"vscode:/vscode.git/clone" did not exist on "e1eae1fd15ed8e125ddcd18d0193ae8529c0c309"
runner.go 21.2 KB
Newer Older
Jesse Gross's avatar
Jesse Gross committed
1
package ollamarunner
2
3
4
5
6
7
8

import (
	"context"
	"encoding/json"
	"errors"
	"flag"
	"fmt"
9
	"hash/maphash"
10
11
12
13
14
15
16
17
18
19
20
21
	"log"
	"log/slog"
	"net"
	"net/http"
	"os"
	"path/filepath"
	"regexp"
	"runtime"
	"strconv"
	"strings"
	"sync"
	"time"
22
	"unicode/utf8"
23

24
25
	"golang.org/x/sync/semaphore"

26
	"github.com/ollama/ollama/api"
27
	"github.com/ollama/ollama/llm"
28
	"github.com/ollama/ollama/ml"
Jesse Gross's avatar
Jesse Gross committed
29
	"github.com/ollama/ollama/model"
30
	"github.com/ollama/ollama/model/input"
Jesse Gross's avatar
Jesse Gross committed
31
32
33
34
	"github.com/ollama/ollama/runner/common"
	"github.com/ollama/ollama/sample"

	_ "github.com/ollama/ollama/model/models"
35
36
)

37
38
39
40
type contextList struct {
	list []ml.Context
}

41
type Sequence struct {
42
	// ctxs are used for allocating tensors that last the lifetime of the sequence, such as
43
	// multimodal embeddings
44
	ctxs *contextList
45

46
47
48
49
	// batch index
	iBatch int

	// prompt inputs left to evaluate
50
	inputs []input.Input
51

Jesse Gross's avatar
Jesse Gross committed
52
	// inputs that have been added to a batch but not yet submitted to Forward
53
	pendingInputs []input.Input
54

55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
	// tokens that have been generated but not returned yet (e.g. for stop sequences)
	pendingResponses []string

	// input cache being used by this sequence
	cache *InputCacheSlot

	// channel to send responses over
	responses chan string

	// channel to stop decoding (such as if the remote connection is closed)
	quit chan bool

	// number of tokens to predict
	numPredict int

70
71
	// sampler with transforms to run on generated logits
	sampler sample.Sampler
72
73
74
75
76
77
78
79

	// channel to send back the embedding if embedding only
	embedding chan []float32

	// stop sequences
	stop []string

	// number of inputs to keep at the beginning when shifting context window
Jesse Gross's avatar
Jesse Gross committed
80
	numKeep int32
81
82
83
84
85
86
87
88
89

	// true if an embedding are to be returned instead of text generation
	embeddingOnly bool

	doneReason string

	// Metrics
	startProcessingTime time.Time
	startGenerationTime time.Time
Jesse Gross's avatar
Jesse Gross committed
90
	numPredicted        int
91
92
93
94
	numPromptInputs     int
}

type NewSequenceParams struct {
Jesse Gross's avatar
Jesse Gross committed
95
96
97
	numPredict int
	stop       []string
	numKeep    int32
98
	sampler    sample.Sampler
Jesse Gross's avatar
Jesse Gross committed
99
	embedding  bool
100
101
}

102
func (s *Server) NewSequence(prompt string, images []llm.ImageData, params NewSequenceParams) (*Sequence, error) {
103
104
105
106
	s.ready.Wait()

	startTime := time.Now()

107
	inputs, ctxs, err := s.inputs(prompt, images)
108
109
110
111
112
113
114
	if err != nil {
		return nil, fmt.Errorf("failed to process inputs: %w", err)
	} else if len(inputs) == 0 {
		return nil, errors.New("no input provided")
	}

	if params.numKeep < 0 {
Jesse Gross's avatar
Jesse Gross committed
115
		params.numKeep = int32(len(inputs))
116
117
	}

