runner.go 20.5 KB
Newer Older
Jesse Gross's avatar
Jesse Gross committed
1
package ollamarunner
2
3
4
5
6
7
8

import (
	"context"
	"encoding/json"
	"errors"
	"flag"
	"fmt"
9
	"hash/maphash"
10
11
12
13
14
15
16
17
18
19
20
21
	"log"
	"log/slog"
	"net"
	"net/http"
	"os"
	"path/filepath"
	"regexp"
	"runtime"
	"strconv"
	"strings"
	"sync"
	"time"
22
	"unicode/utf8"
23

24
25
	"golang.org/x/sync/semaphore"

26
	"github.com/ollama/ollama/api"
27
	"github.com/ollama/ollama/llm"
28
	"github.com/ollama/ollama/ml"
Jesse Gross's avatar
Jesse Gross committed
29
	"github.com/ollama/ollama/model"
30
	"github.com/ollama/ollama/model/input"
Jesse Gross's avatar
Jesse Gross committed
31
32
33
34
	"github.com/ollama/ollama/runner/common"
	"github.com/ollama/ollama/sample"

	_ "github.com/ollama/ollama/model/models"
35
36
37
)

type Sequence struct {
38
39
40
41
	// ctx for allocating tensors that last the lifetime of the sequence, such as
	// multimodal embeddings
	ctx ml.Context

42
43
44
45
	// batch index
	iBatch int

	// prompt inputs left to evaluate
46
	inputs []input.Input
47

Jesse Gross's avatar
Jesse Gross committed
48
	// inputs that have been added to a batch but not yet submitted to Forward
49
	pendingInputs []input.Input
50

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
	// tokens that have been generated but not returned yet (e.g. for stop sequences)
	pendingResponses []string

	// input cache being used by this sequence
	cache *InputCacheSlot

	// channel to send responses over
	responses chan string

	// channel to stop decoding (such as if the remote connection is closed)
	quit chan bool

	// number of tokens to predict
	numPredict int

66
67
	// sampler with transforms to run on generated logits
	sampler sample.Sampler
68
69
70
71
72
73
74
75

	// channel to send back the embedding if embedding only
	embedding chan []float32

	// stop sequences
	stop []string

	// number of inputs to keep at the beginning when shifting context window
Jesse Gross's avatar
Jesse Gross committed
76
	numKeep int32
77
78
79
80
81
82
83
84
85

	// true if an embedding are to be returned instead of text generation
	embeddingOnly bool

	doneReason string

	// Metrics
	startProcessingTime time.Time
	startGenerationTime time.Time
Jesse Gross's avatar
Jesse Gross committed
86
	numPredicted        int
87
88
89
90
	numPromptInputs     int
}

type NewSequenceParams struct {
Jesse Gross's avatar
Jesse Gross committed
91
92
93
	numPredict int
	stop       []string
	numKeep    int32
94
	sampler    sample.Sampler
Jesse Gross's avatar
Jesse Gross committed
95
	embedding  bool
96
97
}

98
func (s *Server) NewSequence(prompt string, images []llm.ImageData, params NewSequenceParams) (*Sequence, error) {
99
100
101
	s.ready.Wait()

	startTime := time.Now()
102
	ctx := s.model.Backend().NewContext()
103

104
	inputs, err := s.inputs(ctx, prompt, images)
105
106
107
108
109
110
111
	if err != nil {
		return nil, fmt.Errorf("failed to process inputs: %w", err)
	} else if len(inputs) == 0 {
		return nil, errors.New("no input provided")
	}

	if params.numKeep < 0 {
Jesse Gross's avatar
Jesse Gross committed
112
		params.numKeep = int32(len(inputs))
113
114
	}

115
116
117
	// Ensure that at least 1 input can be discarded during shift
	params.numKeep = min(params.numKeep, s.cache.numCtx-1)

Jesse Gross's avatar
Jesse Gross committed
118
119
	if int32(len(inputs)) > s.cache.numCtx {
		discard := int32(len(inputs)) - s.cache.numCtx
120
		newInputs := inputs[:params.numKeep]
121
122
123
		newInputs = append(newInputs, inputs[params.numKeep+discard:]...)

		slog.Warn("truncating input prompt", "limit", s.cache.numCtx, "prompt", len(inputs), "keep", params.numKeep, "new", len(newInputs))
124
		inputs = newInputs
125
126
	}

