"vscode:/vscode.git/clone" did not exist on "92d757236a4c7d74d46ae2a027a92115b5e98c7c"
runner.go 35.5 KB
Newer Older
Jesse Gross's avatar
Jesse Gross committed
1
package ollamarunner
2
3

import (
4
	"bytes"
5
6
7
8
9
	"context"
	"encoding/json"
	"errors"
	"flag"
	"fmt"
10
	"hash/maphash"
11
	"image"
12
13
14
15
16
	"log"
	"log/slog"
	"net"
	"net/http"
	"os"
Jesse Gross's avatar
Jesse Gross committed
17
	"reflect"
18
19
20
21
22
23
	"regexp"
	"runtime"
	"strconv"
	"strings"
	"sync"
	"time"
24
	"unicode/utf8"
25

26
	"golang.org/x/image/bmp"
27
28
	"golang.org/x/sync/semaphore"

29
	"github.com/ollama/ollama/api"
30
	"github.com/ollama/ollama/envconfig"
31
	"github.com/ollama/ollama/llm"
32
	"github.com/ollama/ollama/logutil"
33
	"github.com/ollama/ollama/ml"
Michael Yang's avatar
Michael Yang committed
34
	"github.com/ollama/ollama/ml/nn/pooling"
Jesse Gross's avatar
Jesse Gross committed
35
	"github.com/ollama/ollama/model"
36
	"github.com/ollama/ollama/model/input"
Jesse Gross's avatar
Jesse Gross committed
37
38
39
40
	"github.com/ollama/ollama/runner/common"
	"github.com/ollama/ollama/sample"

	_ "github.com/ollama/ollama/model/models"
41
42
43
)

type Sequence struct {
44
	// ctxs are used for allocating tensors that last the lifetime of the sequence, such as
45
	// multimodal embeddings
46
	ctxs []ml.Context
47

48
49
50
	// mmStore holds multimodal embeddings to mange memory and enable splitting across batches
	mmStore multimodalStore

51
52
53
54
	// batch index
	iBatch int

	// prompt inputs left to evaluate
55
	inputs []*input.Input
56

Jesse Gross's avatar
Jesse Gross committed
57
	// inputs that have been added to a batch but not yet submitted to Forward
58
	pendingInputs []*input.Input
59

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
	// tokens that have been generated but not returned yet (e.g. for stop sequences)
	pendingResponses []string

	// input cache being used by this sequence
	cache *InputCacheSlot

	// channel to send responses over
	responses chan string

	// channel to stop decoding (such as if the remote connection is closed)
	quit chan bool

	// number of tokens to predict
	numPredict int

75
76
	// sampler with transforms to run on generated logits
	sampler sample.Sampler
77
78
79
80
81
82
83
84

	// channel to send back the embedding if embedding only
	embedding chan []float32

	// stop sequences
	stop []string

	// number of inputs to keep at the beginning when shifting context window
Jesse Gross's avatar
Jesse Gross committed
85
	numKeep int32
86
87
88
89

	// true if an embedding are to be returned instead of text generation
	embeddingOnly bool

90
	doneReason llm.DoneReason
91
92
93
94

	// Metrics
	startProcessingTime time.Time
	startGenerationTime time.Time
Jesse Gross's avatar
Jesse Gross committed
95
	numPredicted        int
96
97
98
99
	numPromptInputs     int
}

type NewSequenceParams struct {
Jesse Gross's avatar
Jesse Gross committed
100
101
102
	numPredict int
	stop       []string
	numKeep    int32
103
	sampler    sample.Sampler
Jesse Gross's avatar
Jesse Gross committed
104
	embedding  bool
105
106
}

107
func (s *Server) NewSequence(prompt string, images []llm.ImageData, params NewSequenceParams) (*Sequence, error) {
108
109
110
111
	s.ready.Wait()

	startTime := time.Now()

112
	inputs, ctxs, mmStore, err := s.inputs(prompt, images)
113
114
115
116
117
118
119
	if err != nil {
		return nil, fmt.Errorf("failed to process inputs: %w", err)
	} else if len(inputs) == 0 {
		return nil, errors.New("no input provided")
	}

	if params.numKeep < 0 {
Jesse Gross's avatar
Jesse Gross committed
120
		params.numKeep = int32(len(inputs))
121
122
	}

123
124
125
	// Ensure that at least 1 input can be discarded during shift
	params.numKeep = min(params.numKeep, s.cache.numCtx-1)

Jesse Gross's avatar
Jesse Gross committed
126
127
	if int32(len(inputs)) > s.cache.numCtx {
		discard := int32(len(inputs)) - s.cache.numCtx
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
		promptStart := params.numKeep + discard

		// If we need to truncate in the middle of a unbreakable batch, remove the entire batch
		sameBatch := 0
		for i, inp := range inputs {
			if sameBatch > 0 {
				sameBatch--

				if promptStart == int32(i) {
					promptStart++
				}
			} else if promptStart == int32(i) {
				break
			}

			if inp.SameBatch != 0 {
				if int32(i) < params.numKeep {
					return nil, fmt.Errorf("SameBatch may not be specified within numKeep (index: %v numKeep: %v SameBatch: %v)", i, params.numKeep, inp.SameBatch)
				}

				sameBatch = inp.SameBatch
			}
		}

		if promptStart >= int32(len(inputs)) {
			return nil, errors.New("entire prompt removed by truncation")
		}

156
		newInputs := inputs[:params.numKeep]
157
		newInputs = append(newInputs, inputs[promptStart:]...)
158
159

		slog.Warn("truncating input prompt", "limit", s.cache.numCtx, "prompt", len(inputs), "keep", params.numKeep, "new", len(newInputs))
160
		inputs = newInputs
161
162
	}

Jesse Gross's avatar
Jesse Gross committed
163
	// TODO(jessegross): Ingest cached history for grammar
164
165

	return &Sequence{
166
		ctxs:                ctxs,
167
		mmStore:             mmStore,
168
169
170
171
172
173
174
175
		inputs:              inputs,
		numPromptInputs:     len(inputs),
		startProcessingTime: startTime,
		numPredict:          params.numPredict,
		pendingResponses:    make([]string, 0),
		responses:           make(chan string, 100),
		quit:                make(chan bool, 1),
		embedding:           make(chan []float32, 1),
176
		sampler:             params.sampler,
177
178
179
180
181
182
183
184
		embeddingOnly:       params.embedding,
		stop:                params.stop,
		numKeep:             params.numKeep,
	}, nil
}