118
119
120
	// TODO(jessegross): We should ensure that we always leave minBatch of context space to shift,
	// otherwise we might truncate or split the batch against the model's wishes

121
122
123
	// Ensure that at least 1 input can be discarded during shift
	params.numKeep = min(params.numKeep, s.cache.numCtx-1)

Jesse Gross's avatar
Jesse Gross committed
124
125
	if int32(len(inputs)) > s.cache.numCtx {
		discard := int32(len(inputs)) - s.cache.numCtx
126
		newInputs := inputs[:params.numKeep]
127
128
129
		newInputs = append(newInputs, inputs[params.numKeep+discard:]...)

		slog.Warn("truncating input prompt", "limit", s.cache.numCtx, "prompt", len(inputs), "keep", params.numKeep, "new", len(newInputs))
130
		inputs = newInputs
131
132
	}

Jesse Gross's avatar
Jesse Gross committed
133
	// TODO(jessegross): Ingest cached history for grammar
134
135

	return &Sequence{
136
		ctxs:                ctxs,
137
138
139
140
141
142
143
144
		inputs:              inputs,
		numPromptInputs:     len(inputs),
		startProcessingTime: startTime,
		numPredict:          params.numPredict,
		pendingResponses:    make([]string, 0),
		responses:           make(chan string, 100),
		quit:                make(chan bool, 1),
		embedding:           make(chan []float32, 1),
145
		sampler:             params.sampler,
146
147
148
149
150
151
152
153
		embeddingOnly:       params.embedding,
		stop:                params.stop,
		numKeep:             params.numKeep,
	}, nil
}

// inputs processes the prompt and images into a list of inputs
// by splitting the prompt on [img-<n>] tags, tokenizing text and
Jesse Gross's avatar
Jesse Gross committed
154
// decoding images
155
func (s *Server) inputs(prompt string, images []llm.ImageData) ([]input.Input, *contextList, error) {
156
	var inputs []input.Input
157
158
159
	var parts []string
	var matches [][]string

160
	multimodalProcessor, visionModel := s.model.(model.MultimodalProcessor)
161

162
163
164
165
166
167
168
169
	if visionModel {
		re := regexp.MustCompile(`\[img-(\d+)\]`)
		parts = re.Split(prompt, -1)
		matches = re.FindAllStringSubmatch(prompt, -1)
	} else {
		parts = []string{prompt}
	}

170
171
172
173
174
175
176
	var contexts contextList
	runtime.AddCleanup(&contexts, func(ctxs []ml.Context) {
		for _, ctx := range ctxs {
			ctx.Close()
		}
	}, contexts.list)

177
	postTokenize := false
178
179
	for i, part := range parts {
		// text - tokenize
180
		tokens, err := s.model.(model.TextProcessor).Encode(part, i == 0)
181
		if err != nil {
182
			return nil, nil, err
183
		}
184

185
		for _, t := range tokens {
186
			inputs = append(inputs, input.Input{Token: t})
187
188
		}

Jesse Gross's avatar
Jesse Gross committed
189
		// image - decode and store
190
191
192
193
194
195
196
197
198
199
200
201
		if i < len(matches) {
			n, _ := strconv.Atoi(matches[i][1])

			imageIndex := -1
			for j := range images {
				if images[j].ID == n {
					imageIndex = j
					break
				}
			}

			if imageIndex < 0 {
202
				return nil, nil, fmt.Errorf("invalid image index: %d", n)
203
204
			}

205
206
			ctx := s.model.Backend().NewContext()
			contexts.list = append(contexts.list, ctx)
207
			imageEmbeddings, err := multimodalProcessor.EncodeMultimodal(ctx, images[imageIndex].Data)
Jesse Gross's avatar
Jesse Gross committed
208
			if err != nil {
209
				return nil, nil, err
Jesse Gross's avatar
Jesse Gross committed
210
211
			}

212
213
214
215
			s.multimodalHash.Reset()
			_, _ = s.multimodalHash.Write(images[imageIndex].Data)
			imageHash := s.multimodalHash.Sum64()