Jesse Gross's avatar
Jesse Gross committed
127
	// TODO(jessegross): Ingest cached history for grammar
128
129

	return &Sequence{
130
		ctx:                 ctx,
131
132
133
134
135
136
137
138
		inputs:              inputs,
		numPromptInputs:     len(inputs),
		startProcessingTime: startTime,
		numPredict:          params.numPredict,
		pendingResponses:    make([]string, 0),
		responses:           make(chan string, 100),
		quit:                make(chan bool, 1),
		embedding:           make(chan []float32, 1),
139
		sampler:             params.sampler,
140
141
142
143
144
145
146
147
		embeddingOnly:       params.embedding,
		stop:                params.stop,
		numKeep:             params.numKeep,
	}, nil
}

// inputs processes the prompt and images into a list of inputs
// by splitting the prompt on [img-<n>] tags, tokenizing text and
Jesse Gross's avatar
Jesse Gross committed
148
// decoding images
149
func (s *Server) inputs(ctx ml.Context, prompt string, images []llm.ImageData) ([]input.Input, error) {
150
	var inputs []input.Input
151
152
153
	var parts []string
	var matches [][]string

154
	multimodalProcessor, visionModel := s.model.(model.MultimodalProcessor)
155

156
157
158
159
160
161
162
163
164
	if visionModel {
		re := regexp.MustCompile(`\[img-(\d+)\]`)
		parts = re.Split(prompt, -1)
		matches = re.FindAllStringSubmatch(prompt, -1)
	} else {
		parts = []string{prompt}
	}

	postTokenize := false
165
166
	for i, part := range parts {
		// text - tokenize
167
		tokens, err := s.model.(model.TextProcessor).Encode(part, i == 0)
168
169
170
		if err != nil {
			return nil, err
		}
171

172
		for _, t := range tokens {
173
			inputs = append(inputs, input.Input{Token: t})
174
175
		}

Jesse Gross's avatar
Jesse Gross committed
176
		// image - decode and store
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
		if i < len(matches) {
			n, _ := strconv.Atoi(matches[i][1])

			imageIndex := -1
			for j := range images {
				if images[j].ID == n {
					imageIndex = j
					break
				}
			}

			if imageIndex < 0 {
				return nil, fmt.Errorf("invalid image index: %d", n)
			}

192
			imageEmbeddings, err := multimodalProcessor.EncodeMultimodal(ctx, images[imageIndex].Data)
Jesse Gross's avatar
Jesse Gross committed
193
194
195
196
			if err != nil {
				return nil, err
			}

197
198
199
200
			s.multimodalHash.Reset()
			_, _ = s.multimodalHash.Write(images[imageIndex].Data)
			imageHash := s.multimodalHash.Sum64()

201
			inputs = append(inputs, input.Input{Multimodal: imageEmbeddings, MultimodalHash: imageHash})
202
203
204
205
206
207
208
209
210
			postTokenize = true
		}
	}

	if visionModel && postTokenize {
		var err error
		inputs, err = multimodalProcessor.PostTokenize(ctx, inputs)
		if err != nil {
			return nil, err
211
212
213
214
215
216
217
		}
	}

	return inputs, nil
}

type Server struct {
218
219
220
221
222
	// is the server ready to process requests?
	// protects access to model and image
	ready sync.WaitGroup

	// loaded model
Jesse Gross's avatar
Jesse Gross committed
223
	model model.Model
224

225
	// status for external health reporting - loading, ready to serve, etc.
226
	status llm.ServerStatus
227
228
229
230
231
232
233
234

	// current progress on loading the model
	progress float32

	// number of simultaneous requests to handle
	parallel int

	// maximum number of elements in a batch (per sequence)
235
	// TODO (jmorganca): make this n_batch
236
237
	batchSize int

238
239
240
241
242
243
244
245
	// protects access to everything below this line
	// this is context state needed for decoding
	mu sync.Mutex

	// indicates that data is ready for processing
	cond *sync.Cond

	// the list of simultaneous sequences being evaluated
246
247
	seqs []*Sequence

248
249
250
251
	// seqs can have a maximum of parallel entries, which
	// is enfoced by seqSem
	seqsSem *semaphore.Weighted

