runner.go 35.3 KB
Newer Older
Jesse Gross's avatar
Jesse Gross committed
1
package ollamarunner
2
3

import (
4
	"bytes"
5
6
7
8
9
	"context"
	"encoding/json"
	"errors"
	"flag"
	"fmt"
10
	"hash/maphash"
11
	"image"
12
13
	"log"
	"log/slog"
Michael Yang's avatar
Michael Yang committed
14
	"math"
15
16
17
	"net"
	"net/http"
	"os"
Jesse Gross's avatar
Jesse Gross committed
18
	"reflect"
19
20
21
22
23
24
	"regexp"
	"runtime"
	"strconv"
	"strings"
	"sync"
	"time"
25
	"unicode/utf8"
26

27
	"golang.org/x/image/bmp"
28
29
	"golang.org/x/sync/semaphore"

30
	"github.com/ollama/ollama/api"
31
	"github.com/ollama/ollama/envconfig"
32
	"github.com/ollama/ollama/llm"
33
	"github.com/ollama/ollama/logutil"
34
	"github.com/ollama/ollama/ml"
Jesse Gross's avatar
Jesse Gross committed
35
	"github.com/ollama/ollama/model"
36
	"github.com/ollama/ollama/model/input"
Jesse Gross's avatar
Jesse Gross committed
37
38
39
40
	"github.com/ollama/ollama/runner/common"
	"github.com/ollama/ollama/sample"

	_ "github.com/ollama/ollama/model/models"
41
42
43
)

type Sequence struct {
44
	// ctxs are used for allocating tensors that last the lifetime of the sequence, such as
45
	// multimodal embeddings
46
	ctxs []ml.Context
47

48
49
50
	// mmStore holds multimodal embeddings to mange memory and enable splitting across batches
	mmStore multimodalStore

51
52
53
54
	// batch index
	iBatch int

	// prompt inputs left to evaluate
55
	inputs []*input.Input
56

Jesse Gross's avatar
Jesse Gross committed
57
	// inputs that have been added to a batch but not yet submitted to Forward
58
	pendingInputs []*input.Input
59

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
	// tokens that have been generated but not returned yet (e.g. for stop sequences)
	pendingResponses []string

	// input cache being used by this sequence
	cache *InputCacheSlot

	// channel to send responses over
	responses chan string

	// channel to stop decoding (such as if the remote connection is closed)
	quit chan bool

	// number of tokens to predict
	numPredict int

75
76
	// sampler with transforms to run on generated logits
	sampler sample.Sampler
77
78
79
80
81
82
83
84

	// channel to send back the embedding if embedding only
	embedding chan []float32

	// stop sequences
	stop []string

	// number of inputs to keep at the beginning when shifting context window
Jesse Gross's avatar
Jesse Gross committed
85
	numKeep int32
86
87
88
89

	// true if an embedding are to be returned instead of text generation
	embeddingOnly bool

90
	doneReason llm.DoneReason
91
92
93
94

	// Metrics
	startProcessingTime time.Time
	startGenerationTime time.Time
Jesse Gross's avatar
Jesse Gross committed
95
	numPredicted        int
96
97
98
99
	numPromptInputs     int
}

type NewSequenceParams struct {
Jesse Gross's avatar
Jesse Gross committed
100
101
102
	numPredict int
	stop       []string
	numKeep    int32
103
	sampler    sample.Sampler
Jesse Gross's avatar
Jesse Gross committed
104
	embedding  bool
105
106
}

107
func (s *Server) NewSequence(prompt string, images []llm.ImageData, params NewSequenceParams) (*Sequence, error) {
108
109
110
111
	s.ready.Wait()

	startTime := time.Now()

112
	inputs, ctxs, mmStore, err := s.inputs(prompt, images)
113
114
115
116
117
118
119
	if err != nil {
		return nil, fmt.Errorf("failed to process inputs: %w", err)
	} else if len(inputs) == 0 {
		return nil, errors.New("no input provided")
	}

	if params.numKeep < 0 {
Jesse Gross's avatar
Jesse Gross committed
120
		params.numKeep = int32(len(inputs))
121
122
	}

123
124
125
	// Ensure that at least 1 input can be discarded during shift
	params.numKeep = min(params.numKeep, s.cache.numCtx-1)

Jesse Gross's avatar
Jesse Gross committed
126
127
	if int32(len(inputs)) > s.cache.numCtx {
		discard := int32(len(inputs)) - s.cache.numCtx
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
		promptStart := params.numKeep + discard