// inputs processes the prompt and images into a list of inputs
// by splitting the prompt on [img-<n>] tags, tokenizing text and
Jesse Gross's avatar
Jesse Gross committed
185
// decoding images
186
187
func (s *Server) inputs(prompt string, images []llm.ImageData) ([]*input.Input, []ml.Context, multimodalStore, error) {
	var inputs []*input.Input
188
	var ctxs []ml.Context
189
	var mmStore multimodalStore
190

191
192
193
	var parts []string
	var matches [][]string

194
	multimodalProcessor, visionModel := s.model.(model.MultimodalProcessor)
195

196
197
198
199
	if visionModel {
		re := regexp.MustCompile(`\[img-(\d+)\]`)
		parts = re.Split(prompt, -1)
		matches = re.FindAllStringSubmatch(prompt, -1)
200
		mmStore = newMultimodalStore()
201
202
203
204
205
	} else {
		parts = []string{prompt}
	}

	postTokenize := false
206
207
	for i, part := range parts {
		// text - tokenize
208
		tokens, err := s.model.(model.TextProcessor).Encode(part, i == 0)
209
		if err != nil {
210
			return nil, nil, nil, err
211
		}
212

213
		for _, t := range tokens {
214
			inputs = append(inputs, &input.Input{Token: t})
215
216
		}

Jesse Gross's avatar
Jesse Gross committed
217
		// image - decode and store
218
219
220
221
222
223
224
225
226
227
228
229
		if i < len(matches) {
			n, _ := strconv.Atoi(matches[i][1])

			imageIndex := -1
			for j := range images {
				if images[j].ID == n {
					imageIndex = j
					break
				}
			}

			if imageIndex < 0 {
230
				return nil, nil, nil, fmt.Errorf("invalid image index: %d", n)
231
232
			}

233
			ctx := s.model.Backend().NewContext()
234
235
			runtime.SetFinalizer(ctx, func(c ml.Context) { c.Close() })
			ctxs = append(ctxs, ctx)
236
			imageEmbeddings, err := multimodalProcessor.EncodeMultimodal(ctx, images[imageIndex].Data)
Jesse Gross's avatar
Jesse Gross committed
237
			if err != nil {
238
				return nil, nil, nil, err
Jesse Gross's avatar
Jesse Gross committed
239
240
			}

241
242
243
244
			s.multimodalHash.Reset()
			_, _ = s.multimodalHash.Write(images[imageIndex].Data)
			imageHash := s.multimodalHash.Sum64()

245
246
			mmStore.addMultimodal(imageEmbeddings)

247
			inputs = append(inputs, &input.Input{Multimodal: imageEmbeddings, MultimodalHash: imageHash})
248
249
250
251
252
253
			postTokenize = true
		}
	}

	if visionModel && postTokenize {
		var err error
254
		inputs, err = multimodalProcessor.PostTokenize(inputs)
255
		if err != nil {
256
			return nil, nil, nil, err
257
258
259
		}
	}

260
	return inputs, ctxs, mmStore, nil
261
262
}

263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
type batchState struct {
	// id provides a counter for trace logging batches
	id int

	// ctx holds the backend context used for this batch
	ctx ml.Context

	// modelOutput holds the outputs from this batch
	modelOutput ml.Tensor

	// batchInputs holds the input token pointers which may start as
	// placeholders later filled in before calling ctx.Compute
	batchInputs []*input.Input

	// batch contains the inputs for a model forward pass
	batch input.Batch

	// full set of seqs at the time this batch was initiated
	seqs []*Sequence

	// Signaled when this batches inputs are ready and compute can proceed
	inputsReadyCh chan struct{}

	// Signaling when Compute is about to begin on this batch, and
	// seqs have been updated to prepare for the next batch
	computeStartedCh chan struct{}

	// Signaled when this batches outputs are complete and the next batch can proceed
	outputsReadyCh chan struct{}
}

294
type Server struct {
Jesse Gross's avatar
Jesse Gross committed
295
296
297
298
299
300
301
302
303
304
	// modelPath is the location of the model to be loaded
	modelPath string

	// loadMu prevents more than one load attempt from occurring at a time
	loadMu sync.Mutex

	// lastLoad is the load request from the previous load attempt. Used to
	// detect if we can reuse an existing memory allocation.
	lastLoad llm.LoadRequest

305
306
307
308
309
	// is the server ready to process requests?
	// protects access to model and image
	ready sync.WaitGroup

	// loaded model
Jesse Gross's avatar
Jesse Gross committed
310
	model model.Model
311

312
	// status for external health reporting - loading, ready to serve, etc.
313
	status llm.ServerStatus
314
315
316
317
318
319
320
321

	// current progress on loading the model
	progress float32

	// number of simultaneous requests to handle
	parallel int

	// maximum number of elements in a batch (per sequence)
322
	// TODO (jmorganca): make this n_batch
323
324
	batchSize int

325
326
327
328
329
330
	// Used to signal a hard failure during async processing which will panic the runner
	hardErrCh chan error

	// Simple counter used only for trace logging batches
	batchID int

331
332
333
334
335
336
337
338
	// protects access to everything below this line
	// this is context state needed for decoding
	mu sync.Mutex

	// indicates that data is ready for processing
	cond *sync.Cond

	// the list of simultaneous sequences being evaluated
339
340
	seqs []*Sequence

341
342
343
344
	// seqs can have a maximum of parallel entries, which
	// is enfoced by seqSem
	seqsSem *semaphore.Weighted

345
346
347
	// KV cache
	cache *InputCache

348
349
350
	// next sequence for prompt processing to avoid starvation
	nextSeq int

351
352
353
	// multimodalHash generates hashes for comparing equality
	// of non-text data
	multimodalHash maphash.Hash
354
355
356
357
358
359
360
361
362
363
364
365
}

func (s *Server) allNil() bool {
	for _, item := range s.seqs {
		if item != nil {
			return false
		}
	}
	return true
}

func flushPending(seq *Sequence) bool {
366
367
368
369
370
371
372
373
374
375
376
	joined := strings.Join(seq.pendingResponses, "")
	seq.pendingResponses = []string{}