252
253
254
	// KV cache
	cache *InputCache

255
256
257
	// multimodalHash generates hashes for comparing equality
	// of non-text data
	multimodalHash maphash.Hash
258
259
260
261
262
263

	// vocab is a llama.cpp vocab required for gammar-based
	// constrained generation (json mode, structured outputs)
	// TODO: this is temporary until Ollama sampling supports
	// constrained generation
	vocab *sample.Vocab
264
265
266
267
268
269
270
271
272
273
274
275
}

func (s *Server) allNil() bool {
	for _, item := range s.seqs {
		if item != nil {
			return false
		}
	}
	return true
}

func flushPending(seq *Sequence) bool {
276
277
278
279
280
281
282
283
284
285
286
	joined := strings.Join(seq.pendingResponses, "")
	seq.pendingResponses = []string{}

	// Check if there are any partial UTF-8 characters remaining.
	// We already check and queue as we are generating but some may
	// still make it here:
	// - Sequence is ending, e.g. generation limit has been hit
	// - Invalid characters in the middle of a string
	// This is a stricter check to ensure we never output invalid Unicode.
	for !utf8.ValidString(joined) {
		joined = joined[:len(joined)-1]
287
288
	}

289
290
291
292
293
294
295
296
297
298
	if len(joined) == 0 {
		return true
	}

	select {
	case seq.responses <- joined:
		return true
	case <-seq.quit:
		return false
	}
299
300
301
302
303
304
305
306
307
308
}

func (s *Server) removeSequence(seqIndex int, reason string) {
	seq := s.seqs[seqIndex]

	flushPending(seq)
	seq.doneReason = reason
	close(seq.responses)
	close(seq.embedding)
	seq.cache.InUse = false
309
	seq.ctx.Close()
310
	s.seqs[seqIndex] = nil
311
	s.seqsSem.Release(1)
312
313
314
315
316
317
318
319
320
321
}

func (s *Server) run(ctx context.Context) {
	s.ready.Wait()

	for {
		select {
		case <-ctx.Done():
			return
		default:
Jesse Gross's avatar
Jesse Gross committed
322
			err := s.processBatch()
323
324
325
			if err != nil {
				panic(err)
			}
326
327
328
329
		}
	}
}

Jesse Gross's avatar
Jesse Gross committed
330
func (s *Server) processBatch() error {
331
332
333
334
335
336
	s.mu.Lock()
	for s.allNil() {
		s.cond.Wait() // Wait until an item is added
	}
	defer s.mu.Unlock()

337
	var options input.Options
338

339
	for i, seq := range s.seqs {
340
341
342
343
344
		if seq == nil {
			continue
		}

		// if past the num predict limit
345
		if seq.numPredict > 0 && seq.numPredicted >= seq.numPredict {
346
			s.removeSequence(i, "limit")
347
348
349
			continue
		}

Jesse Gross's avatar
Jesse Gross committed
350
351
		if !s.cache.enabled {
			seq.inputs = append(seq.cache.Inputs, seq.inputs...)
352
			seq.cache.Inputs = []input.Input{}
Jesse Gross's avatar
Jesse Gross committed
353
354
		}

355
356
		batchSize := s.batchSize

357
		for j, inp := range seq.inputs {
Jesse Gross's avatar
Jesse Gross committed
358
			if int32(len(seq.cache.Inputs)+len(seq.pendingInputs)+1) > s.cache.numCtx {
359
360
361
362
363
				if len(seq.pendingInputs) == 0 {
					err := s.cache.ShiftCacheSlot(seq.cache, seq.numKeep)
					if err != nil {
						return err
					}
364
365
366
367
368
				} else {
					break
				}
			}

369
370
371
372
373
374
375
376
377
			// If we are required to put following inputs into a single batch then extend the
			// batch size. Since we are only extending the size the minimum amount possible, this
			// will cause a break if we have pending inputs.
			minBatch := 1 + inp.SameBatch
			if minBatch > batchSize {
				batchSize = minBatch
			}

			if len(seq.pendingInputs)+minBatch > batchSize {
378
379
				break
			}
Jesse Gross's avatar
Jesse Gross committed
380

381
382
383
			options.Inputs = append(options.Inputs, inp.Token)
			if inp.Multimodal != nil {
				options.Multimodal = append(options.Multimodal, input.MultimodalIndex{Index: len(options.Inputs) - 1, Multimodal: inp.Multimodal})
384
385
			}