216
			inputs = append(inputs, input.Input{Multimodal: imageEmbeddings, MultimodalHash: imageHash})
217
218
219
220
221
222
			postTokenize = true
		}
	}

	if visionModel && postTokenize {
		var err error
223
		inputs, err = multimodalProcessor.PostTokenize(inputs)
224
		if err != nil {
225
			return nil, nil, err
226
227
228
		}
	}

229
	return inputs, &contexts, nil
230
231
232
}

type Server struct {
233
234
235
236
237
	// is the server ready to process requests?
	// protects access to model and image
	ready sync.WaitGroup

	// loaded model
Jesse Gross's avatar
Jesse Gross committed
238
	model model.Model
239

240
	// status for external health reporting - loading, ready to serve, etc.
241
	status llm.ServerStatus
242
243
244
245
246
247
248
249

	// current progress on loading the model
	progress float32

	// number of simultaneous requests to handle
	parallel int

	// maximum number of elements in a batch (per sequence)
250
	// TODO (jmorganca): make this n_batch
251
252
	batchSize int

253
254
255
256
257
258
259
260
	// protects access to everything below this line
	// this is context state needed for decoding
	mu sync.Mutex

	// indicates that data is ready for processing
	cond *sync.Cond

	// the list of simultaneous sequences being evaluated
261
262
	seqs []*Sequence

263
264
265
266
	// seqs can have a maximum of parallel entries, which
	// is enfoced by seqSem
	seqsSem *semaphore.Weighted

267
268
269
	// KV cache
	cache *InputCache

270
271
272
	// multimodalHash generates hashes for comparing equality
	// of non-text data
	multimodalHash maphash.Hash
273
274
275
276
277
278

	// vocab is a llama.cpp vocab required for gammar-based
	// constrained generation (json mode, structured outputs)
	// TODO: this is temporary until Ollama sampling supports
	// constrained generation
	vocab *sample.Vocab
279
280
281
282
283
284
285
286
287
288
289
290
}

func (s *Server) allNil() bool {
	for _, item := range s.seqs {
		if item != nil {
			return false
		}
	}
	return true
}

func flushPending(seq *Sequence) bool {
291
292
293
294
295
296
297
298
299
300
301
	joined := strings.Join(seq.pendingResponses, "")
	seq.pendingResponses = []string{}

	// Check if there are any partial UTF-8 characters remaining.
	// We already check and queue as we are generating but some may
	// still make it here:
	// - Sequence is ending, e.g. generation limit has been hit
	// - Invalid characters in the middle of a string
	// This is a stricter check to ensure we never output invalid Unicode.
	for !utf8.ValidString(joined) {
		joined = joined[:len(joined)-1]
302
303
	}

304
305
306
307
308
309
310
311
312
313
	if len(joined) == 0 {
		return true
	}

	select {
	case seq.responses <- joined:
		return true
	case <-seq.quit:
		return false
	}
314
315
316
317
318
319
320
321
322
323
324
}

func (s *Server) removeSequence(seqIndex int, reason string) {
	seq := s.seqs[seqIndex]

	flushPending(seq)
	seq.doneReason = reason
	close(seq.responses)
	close(seq.embedding)
	seq.cache.InUse = false
	s.seqs[seqIndex] = nil
325
	s.seqsSem.Release(1)
326
327
328
329
330
331
332
333
334
335
}

func (s *Server) run(ctx context.Context) {
	s.ready.Wait()

	for {
		select {
		case <-ctx.Done():
			return
		default:
Jesse Gross's avatar
Jesse Gross committed
336
			err := s.processBatch()
337
338
339
			if err != nil {
				panic(err)
			}
340
341
342
343
		}
	}
}

Jesse Gross's avatar
Jesse Gross committed
344
func (s *Server) processBatch() error {
345
346
347
348
349
350
	s.mu.Lock()
	for s.allNil() {
		s.cond.Wait() // Wait until an item is added
	}
	defer s.mu.Unlock()