	// Check if there are any partial UTF-8 characters remaining.
	// We already check and queue as we are generating but some may
	// still make it here:
	// - Sequence is ending, e.g. generation limit has been hit
	// - Invalid characters in the middle of a string
	// This is a stricter check to ensure we never output invalid Unicode.
	for !utf8.ValidString(joined) {
		joined = joined[:len(joined)-1]
377
378
	}

379
380
381
382
383
384
385
386
387
388
	if len(joined) == 0 {
		return true
	}

	select {
	case seq.responses <- joined:
		return true
	case <-seq.quit:
		return false
	}
389
390
}

391
func (s *Server) removeSequence(seqIndex int, reason llm.DoneReason) {
392
393
394
395
396
397
398
399
	seq := s.seqs[seqIndex]

	flushPending(seq)
	seq.doneReason = reason
	close(seq.responses)
	close(seq.embedding)
	seq.cache.InUse = false
	s.seqs[seqIndex] = nil
400
	s.seqsSem.Release(1)
401
402
}

403
404
// track batch state between forwardBatch, computeBatch and predictForwardBatch

405
406
407
func (s *Server) run(ctx context.Context) {
	s.ready.Wait()

Michael Yang's avatar
Michael Yang committed
408
	supportsAsync := pooling.Type(s.model.Backend().Config().Uint("pooling_type")) == pooling.TypeNone
Michael Yang's avatar
Michael Yang committed
409

410
	var activeBatch batchState
411
412
413
414
	for {
		select {
		case <-ctx.Done():
			return
415
416
		case err := <-s.hardErrCh:
			panic(err)
417
		default:
418
419
			var err error
			activeBatch, err = s.forwardBatch(activeBatch)
420
421
422
			if err != nil {
				panic(err)
			}
Michael Yang's avatar
Michael Yang committed
423
424
425
426
427
428

			if supportsAsync {
				go s.computeBatch(activeBatch)
			} else {
				s.computeBatch(activeBatch)
			}
429
430
431
432
		}
	}
}

433
434
435
436
437
438
// forwardBatch will calculate a batch.
func (s *Server) forwardBatch(pendingBatch batchState) (nextBatch batchState, err error) {
	// If we have a pending batch still processing, wait until Compute has started
	// before setting up the next batch so the seqs inputs are ready to receive their
	// token values and we get the correct input pointers for the batchInputs
	if pendingBatch.ctx != nil {
Michael Yang's avatar
Michael Yang committed
439
		logutil.Trace("forwardBatch waiting for compute to start", "pendingBatch.id", pendingBatch.id)
440
		<-pendingBatch.computeStartedCh
Michael Yang's avatar
Michael Yang committed
441
		logutil.Trace("forwardBatch compute started, setting up next batch", "pendingBatch.id", pendingBatch.id, "id", s.batchID)
442
443
		nextBatch.inputsReadyCh = pendingBatch.outputsReadyCh // Chain the ouputs from the pending batch to the next inputs batch
	} else {
Michael Yang's avatar
Michael Yang committed
444
		logutil.Trace("forwardBatch no pending batch detected", "batchID", s.batchID)
445
446
447
448
449
		// No pendingBatch, so the inputs will be ready in the seqs immediately
		nextBatch.inputsReadyCh = make(chan struct{}, 1)
		nextBatch.inputsReadyCh <- struct{}{}
	}

450
451
452
453
454
455
	s.mu.Lock()
	for s.allNil() {
		s.cond.Wait() // Wait until an item is added
	}
	defer s.mu.Unlock()

456
457
458
459
460
461
462
463
464
465
466
	nextBatch.ctx = s.model.Backend().NewContext()
	defer func() {
		if err != nil {
			nextBatch.ctx.Close()
			nextBatch.ctx = nil
		}
	}()
	nextBatch.id = s.batchID
	nextBatch.seqs = append([]*Sequence{}, s.seqs...)
	nextBatch.computeStartedCh = make(chan struct{}, 1)
	nextBatch.outputsReadyCh = make(chan struct{}, 1)
467

468
469
	// Prepare the seqs and batch, but defer the input token values as we may not be ready yet
	var batchInputs []*input.Input
470
	var batchOutputs []int32
Jesse Gross's avatar
Jesse Gross committed
471
	var batch input.Batch
472

473
474
475
476
477
	resumeSeq := -1
	seqIdx := s.nextSeq - 1
	for range s.seqs {
		seqIdx = (seqIdx + 1) % len(s.seqs)
		seq := s.seqs[seqIdx]
478
479
480
481
482
		if seq == nil {
			continue
		}

		// if past the num predict limit
483
		if seq.numPredict > 0 && seq.numPredicted >= seq.numPredict {
484
			s.removeSequence(seqIdx, llm.DoneReasonLength)
485
			nextBatch.seqs[seqIdx] = nil
486
487
488
			continue
		}

Jesse Gross's avatar
Jesse Gross committed
489
490
		if !s.cache.enabled {
			seq.inputs = append(seq.cache.Inputs, seq.inputs...)
491
			seq.cache.Inputs = []*input.Input{}
Jesse Gross's avatar
Jesse Gross committed
492
493
		}

494
495
		batchSize := s.batchSize

496
		for i, inp := range seq.inputs {
497
498
			// If we are required to put following inputs into a single batch then extend the
			// batch size. Since we are only extending the size the minimum amount possible, this
499
			// will cause a break if we have existing inputs.
500
501
502
503
504
			minBatch := 1 + inp.SameBatch
			if minBatch > batchSize {
				batchSize = minBatch
			}

505
506
507
508
509
510
511
512
			// Stop if the required batch would put us over the total batch size (including tokens
			// added by other sequences). If we haven't been able to add anything yet then pick up
			// here again for the next batch to avoid starvation, though we can opportunistically
			// check if other sequences can still squeeze something in.
			if len(batchInputs)+minBatch > batchSize {
				if len(seq.pendingInputs) == 0 && resumeSeq == -1 {
					resumeSeq = seqIdx
				}
513
514
				break
			}
Jesse Gross's avatar
Jesse Gross committed
515

516
517
518
519
520
521
522
523
			// If the sum of our working set (already processed tokens, tokens we added to this
			// batch, required following tokens) exceeds the context size, then trigger a shift
			// now so we don't have to do one later when we can't break the batch.
			if int32(len(seq.cache.Inputs)+len(seq.pendingInputs)+minBatch) > s.cache.numCtx {
				if len(seq.pendingInputs) != 0 {
					break
				}