Jesse Gross's avatar
Jesse Gross committed
386
387
388
389
			options.Positions = append(options.Positions, int32(len(seq.cache.Inputs)+len(seq.pendingInputs)))
			options.Sequences = append(options.Sequences, seq.cache.Id)

			seq.iBatch = len(options.Outputs)
390
			if j+1 == len(seq.inputs) {
Jesse Gross's avatar
Jesse Gross committed
391
392
				options.Outputs = append(options.Outputs, int32(len(options.Inputs)-1))
			}
393
			seq.pendingInputs = append(seq.pendingInputs, inp)
394
		}
395
396

		seq.inputs = seq.inputs[len(seq.pendingInputs):]
397
398
	}

Jesse Gross's avatar
Jesse Gross committed
399
	if len(options.Inputs) == 0 {
400
		return nil
401
402
	}

Jesse Gross's avatar
Jesse Gross committed
403
404
	ctx := s.model.Backend().NewContext()
	defer ctx.Close()
405

Jesse Gross's avatar
Jesse Gross committed
406
	modelOutput, err := model.Forward(ctx, s.model, options)
407
	if err != nil {
408
		return fmt.Errorf("failed to decode batch: %w", err)
409
410
	}

411
	logits := modelOutput.Floats()
412

413
414
415
416
417
	for i, seq := range s.seqs {
		if seq == nil {
			continue
		}

Jesse Gross's avatar
Jesse Gross committed
418
		// After calling Forward, pending inputs are now in the cache
419
420
		if len(seq.pendingInputs) > 0 {
			seq.cache.Inputs = append(seq.cache.Inputs, seq.pendingInputs...)
421
			seq.pendingInputs = []input.Input{}
422
423
		}

424
425
		// don't sample prompt processing
		if len(seq.inputs) != 0 {
Jesse Gross's avatar
Jesse Gross committed
426
427
428
			if !s.cache.enabled {
				return errors.New("caching disabled but unable to fit entire input in a batch")
			}
429
430
431
			continue
		}

Jesse Gross's avatar
Jesse Gross committed
432
433
		seq.numPredicted++
		if seq.numPredicted == 1 {
434
435
436
437
438
			seq.startGenerationTime = time.Now()
		}

		// if done processing the prompt, generate an embedding and return
		if seq.embeddingOnly {
Jesse Gross's avatar
Jesse Gross committed
439
			// TODO(jessegross): Embedding support
440
441
442
			slog.Warn("generation of embedding outputs not yet supported")
			s.removeSequence(i, "")
			continue
443
444
445
		}

		// sample a token
446
447
448
		vocabSize := len(logits) / len(options.Outputs)

		token, err := seq.sampler.Sample(logits[seq.iBatch*vocabSize : (seq.iBatch+1)*vocabSize])
Jesse Gross's avatar
Jesse Gross committed
449
		if err != nil {
450
			return fmt.Errorf("failed to sample token: %w", err)
Jesse Gross's avatar
Jesse Gross committed
451
		}
452
453

		// if it's an end of sequence token, break
Jesse Gross's avatar
Jesse Gross committed
454
		if s.model.(model.TextProcessor).Is(token, model.SpecialEOS) {
455
456
457
458
459
460
461
462
			// TODO (jmorganca): we should send this back
			// as it's important for the /api/generate context
			// seq.responses <- piece

			s.removeSequence(i, "stop")
			continue
		}

Jesse Gross's avatar
Jesse Gross committed
463
464
465
466
467
		piece, err := s.model.(model.TextProcessor).Decode([]int32{token})
		if err != nil {
			return err
		}

468
		seq.inputs = []input.Input{{Token: token}}
469
470
471
472

		seq.pendingResponses = append(seq.pendingResponses, piece)
		sequence := strings.Join(seq.pendingResponses, "")

Jesse Gross's avatar
Jesse Gross committed
473
		if ok, stop := common.FindStop(sequence, seq.stop); ok {
474
475
476
477
			slog.Debug("hit stop token", "pending", seq.pendingResponses, "stop", stop)

			var tokenTruncated bool
			origLen := len(seq.pendingResponses)
Jesse Gross's avatar
Jesse Gross committed
478
			seq.pendingResponses, tokenTruncated = common.TruncateStop(seq.pendingResponses, stop)
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
			newLen := len(seq.pendingResponses)

