed
782
		panic("loras are not yet implemented")
783
784
	}

785
	s.cache, err = NewInputCache(s.model, kvCacheType, int32(kvSize), parallel, s.batchSize, multiUserCache)
786
787
788
	if err != nil {
		panic(err)
	}
789

Jesse Gross's avatar
Jesse Gross committed
790
791
792
793
794
795
796
797
798
	if !s.cache.enabled && parallel > 1 {
		parallel = 1
		slog.Warn("model does not support caching, disabling parallel processing")
	}

	s.parallel = parallel
	s.seqs = make([]*Sequence, s.parallel)
	s.seqsSem = semaphore.NewWeighted(int64(s.parallel))

799
	err = s.reserveWorstCaseGraph()
800
801
	if err != nil {
		panic(err)
802
	}
803

804
	s.status = llm.ServerStatusReady
805
806
807
	s.ready.Done()
}

808
809
810
811
812
func Execute(args []string) error {
	fs := flag.NewFlagSet("runner", flag.ExitOnError)
	mpath := fs.String("model", "", "Path to model binary file")
	parallel := fs.Int("parallel", 1, "Number of sequences to handle simultaneously")
	batchSize := fs.Int("batch-size", 512, "Batch size")
813
814
	numGPULayers := fs.Int("n-gpu-layers", 0, "Number of layers to offload to GPU")
	mainGPU := fs.Int("main-gpu", 0, "Main GPU")
815
	flashAttention := fs.Bool("flash-attn", false, "Enable flash attention")
816
817
818
	kvSize := fs.Int("ctx-size", 2048, "Context (or KV cache) size")
	kvCacheType := fs.String("kv-cache-type", "", "quantization type for KV cache (default: f16)")
	port := fs.Int("port", 8080, "Port to expose the server on")
819
	threads := fs.Int("threads", runtime.NumCPU(), "Number of threads to use during generation")
820
	_ = fs.Bool("verbose", false, "verbose output (default: disabled)")
Jesse Gross's avatar
Jesse Gross committed
821
	_ = fs.Bool("no-mmap", false, "do not memory-map model (slower load but may reduce pageouts if not using mlock)")
822
	tensorSplit := fs.String("tensor-split", "", "fraction of the model to offload to each GPU, comma-separated list of proportions")
823
	multiUserCache := fs.Bool("multiuser-cache", false, "optimize input cache algorithm for multiple users")
824

825
	var lpaths multiLPath
826
	fs.Var(&lpaths, "lora", "Path to lora layer file (can be specified multiple times)")
827

828
829
830
831
832
833
	fs.Usage = func() {
		fmt.Fprintf(fs.Output(), "Runner usage\n")
		fs.PrintDefaults()
	}
	if err := fs.Parse(args); err != nil {
		return err
834
	}
835
	slog.SetDefault(logutil.NewLogger(os.Stderr, envconfig.LogLevel()))
Jesse Gross's avatar
Jesse Gross committed
836
	slog.Info("starting ollama engine")
837
838
839

	server := &Server{
		batchSize: *batchSize,
840
		status:    llm.ServerStatusLoadingModel,
841
842
	}

Jesse Gross's avatar
Jesse Gross committed
843
844
845
846
	// TODO(jessegross): Parameters that need to be implemented:
	//	no-mmap
	//	mlock

847
	var tensorSplitFloats []float32
848
	if *tensorSplit != "" {
849
850
851
		splits := strings.Split(*tensorSplit, ",")
		tensorSplitFloats = make([]float32, len(splits))
		for i, s := range splits {
852
			f, _ := strconv.ParseFloat(s, 32)
853
			tensorSplitFloats[i] = float32(f)
854
		}
855
856
857
	}

	params := ml.BackendParams{
858
859
860
		Progress: func(progress float32) {
			server.progress = progress
		},
861
862
863
864
865
		NumThreads:     *threads,
		NumGPULayers:   *numGPULayers,
		MainGPU:        *mainGPU,
		TensorSplit:    tensorSplitFloats,
		FlashAttention: *flashAttention,
866
	}
867
868
869

	server.ready.Add(1)
	ctx, cancel := context.WithCancel(context.Background())
Michael Yang's avatar
Michael Yang committed
870
871
	defer cancel()

872
873
874
875
	go server.loadModel(ctx, *mpath, params, lpaths, *parallel, *kvCacheType, *kvSize, *multiUserCache)

	server.cond = sync.NewCond(&server.mu)

876
877
878
879
880
881
	go server.run(ctx)

	addr := "127.0.0.1:" + strconv.Itoa(*port)
	listener, err := net.Listen("tcp", addr)
	if err != nil {
		fmt.Println("Listen error:", err)
882
		return err
883
884
885
886
	}
	defer listener.Close()

	mux := http.NewServeMux()
887
888
889
890
891
892
893
	// TODO: support embeddings
	mux.HandleFunc("POST /embedding", func(w http.ResponseWriter, r *http.Request) {
		http.Error(w, "this model does not support embeddings", http.StatusNotImplemented)
	})

	mux.HandleFunc("POST /completion", server.completion)
	mux.HandleFunc("GET /health", server.health)
894
895
896
897
898
899
900
901

	httpServer := http.Server{
		Handler: mux,
	}

	log.Println("Server listening on", addr)
	if err := httpServer.Serve(listener); err != nil {
		log.Fatal("server error:", err)
902
		return err
903
904
	}

905
	return nil
906
}