351
	var batchInputs []int32
Jesse Gross's avatar
Jesse Gross committed
352
	var batch input.Batch
353

354
	for i, seq := range s.seqs {
355
356
357
358
359
		if seq == nil {
			continue
		}

		// if past the num predict limit
360
		if seq.numPredict > 0 && seq.numPredicted >= seq.numPredict {
361
			s.removeSequence(i, "limit")
362
363
364
			continue
		}

Jesse Gross's avatar
Jesse Gross committed
365
366
		if !s.cache.enabled {
			seq.inputs = append(seq.cache.Inputs, seq.inputs...)
367
			seq.cache.Inputs = []input.Input{}
Jesse Gross's avatar
Jesse Gross committed
368
369
		}

370
371
		batchSize := s.batchSize

372
		for j, inp := range seq.inputs {
373
374
375
376
377
378
379
380
381
			// If we are required to put following inputs into a single batch then extend the
			// batch size. Since we are only extending the size the minimum amount possible, this
			// will cause a break if we have pending inputs.
			minBatch := 1 + inp.SameBatch
			if minBatch > batchSize {
				batchSize = minBatch
			}

			if len(seq.pendingInputs)+minBatch > batchSize {
382
383
				break
			}
Jesse Gross's avatar
Jesse Gross committed
384

385
386
387
388
389
390
391
392
393
394
395
396
397
398
			// If the sum of our working set (already processed tokens, tokens we added to this
			// batch, required following tokens) exceeds the context size, then trigger a shift
			// now so we don't have to do one later when we can't break the batch.
			if int32(len(seq.cache.Inputs)+len(seq.pendingInputs)+minBatch) > s.cache.numCtx {
				if len(seq.pendingInputs) != 0 {
					break
				}

				err := s.cache.ShiftCacheSlot(seq.cache, seq.numKeep)
				if err != nil {
					return err
				}
			}

399
			batchInputs = append(batchInputs, inp.Token)
400
			if inp.Multimodal != nil {
401
				batch.Multimodal = append(batch.Multimodal, input.MultimodalIndex{Index: len(batchInputs) - 1, Multimodal: inp.Multimodal})
402
403
			}

Jesse Gross's avatar
Jesse Gross committed
404
405
			batch.Positions = append(batch.Positions, int32(len(seq.cache.Inputs)+len(seq.pendingInputs)))
			batch.Sequences = append(batch.Sequences, seq.cache.Id)
Jesse Gross's avatar
Jesse Gross committed
406

Jesse Gross's avatar
Jesse Gross committed
407
			seq.iBatch = len(batch.Outputs)
408
			if j+1 == len(seq.inputs) {
409
				batch.Outputs = append(batch.Outputs, int32(len(batchInputs)-1))
Jesse Gross's avatar
Jesse Gross committed
410
			}
411
			seq.pendingInputs = append(seq.pendingInputs, inp)
412
		}
413
414

		seq.inputs = seq.inputs[len(seq.pendingInputs):]
415
416
	}

417
	if len(batchInputs) == 0 {
418
		return nil
419
420
	}

Jesse Gross's avatar
Jesse Gross committed
421
422
	ctx := s.model.Backend().NewContext()
	defer ctx.Close()
423

424
	modelOutput, err := model.Forward(ctx, s.model, batchInputs, batch)
425
	if err != nil {
426
		return fmt.Errorf("failed to decode batch: %w", err)
427
428
	}

429
	logits := modelOutput.Floats()
430

431
432
433
434
435
	for i, seq := range s.seqs {
		if seq == nil {
			continue
		}

Jesse Gross's avatar
Jesse Gross committed
436
		// After calling Forward, pending inputs are now in the cache
437
438
		if len(seq.pendingInputs) > 0 {
			seq.cache.Inputs = append(seq.cache.Inputs, seq.pendingInputs...)
439
			seq.pendingInputs = []input.Input{}
440
441
		}