			// Update the cache based on the tokens that will be returned:
			// - We have 1 token more than is currently in the cache because
			// the last one generated wasn't submitted to Decode
			// - Remove any stop sequences that we stripped out
			// - If truncateStop removed a portion of a token, drop that
			// - As defense-in-depth, if truncatedToken didn't find a stop token
			// remove the extra one that we added to the cache len
			tokenLen := len(seq.cache.Inputs) + 1
			tokenLen -= origLen - newLen
			if tokenTruncated || origLen == newLen {
				tokenLen--
			}
			seq.cache.Inputs = seq.cache.Inputs[:tokenLen]
494
495
496
497
498

			s.removeSequence(i, "stop")
			continue
		}

Jesse Gross's avatar
Jesse Gross committed
499
		if common.ContainsStopSuffix(sequence, seq.stop) {
500
501
502
			continue
		}

Jesse Gross's avatar
Jesse Gross committed
503
		if common.IncompleteUnicode(sequence) {
504
505
506
507
508
509
510
			continue
		}

		if !flushPending(seq) {
			s.removeSequence(i, "connection")
		}
	}
511
512

	return nil
513
514
515
}

func (s *Server) completion(w http.ResponseWriter, r *http.Request) {
516
	var req llm.CompletionRequest
517
518
519
520
521
	if err := json.NewDecoder(r.Body).Decode(&req); err != nil {
		http.Error(w, "Bad request", http.StatusBadRequest)
		return
	}

522
523
524
525
526
	if req.Options == nil {
		opts := api.DefaultOptions()
		req.Options = &opts
	}

527
528
529
530
531
532
533
534
535
536
	// Set the headers to indicate streaming
	w.Header().Set("Content-Type", "application/json")
	w.Header().Set("Transfer-Encoding", "chunked")

	flusher, ok := w.(http.Flusher)
	if !ok {
		http.Error(w, "Streaming not supported", http.StatusInternalServerError)
		return
	}

537
538
539
540
541
542
543
544
545
546
	var grammar *sample.Grammar
	var err error
	if req.Grammar != "" {
		grammar, err = sample.NewGrammar(s.vocab, req.Grammar)
		if err != nil {
			http.Error(w, "failed to load model vocabulary required for format", http.StatusInternalServerError)
			return
		}
	}

547
	sampler := sample.NewSampler(
548
549
550
551
552
		req.Options.Temperature,
		req.Options.TopK,
		req.Options.TopP,
		req.Options.MinP,
		req.Options.Seed,
553
		grammar,
554
555
	)

556
	seq, err := s.NewSequence(req.Prompt, req.Images, NewSequenceParams{
557
558
559
		numPredict: req.Options.NumPredict,
		stop:       req.Options.Stop,
		numKeep:    int32(req.Options.NumKeep),
560
		sampler:    sampler,
Jesse Gross's avatar
Jesse Gross committed
561
		embedding:  false,
562
563
564
565
566
567
	})
	if err != nil {
		http.Error(w, fmt.Sprintf("Failed to create new sequence: %v", err), http.StatusInternalServerError)
		return
	}

568
	// Ensure there is a place to put the sequence, released when removed from s.seqs
569
	if err := s.seqsSem.Acquire(r.Context(), 1); err != nil {
570
571
572
573
574
		if errors.Is(err, context.Canceled) {
			slog.Info("aborting completion request due to client closing the connection")
		} else {
			slog.Error("Failed to acquire semaphore", "error", err)
		}
575
576
577
		return
	}

578
	s.mu.Lock()
579
	found := false
580
581
	for i, sq := range s.seqs {
		if sq == nil {
582
			seq.cache, seq.inputs, err = s.cache.LoadCacheSlot(seq.inputs, true)
583
584
585
586
587
			if err != nil {
				s.mu.Unlock()
				http.Error(w, fmt.Sprintf("Failed to load cache: %v", err), http.StatusInternalServerError)
				return
			}
588

589
590
			s.seqs[i] = seq
			s.cond.Signal()
591
			found = true
592
593
594
595
596
			break
		}
	}
	s.mu.Unlock()

597
598
599
600
601
	if !found {
		http.Error(w, "could not find an available sequence", http.StatusInternalServerError)
		return
	}