524
				err = s.cache.ShiftCacheSlot(seq.cache, seq.numKeep)
525
				if err != nil {
526
527
528
529
530
					var reprocess *ErrReprocessInputs
					if errors.As(err, &reprocess) {
						// Prepend these inputs to the sequence's inputs queue for reprocessing
						seq.inputs = append(reprocess.Inputs, seq.inputs...)
						// Skip this sequence but continue processing the rest
531
532
						nextBatch.seqs[seqIdx] = nil // clear this sequence for this batch
						err = nil
533
534
						continue
					} else {
535
						return
536
					}
537
538
539
				}
			}

540
			batchInputs = append(batchInputs, seq.inputs[i])
541
			if inp.Multimodal != nil {
542
543
				var mm []input.Multimodal
				mm, err = seq.mmStore.getMultimodal(s.model.Backend(), nextBatch.ctx, inp.Multimodal, false)
544
				if err != nil {
545
					return
546
547
				}
				batch.Multimodal = append(batch.Multimodal, input.MultimodalIndex{Index: len(batchInputs) - 1, Multimodal: mm})
548
549
			}

Jesse Gross's avatar
Jesse Gross committed
550
551
			batch.Positions = append(batch.Positions, int32(len(seq.cache.Inputs)+len(seq.pendingInputs)))
			batch.Sequences = append(batch.Sequences, seq.cache.Id)
Jesse Gross's avatar
Jesse Gross committed
552

553
554
555
			seq.iBatch = len(batchOutputs)
			if i+1 == len(seq.inputs) || seq.embeddingOnly {
				batchOutputs = append(batchOutputs, int32(len(batchInputs)-1))
Jesse Gross's avatar
Jesse Gross committed
556
			}
Michael Yang's avatar
Michael Yang committed
557
			logutil.Trace("forwardBatch iBatch", "batchID", s.batchID, "seqIdx", seqIdx, "seq.iBatch", seq.iBatch, "i+1", i+1, "len(seq.inputs)", len(seq.inputs))
558
			seq.pendingInputs = append(seq.pendingInputs, inp)
559
		}
560
561

		seq.inputs = seq.inputs[len(seq.pendingInputs):]
562
563
	}

564
565
566
567
568
569
	if resumeSeq != -1 {
		s.nextSeq = resumeSeq
	} else {
		s.nextSeq = seqIdx + 1
	}

570
	if len(batchInputs) == 0 {
Michael Yang's avatar
Michael Yang committed
571
		logutil.Trace("forwardBatch no batchInputs, going idle", "batchID", s.batchID)
572
573
574
		nextBatch.ctx.Close()
		nextBatch.ctx = nil
		return
575
	}
576
	s.batchID++
577

578
579
	// Actual batchInputs values will be injected into the batch.Inputs tensor before calling Compute
	batch.Inputs = nextBatch.ctx.Input().Empty(ml.DTypeI32, len(batchInputs))
580
	batch.Outputs = nextBatch.ctx.Input().FromIntSlice(batchOutputs, len(batchOutputs))
581
	nextBatch.modelOutput, err = model.Forward(nextBatch.ctx, s.model, batch)
582
	if err != nil {
583
584
		err = fmt.Errorf("failed to build graph: %w", err)
		return
585
	}
586
587
	nextBatch.batchInputs = batchInputs
	nextBatch.batch = batch
588

589
590
591
592
593
594
595
596
597
598
599
600
	return
}

// Async processing of the next batch
func (s *Server) computeBatch(activeBatch batchState) {
	if activeBatch.ctx == nil {
		// Nothing to compute
		return
	}
	defer activeBatch.ctx.Close()

	// Wait until inputs are ready
Michael Yang's avatar
Michael Yang committed
601
	logutil.Trace("computeBatch: waiting for inputs to be ready", "batchID", activeBatch.id)
602
	<-activeBatch.inputsReadyCh
Michael Yang's avatar
Michael Yang committed
603
	logutil.Trace("computeBatch: inputs are ready", "batchID", activeBatch.id)
604

605
606
607
	// Once we complete, signal the next batch of inputs are ready
	// This will unblock the next computeBatch, or forwardBatch if new seqs come in
	defer func() {
Michael Yang's avatar
Michael Yang committed
608
		logutil.Trace("computeBatch: outputs are ready", "batchID", activeBatch.id)
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
		activeBatch.outputsReadyCh <- struct{}{}
	}()

	s.mu.Lock()

	// Gather the actual input token values now that they're ready
	batchInputs := make([]int32, len(activeBatch.batchInputs))
	for i := range batchInputs {
		batchInputs[i] = activeBatch.batchInputs[i].Token
	}

	// Now we run part of the decoding algorithm to adjust the seq.inputs with placeholder tokens
	// so that forwardBatch can build a batchInputs set which will eventually contain the actual
	// decoded tokens.
	nextBatchTokens := make([]*input.Input, len(s.seqs))
	iBatches := make([]int, len(s.seqs)) // Record the iBatch values before releasing the lock
625
	for i, seq := range s.seqs {
626
		iBatches[i] = -1
627
628
629
		if seq == nil {
			continue
		}
630
631
632
633
		// Skip over any newly added or skipped sequences
		if activeBatch.seqs[i] == nil {
			continue
		}
634

635
636
637
		// Detect if the sequence we're processing has already been completed and replaced
		// with a new sequence
		if seq != activeBatch.seqs[i] {
Michael Yang's avatar
Michael Yang committed
638
			logutil.Trace("computeBatch: sequence replaced, discarding its results", "batchID", activeBatch.id, "seqIdx", i)
639
640
641
642
643
644
645
646
647
648
649
			continue
		}

		// Pending inputs will actually be in the cache after we call Compute.
		// However, we have already resolved any placeholder tokens.
		//
		// It's possible for incoming sequences to look at the values that we've
		// added to the cache here and start relying on them before we've done
		// the computation. This is OK as long as we ensure that this batch's
		// computation happens before any future batch's and we never fail
		// (unless we take down the whole runner).
650
651
		if len(seq.pendingInputs) > 0 {
			seq.cache.Inputs = append(seq.cache.Inputs, seq.pendingInputs...)
652
			seq.pendingInputs = []*input.Input{}
653
654
		}