		// If we need to truncate in the middle of a unbreakable batch, remove the entire batch
		sameBatch := 0
		for i, inp := range inputs {
			if sameBatch > 0 {
				sameBatch--

				if promptStart == int32(i) {
					promptStart++
				}
			} else if promptStart == int32(i) {
				break
			}

			if inp.SameBatch != 0 {
				if int32(i) < params.numKeep {
					return nil, fmt.Errorf("SameBatch may not be specified within numKeep (index: %v numKeep: %v SameBatch: %v)", i, params.numKeep, inp.SameBatch)
				}

				sameBatch = inp.SameBatch
			}
		}

		if promptStart >= int32(len(inputs)) {
			return nil, errors.New("entire prompt removed by truncation")
		}

156
		newInputs := inputs[:params.numKeep]
157
		newInputs = append(newInputs, inputs[promptStart:]...)
158
159

		slog.Warn("truncating input prompt", "limit", s.cache.numCtx, "prompt", len(inputs), "keep", params.numKeep, "new", len(newInputs))
160
		inputs = newInputs
161
162
	}

Jesse Gross's avatar
Jesse Gross committed
163
	// TODO(jessegross): Ingest cached history for grammar
164
165

	return &Sequence{
166
		ctxs:                ctxs,
167
		mmStore:             mmStore,
168
169
170
171
172
173
174
175
		inputs:              inputs,
		numPromptInputs:     len(inputs),
		startProcessingTime: startTime,
		numPredict:          params.numPredict,
		pendingResponses:    make([]string, 0),
		responses:           make(chan string, 100),
		quit:                make(chan bool, 1),
		embedding:           make(chan []float32, 1),
176
		sampler:             params.sampler,
177
178
179
180
181
182
183
184
		embeddingOnly:       params.embedding,
		stop:                params.stop,
		numKeep:             params.numKeep,
	}, nil
}

// inputs processes the prompt and images into a list of inputs
// by splitting the prompt on [img-<n>] tags, tokenizing text and
Jesse Gross's avatar
Jesse Gross committed
185
// decoding images
186
187
func (s *Server) inputs(prompt string, images []llm.ImageData) ([]*input.Input, []ml.Context, multimodalStore, error) {
	var inputs []*input.Input
188
	var ctxs []ml.Context
189
	var mmStore multimodalStore
190

191
192
193
	var parts []string
	var matches [][]string

194
	multimodalProcessor, visionModel := s.model.(model.MultimodalProcessor)
195

196
197
198
199
	if visionModel {
		re := regexp.MustCompile(`\[img-(\d+)\]`)
		parts = re.Split(prompt, -1)
		matches = re.FindAllStringSubmatch(prompt, -1)
200
		mmStore = newMultimodalStore()
201
202
203
204
205
	} else {
		parts = []string{prompt}
	}

	postTokenize := false
206
207
	for i, part := range parts {
		// text - tokenize
208
		tokens, err := s.model.(model.TextProcessor).Encode(part, i == 0)
209
		if err != nil {
210
			return nil, nil, nil, err
211
		}
212

213
		for _, t := range tokens {
214
			inputs = append(inputs, &input.Input{Token: t})
215
216
		}

Jesse Gross's avatar
Jesse Gross committed
217
		// image - decode and store
218
219
220
221
222
223
224
225
226
227
228
229
		if i < len(matches) {
			n, _ := strconv.Atoi(matches[i][1])

			imageIndex := -1
			for j := range images {
				if images[j].ID == n {
					imageIndex = j
					break
				}
			}

			if imageIndex < 0 {
230
				return nil, nil, nil, fmt.Errorf("invalid image index: %d", n)
231
232
			}

233
			ctx := s.model.Backend().NewContext()
234
235
			runtime.SetFinalizer(ctx, func(c ml.Context) { c.Close() })
			ctxs = append(ctxs, ctx)
236
			imageEmbeddings, err := multimodalProcessor.EncodeMultimodal(ctx, images[imageIndex].Data)
Jesse Gross's avatar
Jesse Gross committed
237
			if err != nil {
238
				return nil, nil, nil, err
Jesse Gross's avatar
Jesse Gross committed
239
240
			}

241
242
243
244
			s.multimodalHash.Reset()
			_, _ = s.multimodalHash.Write(images[imageIndex].Data)
			imageHash := s.multimodalHash.Sum64()

245
246
			mmStore.addMultimodal(imageEmbeddings)

247
			inputs = append(inputs, &input.Input{Multimodal: imageEmbeddings, MultimodalHash: imageHash})
248
249
250
251
252
253
			postTokenize = true
		}
	}

	if visionModel && postTokenize {
		var err error
254
		inputs, err = multimodalProcessor.PostTokenize(inputs)
255
		if err != nil {
256
			return nil, nil, nil, err
257
258
259
		}
	}