602
603
604
605
606
607
608
	for {
		select {
		case <-r.Context().Done():
			close(seq.quit)
			return
		case content, ok := <-seq.responses:
			if ok {
609
				if err := json.NewEncoder(w).Encode(&llm.CompletionResponse{
610
611
612
613
614
615
616
617
618
619
					Content: content,
				}); err != nil {
					http.Error(w, fmt.Sprintf("failed to encode response: %v", err), http.StatusInternalServerError)
					close(seq.quit)
					return
				}

				flusher.Flush()
			} else {
				// Send the final response
620
621
622
623
624
625
626
627
628
629
630
				doneReason := "stop"
				if seq.doneReason == "limit" {
					doneReason = "length"
				}
				if err := json.NewEncoder(w).Encode(&llm.CompletionResponse{
					Done:               true,
					DoneReason:         doneReason,
					PromptEvalCount:    seq.numPromptInputs,
					PromptEvalDuration: seq.startGenerationTime.Sub(seq.startProcessingTime),
					EvalCount:          seq.numPredicted,
					EvalDuration:       time.Since(seq.startGenerationTime),
631
632
633
634
635
636
637
638
639
640
641
642
				}); err != nil {
					http.Error(w, fmt.Sprintf("failed to encode final response: %v", err), http.StatusInternalServerError)
				}

				return
			}
		}
	}
}

func (s *Server) health(w http.ResponseWriter, r *http.Request) {
	w.Header().Set("Content-Type", "application/json")
643
644
	if err := json.NewEncoder(w).Encode(&llm.ServerStatusResponse{
		Status:   s.status,
645
646
647
648
649
650
		Progress: s.progress,
	}); err != nil {
		http.Error(w, fmt.Sprintf("failed to encode response: %v", err), http.StatusInternalServerError)
	}
}

651
652
653
654
655
656
657
658
659
660
661
type multiLPath []string

func (m *multiLPath) Set(value string) error {
	*m = append(*m, value)
	return nil
}

func (m *multiLPath) String() string {
	return strings.Join(*m, ", ")
}

662
663
func (s *Server) loadModel(
	mpath string,
664
	params ml.BackendParams,
665
	lpath multiLPath,
Jesse Gross's avatar
Jesse Gross committed
666
	parallel int,
667
	kvCacheType string,
Jesse Gross's avatar
Jesse Gross committed
668
	kvSize int,
669
670
	multiUserCache bool,
) {
671
	var err error
672
	s.model, err = model.New(mpath, params)
673
674
675
	if err != nil {
		panic(err)
	}
676

677
678
	s.vocab = sample.NewVocab(mpath)

Jesse Gross's avatar
Jesse Gross committed
679
	// TODO(jessegross): LoRA loading
680
	if lpath.String() != "" {
Jesse Gross's avatar
Jesse Gross committed
681
		panic("loras are not yet implemented")
682
683
	}

Jesse Gross's avatar
Jesse Gross committed
684
	s.cache, err = NewInputCache(s.model, kvCacheType, int32(kvSize), parallel, multiUserCache)
685
686
687
	if err != nil {
		panic(err)
	}
688

Jesse Gross's avatar
Jesse Gross committed
689
690
691
692
693
694
695
696
697
	if !s.cache.enabled && parallel > 1 {
		parallel = 1
		slog.Warn("model does not support caching, disabling parallel processing")
	}

	s.parallel = parallel
	s.seqs = make([]*Sequence, s.parallel)
	s.seqsSem = semaphore.NewWeighted(int64(s.parallel))