655
656
		// don't sample prompt processing
		if len(seq.inputs) != 0 {
Jesse Gross's avatar
Jesse Gross committed
657
			if !s.cache.enabled {
658
659
660
				s.hardErrCh <- fmt.Errorf("caching disabled but unable to fit entire input in a batch")
				s.mu.Unlock()
				return
Jesse Gross's avatar
Jesse Gross committed
661
			}
662
663
664
			continue
		}

Jesse Gross's avatar
Jesse Gross committed
665
		seq.numPredicted++
666
667
668
669
670
671
672
673
674
675
676
677
		nextToken := &input.Input{Token: 0} // placeholder we'll fill in after Compute/Floats
		seq.inputs = []*input.Input{nextToken}
		nextBatchTokens[i] = nextToken
		iBatches[i] = seq.iBatch
	}

	// At this point the seqs are ready for forwardBatch to move forward so unblock
	s.mu.Unlock()

	activeBatch.batch.Inputs.SetValueFromIntSlice(batchInputs)
	activeBatch.ctx.ComputeWithNotify(
		func() {
Michael Yang's avatar
Michael Yang committed
678
			logutil.Trace("computeBatch: signaling computeStartedCh", "batchID", activeBatch.id)
679
680
681
			activeBatch.computeStartedCh <- struct{}{}
		},
		activeBatch.modelOutput)
Michael Yang's avatar
Michael Yang committed
682
683

	outputs := activeBatch.modelOutput.Floats()
684

Michael Yang's avatar
Michael Yang committed
685
	logutil.Trace("computeBatch: logits ready", "batchID", activeBatch.id)
686
687
688
689

	s.mu.Lock()
	defer s.mu.Unlock()

Michael Yang's avatar
Michael Yang committed
690
	logutil.Trace("computeBatch: decoding", "batchID", activeBatch.id)
691
692
693
694
695
	for i, seq := range s.seqs {
		if seq == nil || nextBatchTokens[i] == nil {
			continue
		}

Jesse Gross's avatar
Jesse Gross committed
696
		if seq.numPredicted == 1 {
697
698
699
700
701
			seq.startGenerationTime = time.Now()
		}

		// if done processing the prompt, generate an embedding and return
		if seq.embeddingOnly {
Michael Yang's avatar
Michael Yang committed
702
			seq.embedding <- outputs
703
			s.removeSequence(i, llm.DoneReasonStop)
704
			continue
705
706
707
		}

		// sample a token
708
709
		vocabSize := len(outputs) / activeBatch.batch.Outputs.Dim(0)
		logutil.Trace("computeBatch: vocab details", "batchID", activeBatch.id, "seqIdx", i, "len(logits)", len(outputs), "len(activeBatch.batch.Outputs)", activeBatch.batch.Outputs.Dim(0), "vocabSize", vocabSize, "iBatches", iBatches)
Michael Yang's avatar
Michael Yang committed
710
		token, err := seq.sampler.Sample(outputs[iBatches[i]*vocabSize : (iBatches[i]+1)*vocabSize])
Jesse Gross's avatar
Jesse Gross committed
711
		if err != nil {
712
713
			s.hardErrCh <- fmt.Errorf("failed to sample token: %w", err)
			return
Jesse Gross's avatar
Jesse Gross committed
714
		}
715

716
717
		nextBatchTokens[i].Token = token

718
		// if it's an end of sequence token, break
Jesse Gross's avatar
Jesse Gross committed
719
		if s.model.(model.TextProcessor).Is(token, model.SpecialEOS) {
720
721
722
			// TODO (jmorganca): we should send this back
			// as it's important for the /api/generate context
			// seq.responses <- piece
Michael Yang's avatar
Michael Yang committed
723
			logutil.Trace("computeBatch: EOS", "batchID", activeBatch.id, "seqIdx", i)
724
			s.removeSequence(i, llm.DoneReasonStop)
725
726
727
			continue
		}

Jesse Gross's avatar
Jesse Gross committed
728
729
		piece, err := s.model.(model.TextProcessor).Decode([]int32{token})
		if err != nil {
730
731
			s.hardErrCh <- fmt.Errorf("failed to decode token: %w", err)
			return
Jesse Gross's avatar
Jesse Gross committed
732
733
		}

734
735
736
		seq.pendingResponses = append(seq.pendingResponses, piece)
		sequence := strings.Join(seq.pendingResponses, "")

Jesse Gross's avatar
Jesse Gross committed
737
		if ok, stop := common.FindStop(sequence, seq.stop); ok {
738
739
740
741
			slog.Debug("hit stop token", "pending", seq.pendingResponses, "stop", stop)

			var tokenTruncated bool
			origLen := len(seq.pendingResponses)
Jesse Gross's avatar
Jesse Gross committed
742
			seq.pendingResponses, tokenTruncated = common.TruncateStop(seq.pendingResponses, stop)
743
744
745
746
747
748
749
750
751
752
753
754
755
756
			newLen := len(seq.pendingResponses)

			// Update the cache based on the tokens that will be returned:
			// - We have 1 token more than is currently in the cache because
			// the last one generated wasn't submitted to Decode
			// - Remove any stop sequences that we stripped out
			// - If truncateStop removed a portion of a token, drop that
			// - As defense-in-depth, if truncatedToken didn't find a stop token
			// remove the extra one that we added to the cache len
			tokenLen := len(seq.cache.Inputs) + 1
			tokenLen -= origLen - newLen
			if tokenTruncated || origLen == newLen {
				tokenLen--
			}
757

758
			seq.cache.Inputs = seq.cache.Inputs[:tokenLen]
759

760
			s.removeSequence(i, llm.DoneReasonStop)
761
762
763
			continue
		}

Jesse Gross's avatar
Jesse Gross committed
764
		if common.ContainsStopSuffix(sequence, seq.stop) {
765
766
767
			continue
		}

Jesse Gross's avatar
Jesse Gross committed
768
		if common.IncompleteUnicode(sequence) {
769
770
771
772
			continue
		}

		if !flushPending(seq) {
773
			s.removeSequence(i, llm.DoneReasonConnectionClosed)
774
775
776
777
778
		}
	}
}

func (s *Server) completion(w http.ResponseWriter, r *http.Request) {
779
	var req llm.CompletionRequest
780
781
782
783
784
	if err := json.NewDecoder(r.Body).Decode(&req); err != nil {
		http.Error(w, "Bad request", http.StatusBadRequest)
		return
	}