260
	return inputs, ctxs, mmStore, nil
261
262
}

263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
type batchState struct {
	// id provides a counter for trace logging batches
	id int

	// ctx holds the backend context used for this batch
	ctx ml.Context

	// modelOutput holds the outputs from this batch
	modelOutput ml.Tensor

	// batchInputs holds the input token pointers which may start as
	// placeholders later filled in before calling ctx.Compute
	batchInputs []*input.Input

	// batch contains the inputs for a model forward pass
	batch input.Batch

	// full set of seqs at the time this batch was initiated
	seqs []*Sequence

	// Signaled when this batches inputs are ready and compute can proceed
	inputsReadyCh chan struct{}

	// Signaling when Compute is about to begin on this batch, and
	// seqs have been updated to prepare for the next batch
	computeStartedCh chan struct{}

	// Signaled when this batches outputs are complete and the next batch can proceed
	outputsReadyCh chan struct{}
}

294
type Server struct {
Jesse Gross's avatar
Jesse Gross committed
295
296
297
298
299
300
301
302
303
304
	// modelPath is the location of the model to be loaded
	modelPath string

	// loadMu prevents more than one load attempt from occurring at a time
	loadMu sync.Mutex

	// lastLoad is the load request from the previous load attempt. Used to
	// detect if we can reuse an existing memory allocation.
	lastLoad llm.LoadRequest

305
306
307
308
309
	// is the server ready to process requests?
	// protects access to model and image
	ready sync.WaitGroup

	// loaded model
Jesse Gross's avatar
Jesse Gross committed
310
	model model.Model
311

312
	// status for external health reporting - loading, ready to serve, etc.
313
	status llm.ServerStatus
314
315
316
317
318
319
320
321

	// current progress on loading the model
	progress float32

	// number of simultaneous requests to handle
	parallel int

	// maximum number of elements in a batch (per sequence)
322
	// TODO (jmorganca): make this n_batch
323
324
	batchSize int

325
326
327
328
329
330
	// Used to signal a hard failure during async processing which will panic the runner
	hardErrCh chan error

	// Simple counter used only for trace logging batches
	batchID int

331
332
333
334
335
336
337
338
	// protects access to everything below this line
	// this is context state needed for decoding
	mu sync.Mutex

	// indicates that data is ready for processing
	cond *sync.Cond

	// the list of simultaneous sequences being evaluated
339
340
	seqs []*Sequence

341
342
343
344
	// seqs can have a maximum of parallel entries, which
	// is enfoced by seqSem
	seqsSem *semaphore.Weighted

345
346
347
	// KV cache
	cache *InputCache

348
349
350
	// next sequence for prompt processing to avoid starvation
	nextSeq int

351
352
353
	// multimodalHash generates hashes for comparing equality
	// of non-text data
	multimodalHash maphash.Hash
354
355
356
357
358
359
360
361
362
363
364
365
}

func (s *Server) allNil() bool {
	for _, item := range s.seqs {
		if item != nil {
			return false
		}
	}
	return true
}

func flushPending(seq *Sequence) bool {
366
367
368
369
370
371
372
373
374
375
376
	joined := strings.Join(seq.pendingResponses, "")
	seq.pendingResponses = []string{}

	// Check if there are any partial UTF-8 characters remaining.
	// We already check and queue as we are generating but some may
	// still make it here:
	// - Sequence is ending, e.g. generation limit has been hit
	// - Invalid characters in the middle of a string
	// This is a stricter check to ensure we never output invalid Unicode.
	for !utf8.ValidString(joined) {
		joined = joined[:len(joined)-1]
377
378
	}

379
380
381
382
383
384
385
386
387
388
	if len(joined) == 0 {
		return true
	}

	select {
	case seq.responses <- joined:
		return true
	case <-seq.quit:
		return false
	}
389
390
}

391
func (s *Server) removeSequence(seqIndex int, reason llm.DoneReason) {
392
393
394
395
396
397
398
399
	seq := s.seqs[seqIndex]

	flushPending(seq)
	seq.doneReason = reason
	close(seq.responses)
	close(seq.embedding)
	seq.cache.InUse = false
	s.seqs[seqIndex] = nil
400
	s.seqsSem.Release(1)
401
402
}

403
404
// track batch state between forwardBatch, computeBatch and predictForwardBatch

405
406
407
func (s *Server) run(ctx context.Context) {
	s.ready.Wait()

Michael Yang's avatar
Michael Yang committed
408
409
	supportsAsync := s.model.Backend().Config().Uint("pooling_type", math.MaxUint32) == math.MaxUint32