698
	s.status = llm.ServerStatusReady
699
700
701
	s.ready.Done()
}

702
703
704
705
706
func Execute(args []string) error {
	fs := flag.NewFlagSet("runner", flag.ExitOnError)
	mpath := fs.String("model", "", "Path to model binary file")
	parallel := fs.Int("parallel", 1, "Number of sequences to handle simultaneously")
	batchSize := fs.Int("batch-size", 512, "Batch size")
707
708
	numGPULayers := fs.Int("n-gpu-layers", 0, "Number of layers to offload to GPU")
	mainGPU := fs.Int("main-gpu", 0, "Main GPU")
709
	flashAttention := fs.Bool("flash-attn", false, "Enable flash attention")
710
711
712
	kvSize := fs.Int("ctx-size", 2048, "Context (or KV cache) size")
	kvCacheType := fs.String("kv-cache-type", "", "quantization type for KV cache (default: f16)")
	port := fs.Int("port", 8080, "Port to expose the server on")
713
	threads := fs.Int("threads", runtime.NumCPU(), "Number of threads to use during generation")
714
	verbose := fs.Bool("verbose", false, "verbose output (default: disabled)")
Jesse Gross's avatar
Jesse Gross committed
715
716
	_ = fs.Bool("no-mmap", false, "do not memory-map model (slower load but may reduce pageouts if not using mlock)")
	_ = fs.Bool("mlock", false, "force system to keep model in RAM rather than swapping or compressing")
717
	tensorSplit := fs.String("tensor-split", "", "fraction of the model to offload to each GPU, comma-separated list of proportions")
718
	multiUserCache := fs.Bool("multiuser-cache", false, "optimize input cache algorithm for multiple users")
719

720
	var lpaths multiLPath
721
	fs.Var(&lpaths, "lora", "Path to lora layer file (can be specified multiple times)")
722

723
724
725
726
727
728
	fs.Usage = func() {
		fmt.Fprintf(fs.Output(), "Runner usage\n")
		fs.PrintDefaults()
	}
	if err := fs.Parse(args); err != nil {
		return err
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
	}
	level := slog.LevelInfo
	if *verbose {
		level = slog.LevelDebug
	}
	handler := slog.NewTextHandler(os.Stderr, &slog.HandlerOptions{
		Level:     level,
		AddSource: true,
		ReplaceAttr: func(_ []string, attr slog.Attr) slog.Attr {
			if attr.Key == slog.SourceKey {
				source := attr.Value.Any().(*slog.Source)
				source.File = filepath.Base(source.File)
			}
			return attr
		},
	})
	slog.SetDefault(slog.New(handler))
Jesse Gross's avatar
Jesse Gross committed
746
	slog.Info("starting ollama engine")
747
748
749

	server := &Server{
		batchSize: *batchSize,
750
		status:    llm.ServerStatusLoadingModel,
751
752
	}

Jesse Gross's avatar
Jesse Gross committed
753
754
755
756
	// TODO(jessegross): Parameters that need to be implemented:
	//	no-mmap
	//	mlock

757
	var tensorSplitFloats []float32
758
	if *tensorSplit != "" {
759
760
761
		splits := strings.Split(*tensorSplit, ",")
		tensorSplitFloats = make([]float32, len(splits))
		for i, s := range splits {
762
			f, _ := strconv.ParseFloat(s, 32)
763
			tensorSplitFloats[i] = float32(f)
764
		}
765
766
767
	}

	params := ml.BackendParams{
768
769
770
771
772
		NumThreads:     *threads,
		NumGPULayers:   *numGPULayers,
		MainGPU:        *mainGPU,
		TensorSplit:    tensorSplitFloats,
		FlashAttention: *flashAttention,
773
	}
774
775

	server.ready.Add(1)
776
	go server.loadModel(*mpath, params, lpaths, *parallel, *kvCacheType, *kvSize, *multiUserCache)
777
778
779
780

	server.cond = sync.NewCond(&server.mu)

	ctx, cancel := context.WithCancel(context.Background())
Michael Yang's avatar
Michael Yang committed
781
782
	defer cancel()

783
784
785
786
787
788
	go server.run(ctx)

	addr := "127.0.0.1:" + strconv.Itoa(*port)
	listener, err := net.Listen("tcp", addr)
	if err != nil {
		fmt.Println("Listen error:", err)
789
		return err
790
791
792
793
	}
	defer listener.Close()

	mux := http.NewServeMux()
794
795
796
797
798
799
800
	// TODO: support embeddings
	mux.HandleFunc("POST /embedding", func(w http.ResponseWriter, r *http.Request) {
		http.Error(w, "this model does not support embeddings", http.StatusNotImplemented)
	})

	mux.HandleFunc("POST /completion", server.completion)
	mux.HandleFunc("GET /health", server.health)
801
802
803
804
805
806
807
808

	httpServer := http.Server{
		Handler: mux,
	}

	log.Println("Server listening on", addr)
	if err := httpServer.Serve(listener); err != nil {
		log.Fatal("server error:", err)
809
		return err
810
811
	}

812
	return nil
813
}