785
786
787
788
789
	if req.Options == nil {
		opts := api.DefaultOptions()
		req.Options = &opts
	}

790
791
792
793
794
795
796
797
798
799
	// Set the headers to indicate streaming
	w.Header().Set("Content-Type", "application/json")
	w.Header().Set("Transfer-Encoding", "chunked")

	flusher, ok := w.(http.Flusher)
	if !ok {
		http.Error(w, "Streaming not supported", http.StatusInternalServerError)
		return
	}

800
	var grammar *sample.GrammarSampler
801
802
	var err error
	if req.Grammar != "" {
803
		grammar, err = sample.NewGrammarSampler(s.model.(model.TextProcessor), req.Grammar)
804
805
806
807
		if err != nil {
			http.Error(w, "failed to load model vocabulary required for format", http.StatusInternalServerError)
			return
		}
808
		defer grammar.Free()
809
810
	}

811
	sampler := sample.NewSampler(
812
813
814
815
816
		req.Options.Temperature,
		req.Options.TopK,
		req.Options.TopP,
		req.Options.MinP,
		req.Options.Seed,
817
		grammar,
818
819
	)

820
	seq, err := s.NewSequence(req.Prompt, req.Images, NewSequenceParams{
821
822
823
		numPredict: req.Options.NumPredict,
		stop:       req.Options.Stop,
		numKeep:    int32(req.Options.NumKeep),
824
		sampler:    sampler,
Jesse Gross's avatar
Jesse Gross committed
825
		embedding:  false,
826
827
828
829
830
831
	})
	if err != nil {
		http.Error(w, fmt.Sprintf("Failed to create new sequence: %v", err), http.StatusInternalServerError)
		return
	}

832
	// Ensure there is a place to put the sequence, released when removed from s.seqs
833
	if err := s.seqsSem.Acquire(r.Context(), 1); err != nil {
834
835
836
		if errors.Is(err, context.Canceled) {
			slog.Info("aborting completion request due to client closing the connection")
		} else {
837
			http.Error(w, fmt.Sprintf("Failed to acquire semaphore: %v", err), http.StatusInternalServerError)
838
		}
839
840
841
		return
	}

842
	s.mu.Lock()
843
	found := false
844
845
	for i, sq := range s.seqs {
		if sq == nil {
Michael Yang's avatar
Michael Yang committed
846
			seq.cache, seq.inputs, err = s.cache.LoadCacheSlot(seq.inputs, true)
847
848
			if err != nil {
				s.mu.Unlock()
849
				s.seqsSem.Release(1)
850
851
852
				http.Error(w, fmt.Sprintf("Failed to load cache: %v", err), http.StatusInternalServerError)
				return
			}
853

854
855
			s.seqs[i] = seq
			s.cond.Signal()
856
			found = true
857
858
859
860
861
			break
		}
	}
	s.mu.Unlock()

862
	if !found {
863
		s.seqsSem.Release(1)
864
865
866
867
		http.Error(w, "could not find an available sequence", http.StatusInternalServerError)
		return
	}

868
869
870
871
872
873
874
	for {
		select {
		case <-r.Context().Done():
			close(seq.quit)
			return
		case content, ok := <-seq.responses:
			if ok {
875
				if err := json.NewEncoder(w).Encode(&llm.CompletionResponse{
876
					Content: content,
877
878
879
880
881
882
883
884
				}); err != nil {
					http.Error(w, fmt.Sprintf("failed to encode response: %v", err), http.StatusInternalServerError)
					close(seq.quit)
					return
				}

				flusher.Flush()
			} else {
885
886
				if err := json.NewEncoder(w).Encode(&llm.CompletionResponse{
					Done:               true,
887
					DoneReason:         seq.doneReason,
888
889
890
891
					PromptEvalCount:    seq.numPromptInputs,
					PromptEvalDuration: seq.startGenerationTime.Sub(seq.startProcessingTime),
					EvalCount:          seq.numPredicted,
					EvalDuration:       time.Since(seq.startGenerationTime),
892
893
894
895
896
897
898
899
900
901
				}); err != nil {
					http.Error(w, fmt.Sprintf("failed to encode final response: %v", err), http.StatusInternalServerError)
				}

				return
			}
		}
	}
}

Michael Yang's avatar
Michael Yang committed
902
func (s *Server) embeddings(w http.ResponseWriter, r *http.Request) {
Michael Yang's avatar
Michael Yang committed
903
	if pooling.Type(s.model.Backend().Config().Uint("pooling_type")) == pooling.TypeNone {
Michael Yang's avatar
Michael Yang committed
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
		http.Error(w, "this model does not support embeddings", http.StatusNotImplemented)
		return
	}

	var req llm.EmbeddingRequest
	if err := json.NewDecoder(r.Body).Decode(&req); err != nil {
		http.Error(w, fmt.Sprintf("bad request: %s", err), http.StatusBadRequest)
		return
	}

	w.Header().Set("Content-Type", "application/json")
	seq, err := s.NewSequence(req.Content, nil, NewSequenceParams{embedding: true})
	if err != nil {
		http.Error(w, fmt.Sprintf("failed to create new sequence: %v", err), http.StatusInternalServerError)
		return
	}

	if err := s.seqsSem.Acquire(r.Context(), 1); err != nil {
		if errors.Is(err, context.Canceled) {
			slog.Info("aborting embedding request due to client closing the connection")
		} else {
			http.Error(w, fmt.Sprintf("failed to acquire semaphore: %v", err), http.StatusInternalServerError)
		}
		return
	}

	s.mu.Lock()
	found := false
	for i, sq := range s.seqs {
		if sq == nil {
			seq.cache, seq.inputs, err = s.cache.LoadCacheSlot(seq.inputs, false)
			if err != nil {
				s.mu.Unlock()
				s.seqsSem.Release(1)
				http.Error(w, fmt.Sprintf("failed to load cache: %v", err), http.StatusInternalServerError)
				return
			}

			s.seqs[i] = seq
			s.cond.Signal()
			found = true
			break
		}
	}
	s.mu.Unlock()

	if !found {
		s.seqsSem.Release(1)
		http.Error(w, "could not find an available sequence", http.StatusInternalServerError)
		return
	}

	if err := json.NewEncoder(w).Encode(&llm.EmbeddingResponse{
		Embedding: <-seq.embedding,
	}); err != nil {
		http.Error(w, fmt.Sprintf("failed to encode response: %v", err), http.StatusInternalServerError)
	}
}