442
443
		// don't sample prompt processing
		if len(seq.inputs) != 0 {
Jesse Gross's avatar
Jesse Gross committed
444
445
446
			if !s.cache.enabled {
				return errors.New("caching disabled but unable to fit entire input in a batch")
			}
447
448
449
			continue
		}

Jesse Gross's avatar
Jesse Gross committed
450
451
		seq.numPredicted++
		if seq.numPredicted == 1 {
452
453
454
455
456
			seq.startGenerationTime = time.Now()
		}

		// if done processing the prompt, generate an embedding and return
		if seq.embeddingOnly {
Jesse Gross's avatar
Jesse Gross committed
457
			// TODO(jessegross): Embedding support
458
459
460
			slog.Warn("generation of embedding outputs not yet supported")
			s.removeSequence(i, "")
			continue
461
462
463
		}

		// sample a token
Jesse Gross's avatar
Jesse Gross committed
464
		vocabSize := len(logits) / len(batch.Outputs)
465
466

		token, err := seq.sampler.Sample(logits[seq.iBatch*vocabSize : (seq.iBatch+1)*vocabSize])
Jesse Gross's avatar
Jesse Gross committed
467
		if err != nil {
468
			return fmt.Errorf("failed to sample token: %w", err)
Jesse Gross's avatar
Jesse Gross committed
469
		}
470
471

		// if it's an end of sequence token, break
Jesse Gross's avatar
Jesse Gross committed
472
		if s.model.(model.TextProcessor).Is(token, model.SpecialEOS) {
473
474
475
476
477
478
479
480
			// TODO (jmorganca): we should send this back
			// as it's important for the /api/generate context
			// seq.responses <- piece

			s.removeSequence(i, "stop")
			continue
		}

Jesse Gross's avatar
Jesse Gross committed
481
482
483
484
485
		piece, err := s.model.(model.TextProcessor).Decode([]int32{token})
		if err != nil {
			return err
		}

486
		seq.inputs = []input.Input{{Token: token}}
487
488
489
490

		seq.pendingResponses = append(seq.pendingResponses, piece)
		sequence := strings.Join(seq.pendingResponses, "")

Jesse Gross's avatar
Jesse Gross committed
491
		if ok, stop := common.FindStop(sequence, seq.stop); ok {
492
493
494
495
			slog.Debug("hit stop token", "pending", seq.pendingResponses, "stop", stop)

			var tokenTruncated bool
			origLen := len(seq.pendingResponses)
Jesse Gross's avatar
Jesse Gross committed
496
			seq.pendingResponses, tokenTruncated = common.TruncateStop(seq.pendingResponses, stop)
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
			newLen := len(seq.pendingResponses)

			// Update the cache based on the tokens that will be returned:
			// - We have 1 token more than is currently in the cache because
			// the last one generated wasn't submitted to Decode
			// - Remove any stop sequences that we stripped out
			// - If truncateStop removed a portion of a token, drop that
			// - As defense-in-depth, if truncatedToken didn't find a stop token
			// remove the extra one that we added to the cache len
			tokenLen := len(seq.cache.Inputs) + 1
			tokenLen -= origLen - newLen
			if tokenTruncated || origLen == newLen {
				tokenLen--
			}
			seq.cache.Inputs = seq.cache.Inputs[:tokenLen]
512
513
514
515
516

			s.removeSequence(i, "stop")
			continue
		}

Jesse Gross's avatar
Jesse Gross committed
517
		if common.ContainsStopSuffix(sequence, seq.stop) {
518
519
520
			continue
		}

Jesse Gross's avatar
Jesse Gross committed
521
		if common.IncompleteUnicode(sequence) {
522
523
524
525
526
527
528
			continue
		}

		if !flushPending(seq) {
			s.removeSequence(i, "connection")
		}
	}
529
530

	return nil
531
532
533
}

func (s *Server) completion(w http.ResponseWriter, r *http.Request) {
534
	var req llm.CompletionRequest
535
536
537
538
539
	if err := json.NewDecoder(r.Body).Decode(&req); err != nil {
		http.Error(w, "Bad request", http.StatusBadRequest)
		return
	}