410
	var activeBatch batchState
411
412
413
414
	for {
		select {
		case <-ctx.Done():
			return
415
416
		case err := <-s.hardErrCh:
			panic(err)
417
		default:
418
419
			var err error
			activeBatch, err = s.forwardBatch(activeBatch)
420
421
422
			if err != nil {
				panic(err)
			}
Michael Yang's avatar
Michael Yang committed
423
424
425
426
427
428

			if supportsAsync {
				go s.computeBatch(activeBatch)
			} else {
				s.computeBatch(activeBatch)
			}
429
430
431
432
		}
	}
}

433
434
435
436
437
438
// forwardBatch will calculate a batch.
func (s *Server) forwardBatch(pendingBatch batchState) (nextBatch batchState, err error) {
	// If we have a pending batch still processing, wait until Compute has started
	// before setting up the next batch so the seqs inputs are ready to receive their
	// token values and we get the correct input pointers for the batchInputs
	if pendingBatch.ctx != nil {
Michael Yang's avatar
Michael Yang committed
439
		logutil.Trace("forwardBatch waiting for compute to start", "pendingBatch.id", pendingBatch.id)
440
		<-pendingBatch.computeStartedCh
Michael Yang's avatar
Michael Yang committed
441
		logutil.Trace("forwardBatch compute started, setting up next batch", "pendingBatch.id", pendingBatch.id, "id", s.batchID)
442
443
		nextBatch.inputsReadyCh = pendingBatch.outputsReadyCh // Chain the ouputs from the pending batch to the next inputs batch
	} else {
Michael Yang's avatar
Michael Yang committed
444
		logutil.Trace("forwardBatch no pending batch detected", "batchID", s.batchID)
445
446
447
448
449
		// No pendingBatch, so the inputs will be ready in the seqs immediately
		nextBatch.inputsReadyCh = make(chan struct{}, 1)
		nextBatch.inputsReadyCh <- struct{}{}
	}

450
451
452
453
454
455
	s.mu.Lock()
	for s.allNil() {
		s.cond.Wait() // Wait until an item is added
	}
	defer s.mu.Unlock()

456
457
458
459
460
461
462
463
464
465
466
	nextBatch.ctx = s.model.Backend().NewContext()
	defer func() {
		if err != nil {
			nextBatch.ctx.Close()
			nextBatch.ctx = nil
		}
	}()
	nextBatch.id = s.batchID
	nextBatch.seqs = append([]*Sequence{}, s.seqs...)
	nextBatch.computeStartedCh = make(chan struct{}, 1)
	nextBatch.outputsReadyCh = make(chan struct{}, 1)
467

468
469
	// Prepare the seqs and batch, but defer the input token values as we may not be ready yet
	var batchInputs []*input.Input
Jesse Gross's avatar
Jesse Gross committed
470
	var batch input.Batch
471

472
473
474
475
476
	resumeSeq := -1
	seqIdx := s.nextSeq - 1
	for range s.seqs {
		seqIdx = (seqIdx + 1) % len(s.seqs)
		seq := s.seqs[seqIdx]
477
478
479
480
481
		if seq == nil {
			continue
		}

		// if past the num predict limit
482
		if seq.numPredict > 0 && seq.numPredicted >= seq.numPredict {
483
			s.removeSequence(seqIdx, llm.DoneReasonLength)
484
			nextBatch.seqs[seqIdx] = nil
485
486
487
			continue
		}

Jesse Gross's avatar
Jesse Gross committed
488
489
		if !s.cache.enabled {
			seq.inputs = append(seq.cache.Inputs, seq.inputs...)
490
			seq.cache.Inputs = []*input.Input{}
Jesse Gross's avatar
Jesse Gross committed
491
492
		}

493
494
		batchSize := s.batchSize

495
		for i, inp := range seq.inputs {
496
497
			// If we are required to put following inputs into a single batch then extend the
			// batch size. Since we are only extending the size the minimum amount possible, this
498
			// will cause a break if we have existing inputs.
499
500
501
502
503
			minBatch := 1 + inp.SameBatch
			if minBatch > batchSize {
				batchSize = minBatch
			}

504
505
506
507
508
509
510
511
			// Stop if the required batch would put us over the total batch size (including tokens
			// added by other sequences). If we haven't been able to add anything yet then pick up
			// here again for the next batch to avoid starvation, though we can opportunistically
			// check if other sequences can still squeeze something in.
			if len(batchInputs)+minBatch > batchSize {
				if len(seq.pendingInputs) == 0 && resumeSeq == -1 {
					resumeSeq = seqIdx
				}
512
513
				break
			}
Jesse Gross's avatar
Jesse Gross committed
514