963
964
func (s *Server) health(w http.ResponseWriter, r *http.Request) {
	w.Header().Set("Content-Type", "application/json")
965
966
	if err := json.NewEncoder(w).Encode(&llm.ServerStatusResponse{
		Status:   s.status,
967
968
969
970
971
972
		Progress: s.progress,
	}); err != nil {
		http.Error(w, fmt.Sprintf("failed to encode response: %v", err), http.StatusInternalServerError)
	}
}

973
func (s *Server) reserveWorstCaseGraph() error {
974
975
976
	ctx := s.model.Backend().NewContext()
	defer ctx.Close()

977
	var err error
978
979
980
981
	inputs := make([]*input.Input, s.batchSize)
	for i := range inputs {
		inputs[i] = &input.Input{}
	}
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
	mmStore := newMultimodalStore()

	// Multimodal strategy:
	// - Encode a 2048x2048 image. This assumes that a single image of this
	//   size is sufficient to trigger the worst case. This is currently true
	//   because for existing models, only a single image fits in a batch.
	// - Add the embedding to a full batch of tokens - this is necessary because
	//   the model may be looking for non-image data, such as <image> tags.
	// - Run PostTokenize to execute any transformations between generated
	//   embeddings and what the forward pass expects.
	// - The result may now be larger than a batch (images may not fit in a
	//   single batch), so trim based on what will fit and must be grouped together.
	// - Fill out the rest of the space with text tokens.
	if multimodalProcessor, ok := s.model.(model.MultimodalProcessor); ok {
		mmCtx := s.model.Backend().NewContext()
		defer mmCtx.Close()

		img := image.NewGray(image.Rect(0, 0, 2048, 2048))
		var buf bytes.Buffer
		bmp.Encode(&buf, img)

		if inputs[0].Multimodal, err = multimodalProcessor.EncodeMultimodal(mmCtx, buf.Bytes()); err == nil {
			mmStore.addMultimodal(inputs[0].Multimodal)

			inputs, err = multimodalProcessor.PostTokenize(inputs)
			if err != nil {
				return err
			}

			for i, inp := range inputs {
				minBatch := 1 + inp.SameBatch
				if minBatch > s.batchSize {
					inputs = inputs[i:min(i+minBatch, len(inputs))]
					break
				} else if i+minBatch > s.batchSize {
					inputs = inputs[:i]
					break
				}
			}

			if len(inputs) < s.batchSize {
1023
				newInputs := make([]*input.Input, s.batchSize)
1024
				copy(newInputs, inputs)
1025
1026
1027
				for i := len(inputs); i < s.batchSize; i++ {
					newInputs[i] = &input.Input{}
				}
1028
1029
1030
1031
1032
				inputs = newInputs
			}
		}
	}

1033
1034
	var batch input.Batch

1035
	batchInputs := make([]int32, len(inputs))
1036
1037
	batch.Positions = make([]int32, len(inputs))
	batch.Sequences = make([]int, len(inputs))
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
	for i, inp := range inputs {
		batchInputs[i] = inp.Token
		if inp.Multimodal != nil {
			mm, err := mmStore.getMultimodal(s.model.Backend(), ctx, inp.Multimodal, true)
			if err != nil {
				return err
			}
			batch.Multimodal = append(batch.Multimodal, input.MultimodalIndex{Index: i, Multimodal: mm})
		}

1048
1049
1050
		batch.Positions[i] = int32(i)
	}

1051
	batch.Inputs = ctx.Input().FromIntSlice(batchInputs, len(batchInputs))
1052
	batch.Outputs = ctx.Input().Empty(ml.DTypeI32, s.parallel)
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066

	cache := s.model.Config().Cache
	if cache != nil {
		err := cache.StartForward(ctx, batch, true)
		if err != nil {
			return err
		}
	}

	t, err := s.model.Forward(ctx, batch)
	if err != nil {
		return err
	}

1067
	ctx.Forward(t).Reserve()
1068
1069

	return nil
1070
}
1071

Jesse Gross's avatar
Jesse Gross committed
1072
1073
1074
// allocModel pre-allocates the maximum needed memory for a model
// based on the given parameters
func (s *Server) allocModel(
1075
	mpath string,
1076
	params ml.BackendParams,
Jesse Gross's avatar
Jesse Gross committed
1077
	loraPath []string,
Jesse Gross's avatar
Jesse Gross committed
1078
	parallel int,
1079
	kvCacheType string,
Jesse Gross's avatar
Jesse Gross committed
1080
	kvSize int,
1081
	multiUserCache bool,
Jesse Gross's avatar
Jesse Gross committed
1082
1083
1084
1085
1086
) (panicErr error) {
	// Convert memory allocation panics to errors
	defer func() {
		if r := recover(); r != nil {
			if err, ok := r.(error); ok {
1087
1088
1089
1090
1091
1092
				var noMem ml.ErrNoMem
				if errors.As(err, &noMem) {
					panicErr = noMem
				} else {
					panic(r)
				}
Jesse Gross's avatar
Jesse Gross committed
1093
1094
1095
1096
1097
1098
			} else {
				panic(r)
			}
		}
	}()

1099
	var err error
1100
	s.model, err = model.New(mpath, params)
1101
	if err != nil {
1102
		return err
1103
	}
1104

Jesse Gross's avatar
Jesse Gross committed
1105
	// TODO(jessegross): LoRA loading
Jesse Gross's avatar
Jesse Gross committed
1106
	if len(loraPath) > 0 {
1107
		return errors.New("loras are not yet implemented")
1108
1109
	}

1110
	s.cache, err = NewInputCache(s.model, kvCacheType, int32(kvSize), parallel, s.batchSize, multiUserCache)
1111
	if err != nil {
1112
		return err
1113
	}
1114

Jesse Gross's avatar
Jesse Gross committed
1115
1116
1117
1118
1119
1120
1121
1122
1123
	if !s.cache.enabled && parallel > 1 {
		parallel = 1
		slog.Warn("model does not support caching, disabling parallel processing")
	}

	s.parallel = parallel
	s.seqs = make([]*Sequence, s.parallel)
	s.seqsSem = semaphore.NewWeighted(int64(s.parallel))