540
541
542
543
544
	if req.Options == nil {
		opts := api.DefaultOptions()
		req.Options = &opts
	}

545
546
547
548
549
550
551
552
553
554
	// Set the headers to indicate streaming
	w.Header().Set("Content-Type", "application/json")
	w.Header().Set("Transfer-Encoding", "chunked")

	flusher, ok := w.(http.Flusher)
	if !ok {
		http.Error(w, "Streaming not supported", http.StatusInternalServerError)
		return
	}

555
556
557
558
559
560
561
562
563
564
	var grammar *sample.Grammar
	var err error
	if req.Grammar != "" {
		grammar, err = sample.NewGrammar(s.vocab, req.Grammar)
		if err != nil {
			http.Error(w, "failed to load model vocabulary required for format", http.StatusInternalServerError)
			return
		}
	}

565
	sampler := sample.NewSampler(
566
567
568
569
570
		req.Options.Temperature,
		req.Options.TopK,
		req.Options.TopP,
		req.Options.MinP,
		req.Options.Seed,
571
		grammar,
572
573
	)

574
	seq, err := s.NewSequence(req.Prompt, req.Images, NewSequenceParams{
575
576
577
		numPredict: req.Options.NumPredict,
		stop:       req.Options.Stop,
		numKeep:    int32(req.Options.NumKeep),
578
		sampler:    sampler,
Jesse Gross's avatar
Jesse Gross committed
579
		embedding:  false,
580
581
582
583
584
585
	})
	if err != nil {
		http.Error(w, fmt.Sprintf("Failed to create new sequence: %v", err), http.StatusInternalServerError)
		return
	}

586
	// Ensure there is a place to put the sequence, released when removed from s.seqs
587
	if err := s.seqsSem.Acquire(r.Context(), 1); err != nil {
588
589
590
591
592
		if errors.Is(err, context.Canceled) {
			slog.Info("aborting completion request due to client closing the connection")
		} else {
			slog.Error("Failed to acquire semaphore", "error", err)
		}
593
594
595
		return
	}

596
	s.mu.Lock()
597
	found := false
598
599
	for i, sq := range s.seqs {
		if sq == nil {
600
			seq.cache, seq.inputs, err = s.cache.LoadCacheSlot(seq.inputs)
601
602
603
604
605
			if err != nil {
				s.mu.Unlock()
				http.Error(w, fmt.Sprintf("Failed to load cache: %v", err), http.StatusInternalServerError)
				return
			}
606

607
608
			s.seqs[i] = seq
			s.cond.Signal()
609
			found = true
610
611
612
613
614
			break
		}
	}
	s.mu.Unlock()

615
616
617
618
619
	if !found {
		http.Error(w, "could not find an available sequence", http.StatusInternalServerError)
		return
	}

620
621
622
623
624
625
626
	for {
		select {
		case <-r.Context().Done():
			close(seq.quit)
			return
		case content, ok := <-seq.responses:
			if ok {
627
				if err := json.NewEncoder(w).Encode(&llm.CompletionResponse{
628
629
630
631
632
633
634
635
636
637
					Content: content,
				}); err != nil {
					http.Error(w, fmt.Sprintf("failed to encode response: %v", err), http.StatusInternalServerError)
					close(seq.quit)
					return
				}