1124
1125
1126
	return s.reserveWorstCaseGraph()
}

Jesse Gross's avatar
Jesse Gross committed
1127
1128
1129
1130
1131
1132
1133
// closeModel frees all memory associated with a model
func (s *Server) closeModel() {
	s.cache.Close()
	s.cache = nil
	if s.model != nil {
		s.model.Backend().Close()
		s.model = nil
1134
	}
Jesse Gross's avatar
Jesse Gross committed
1135
}
1136

Jesse Gross's avatar
Jesse Gross committed
1137
1138
1139
1140
// loadModel loads the weights for a model. The memory must already
// have been allocated with allocModel
func (s *Server) loadModel() {
	err := s.model.Backend().Load(context.TODO(),
1141
1142
1143
1144
		func(progress float32) {
			s.progress = progress
		})
	if err != nil {
Jesse Gross's avatar
Jesse Gross committed
1145
		panic(fmt.Errorf("failed to load model: %v", err))
1146
1147
	}

1148
	s.status = llm.ServerStatusReady
1149
1150
1151
	s.ready.Done()
}

Jesse Gross's avatar
Jesse Gross committed
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
// load is the handler called by the Ollama server to process different
// load operations
func (s *Server) load(w http.ResponseWriter, r *http.Request) {
	s.loadMu.Lock()
	defer s.loadMu.Unlock()

	w.Header().Set("Content-Type", "application/json")

	if s.status != llm.ServerStatusLaunched {
		http.Error(w, "model already loaded", http.StatusInternalServerError)
		return
	}

	var req llm.LoadRequest
	if err := json.NewDecoder(r.Body).Decode(&req); err != nil {
		http.Error(w, "bad request", http.StatusBadRequest)
		return
	}

	slog.Info("load", "request", req)

	if req.Operation == llm.LoadOperationClose {
		s.closeModel()
		if err := json.NewEncoder(w).Encode(&llm.LoadResponse{}); err != nil {
			http.Error(w, fmt.Sprintf("failed to encode response: %v", err), http.StatusInternalServerError)
		}
		return
	}

	s.lastLoad.Operation = req.Operation
	loadModel := s.model == nil || !reflect.DeepEqual(req, s.lastLoad)

	s.lastLoad = req

	if loadModel {
		s.closeModel()

		params := ml.BackendParams{
			AllocMemory:    req.Operation != llm.LoadOperationFit,
			NumThreads:     req.NumThreads,
			GPULayers:      req.GPULayers,
			FlashAttention: req.FlashAttention,
		}

		s.batchSize = req.BatchSize

		err := s.allocModel(s.modelPath, params, req.LoraPath, req.Parallel, req.KvCacheType, req.KvSize, req.MultiUserCache)
		if err != nil {
			s.closeModel()

			var noMem ml.ErrNoMem
			if errors.As(err, &noMem) {
				resp := llm.LoadResponse{Success: false, Memory: noMem.BackendMemory}
				if err := json.NewEncoder(w).Encode(&resp); err != nil {
					http.Error(w, fmt.Sprintf("failed to encode response: %v", err), http.StatusInternalServerError)
				}

				return
			}

			http.Error(w, fmt.Sprintf("failed to initialize model: %v", err), http.StatusInternalServerError)
			return
		}
	}

	mem := s.model.Backend().BackendMemory()

	switch req.Operation {
	case llm.LoadOperationFit:
		// LoadOperationFit can't be used for anything else, so just close it
		s.closeModel()

	// LoadOperationAlloc should stay open for future operations

	case llm.LoadOperationCommit:
		s.status = llm.ServerStatusLoadingModel
		go s.loadModel()
	}

	resp := llm.LoadResponse{Success: true, Memory: mem}
	if err := json.NewEncoder(w).Encode(&resp); err != nil {
		http.Error(w, fmt.Sprintf("failed to encode response: %v", err), http.StatusInternalServerError)
		return
	}
}

1238
1239
1240
1241
func Execute(args []string) error {
	fs := flag.NewFlagSet("runner", flag.ExitOnError)
	mpath := fs.String("model", "", "Path to model binary file")
	port := fs.Int("port", 8080, "Port to expose the server on")
1242
	_ = fs.Bool("verbose", false, "verbose output (default: disabled)")
1243

1244
1245
1246
1247
1248
1249
	fs.Usage = func() {
		fmt.Fprintf(fs.Output(), "Runner usage\n")
		fs.PrintDefaults()
	}
	if err := fs.Parse(args); err != nil {
		return err
1250
	}
1251
	slog.SetDefault(logutil.NewLogger(os.Stderr, envconfig.LogLevel()))
Jesse Gross's avatar
Jesse Gross committed
1252
	slog.Info("starting ollama engine")
1253

1254
1255
1256
	ctx, cancel := context.WithCancel(context.Background())
	defer cancel()

Jesse Gross's avatar
Jesse Gross committed
1257
1258
1259
	server := &Server{
		modelPath: *mpath,
		status:    llm.ServerStatusLaunched,
1260
		hardErrCh: make(chan error, 1),
1261
1262
	}

Jesse Gross's avatar
Jesse Gross committed
1263
1264
	server.cond = sync.NewCond(&server.mu)
	server.ready.Add(1)
1265
1266
1267
1268
1269
1270
1271

	go server.run(ctx)

	addr := "127.0.0.1:" + strconv.Itoa(*port)
	listener, err := net.Listen("tcp", addr)
	if err != nil {
		fmt.Println("Listen error:", err)
1272
		return err
1273
1274
1275
1276
	}
	defer listener.Close()

	mux := http.NewServeMux()
1277
	// TODO: support embeddings
Jesse Gross's avatar
Jesse Gross committed
1278
	mux.HandleFunc("POST /load", server.load)
Michael Yang's avatar
Michael Yang committed
1279
	mux.HandleFunc("POST /embedding", server.embeddings)
1280
1281
	mux.HandleFunc("POST /completion", server.completion)
	mux.HandleFunc("GET /health", server.health)
1282
1283
1284
1285
1286
1287
1288
1289

	httpServer := http.Server{
		Handler: mux,
	}

	log.Println("Server listening on", addr)
	if err := httpServer.Serve(listener); err != nil {
		log.Fatal("server error:", err)
1290
		return err
1291
1292
	}

1293
	return nil
1294
}