				flusher.Flush()
			} else {
				// Send the final response
638
639
640
641
642
643
644
645
646
647
648
				doneReason := "stop"
				if seq.doneReason == "limit" {
					doneReason = "length"
				}
				if err := json.NewEncoder(w).Encode(&llm.CompletionResponse{
					Done:               true,
					DoneReason:         doneReason,
					PromptEvalCount:    seq.numPromptInputs,
					PromptEvalDuration: seq.startGenerationTime.Sub(seq.startProcessingTime),
					EvalCount:          seq.numPredicted,
					EvalDuration:       time.Since(seq.startGenerationTime),
649
650
651
652
653
654
655
656
657
658
659
660
				}); err != nil {
					http.Error(w, fmt.Sprintf("failed to encode final response: %v", err), http.StatusInternalServerError)
				}

				return
			}
		}
	}
}

func (s *Server) health(w http.ResponseWriter, r *http.Request) {
	w.Header().Set("Content-Type", "application/json")
661
662
	if err := json.NewEncoder(w).Encode(&llm.ServerStatusResponse{
		Status:   s.status,
663
664
665
666
667
668
		Progress: s.progress,
	}); err != nil {
		http.Error(w, fmt.Sprintf("failed to encode response: %v", err), http.StatusInternalServerError)
	}
}

669
670
671
672
673
674
675
676
677
678
679
type multiLPath []string

func (m *multiLPath) Set(value string) error {
	*m = append(*m, value)
	return nil
}

func (m *multiLPath) String() string {
	return strings.Join(*m, ", ")
}

680
func (s *Server) loadModel(
681
	ctx context.Context,
682
	mpath string,
683
	params ml.BackendParams,
684
	lpath multiLPath,
Jesse Gross's avatar
Jesse Gross committed
685
	parallel int,
686
	kvCacheType string,
Jesse Gross's avatar
Jesse Gross committed
687
	kvSize int,
688
689
	multiUserCache bool,
) {
690
	var err error
691
	s.model, err = model.New(ctx, mpath, params)
692
693
694
	if err != nil {
		panic(err)
	}
695

696
697
	s.vocab = sample.NewVocab(mpath)

Jesse Gross's avatar
Jesse Gross committed
698
	// TODO(jessegross): LoRA loading
699
	if lpath.String() != "" {
Jesse Gross's avatar
Jesse Gross committed
700
		panic("loras are not yet implemented")
701
702
	}

703
	s.cache, err = NewInputCache(s.model, kvCacheType, int32(kvSize), parallel, s.batchSize, multiUserCache)
704
705
706
	if err != nil {
		panic(err)
	}
707

Jesse Gross's avatar
Jesse Gross committed
708
709
710
711
712
713
714
715
716
	if !s.cache.enabled && parallel > 1 {
		parallel = 1
		slog.Warn("model does not support caching, disabling parallel processing")
	}

	s.parallel = parallel
	s.seqs = make([]*Sequence, s.parallel)
	s.seqsSem = semaphore.NewWeighted(int64(s.parallel))

717
	s.status = llm.ServerStatusReady
718
719
720
	s.ready.Done()
}

721
722
723
724
725
func Execute(args []string) error {
	fs := flag.NewFlagSet("runner", flag.ExitOnError)
	mpath := fs.String("model", "", "Path to model binary file")
	parallel := fs.Int("parallel", 1, "Number of sequences to handle simultaneously")
	batchSize := fs.Int("batch-size", 512, "Batch size")
726
727
	numGPULayers := fs.Int("n-gpu-layers", 0, "Number of layers to offload to GPU")
	mainGPU := fs.Int("main-gpu", 0, "Main GPU")
728
	flashAttention := fs.Bool("flash-attn", false, "Enable flash attention")
729
730
731
	kvSize := fs.Int("ctx-size", 2048, "Context (or KV cache) size")
	kvCacheType := fs.String("kv-cache-type", "", "quantization type for KV cache (default: f16)")
	port := fs.Int("port", 8080, "Port to expose the server on")
732
	threads := fs.Int("threads", runtime.NumCPU(), "Number of threads to use during generation")
733
	verbose := fs.Bool("verbose", false, "verbose output (default: disabled)")
Jesse Gross's avatar
Jesse Gross committed
734
735
	_ = fs.Bool("no-mmap", false, "do not memory-map model (slower load but may reduce pageouts if not using mlock)")
	_ = fs.Bool("mlock", false, "force system to keep model in RAM rather than swapping or compressing")
736
	tensorSplit := fs.String("tensor-split", "", "fraction of the model to offload to each GPU, comma-separated list of proportions")
737
	multiUserCache := fs.Bool("multiuser-cache", false, "optimize input cache algorithm for multiple users")
738

739
	var lpaths multiLPath
740
	fs.Var(&lpaths, "lora", "Path to lora layer file (can be specified multiple times)")
741

742
743
744
745
746
747
	fs.Usage = func() {
		fmt.Fprintf(fs.Output(), "Runner usage\n")
		fs.PrintDefaults()
	}
	if err := fs.Parse(args); err != nil {
		return err
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
	}
	level := slog.LevelInfo
	if *verbose {
		level = slog.LevelDebug
	}
	handler := slog.NewTextHandler(os.Stderr, &slog.HandlerOptions{
		Level:     level,
		AddSource: true,
		ReplaceAttr: func(_ []string, attr slog.Attr) slog.Attr {
			if attr.Key == slog.SourceKey {
				source := attr.Value.Any().(*slog.Source)
				source.File = filepath.Base(source.File)
			}
			return attr
		},
	})
	slog.SetDefault(slog.New(handler))
Jesse Gross's avatar
Jesse Gross committed
765
	slog.Info("starting ollama engine")
766
767
768

	server := &Server{
		batchSize: *batchSize,
769
		status:    llm.ServerStatusLoadingModel,
770
771
	}

Jesse Gross's avatar
Jesse Gross committed
772
773
774
775
	// TODO(jessegross): Parameters that need to be implemented:
	//	no-mmap
	//	mlock

776
	var tensorSplitFloats []float32
777
	if *tensorSplit != "" {
778
779
780
		splits := strings.Split(*tensorSplit, ",")
		tensorSplitFloats = make([]float32, len(splits))
		for i, s := range splits {
781
			f, _ := strconv.ParseFloat(s, 32)
782
			tensorSplitFloats[i] = float32(f)
783
		}
784
785
786
	}

	params := ml.BackendParams{
787
788
789
		Progress: func(progress float32) {
			server.progress = progress
		},
790
791
792
793
794
		NumThreads:     *threads,
		NumGPULayers:   *numGPULayers,
		MainGPU:        *mainGPU,
		TensorSplit:    tensorSplitFloats,
		FlashAttention: *flashAttention,
795
	}
796
797
798

	server.ready.Add(1)
	ctx, cancel := context.WithCancel(context.Background())
Michael Yang's avatar
Michael Yang committed
799
800
	defer cancel()

801
802
803
804
	go server.loadModel(ctx, *mpath, params, lpaths, *parallel, *kvCacheType, *kvSize, *multiUserCache)

	server.cond = sync.NewCond(&server.mu)

805
806
807
808
809
810
	go server.run(ctx)

	addr := "127.0.0.1:" + strconv.Itoa(*port)
	listener, err := net.Listen("tcp", addr)
	if err != nil {
		fmt.Println("Listen error:", err)
811
		return err
812
813
814
815
	}
	defer listener.Close()

	mux := http.NewServeMux()
816
817
818
819
820
821
822
	// TODO: support embeddings
	mux.HandleFunc("POST /embedding", func(w http.ResponseWriter, r *http.Request) {
		http.Error(w, "this model does not support embeddings", http.StatusNotImplemented)
	})

	mux.HandleFunc("POST /completion", server.completion)
	mux.HandleFunc("GET /health", server.health)
823
824
825
826
827
828
829
830

	httpServer := http.Server{
		Handler: mux,
	}

	log.Println("Server listening on", addr)
	if err := httpServer.Serve(listener); err != nil {
		log.Fatal("server error:", err)
831
		return err
832
833
	}

834
	return nil
835
}