515
516
517
518
519
520
521
522
			// If the sum of our working set (already processed tokens, tokens we added to this
			// batch, required following tokens) exceeds the context size, then trigger a shift
			// now so we don't have to do one later when we can't break the batch.
			if int32(len(seq.cache.Inputs)+len(seq.pendingInputs)+minBatch) > s.cache.numCtx {
				if len(seq.pendingInputs) != 0 {
					break
				}

523
				err = s.cache.ShiftCacheSlot(seq.cache, seq.numKeep)
524
				if err != nil {
525
526
527
528
529
					var reprocess *ErrReprocessInputs
					if errors.As(err, &reprocess) {
						// Prepend these inputs to the sequence's inputs queue for reprocessing
						seq.inputs = append(reprocess.Inputs, seq.inputs...)
						// Skip this sequence but continue processing the rest
530
531
						nextBatch.seqs[seqIdx] = nil // clear this sequence for this batch
						err = nil
532
533
						continue
					} else {
534
						return
535
					}
536
537
538
				}
			}

539
			batchInputs = append(batchInputs, seq.inputs[i])
540
			if inp.Multimodal != nil {
541
542
				var mm []input.Multimodal
				mm, err = seq.mmStore.getMultimodal(s.model.Backend(), nextBatch.ctx, inp.Multimodal, false)
543
				if err != nil {
544
					return
545
546
				}
				batch.Multimodal = append(batch.Multimodal, input.MultimodalIndex{Index: len(batchInputs) - 1, Multimodal: mm})
547
548
			}

Jesse Gross's avatar
Jesse Gross committed
549
550
			batch.Positions = append(batch.Positions, int32(len(seq.cache.Inputs)+len(seq.pendingInputs)))
			batch.Sequences = append(batch.Sequences, seq.cache.Id)
Jesse Gross's avatar
Jesse Gross committed
551

Jesse Gross's avatar
Jesse Gross committed
552
			seq.iBatch = len(batch.Outputs)
553
			if i+1 == len(seq.inputs) {
554
				batch.Outputs = append(batch.Outputs, int32(len(batchInputs)-1))
Jesse Gross's avatar
Jesse Gross committed
555
			}
Michael Yang's avatar
Michael Yang committed
556
			logutil.Trace("forwardBatch iBatch", "batchID", s.batchID, "seqIdx", seqIdx, "seq.iBatch", seq.iBatch, "i+1", i+1, "len(seq.inputs)", len(seq.inputs))
557
			seq.pendingInputs = append(seq.pendingInputs, inp)
558
		}
559
560

		seq.inputs = seq.inputs[len(seq.pendingInputs):]
561
562
	}

563
564
565
566
567
568
	if resumeSeq != -1 {
		s.nextSeq = resumeSeq
	} else {
		s.nextSeq = seqIdx + 1
	}

569
	if len(batchInputs) == 0 {
Michael Yang's avatar
Michael Yang committed
570
		logutil.Trace("forwardBatch no batchInputs, going idle", "batchID", s.batchID)
571
572
573
		nextBatch.ctx.Close()
		nextBatch.ctx = nil
		return
574
	}
575
	s.batchID++
576

577
578
579
	// Actual batchInputs values will be injected into the batch.Inputs tensor before calling Compute
	batch.Inputs = nextBatch.ctx.Input().Empty(ml.DTypeI32, len(batchInputs))
	nextBatch.modelOutput, err = model.Forward(nextBatch.ctx, s.model, batch)
580
	if err != nil {
581
582
		err = fmt.Errorf("failed to build graph: %w", err)
		return
583
	}
584
585
	nextBatch.batchInputs = batchInputs
	nextBatch.batch = batch
586

587
588
589
590
591
592
593
594
595
596
597
598
	return
}

// Async processing of the next batch
func (s *Server) computeBatch(activeBatch batchState) {
	if activeBatch.ctx == nil {
		// Nothing to compute
		return
	}
	defer activeBatch.ctx.Close()

	// Wait until inputs are ready
Michael Yang's avatar
Michael Yang committed
599
	logutil.Trace("computeBatch: waiting for inputs to be ready", "batchID", activeBatch.id)
600
	<-activeBatch.inputsReadyCh
Michael Yang's avatar
Michael Yang committed
601
	logutil.Trace("computeBatch: inputs are ready", "batchID", activeBatch.id)
602

603
604
605
	// Once we complete, signal the next batch of inputs are ready
	// This will unblock the next computeBatch, or forwardBatch if new seqs come in
	defer func() {
Michael Yang's avatar
Michael Yang committed
606
		logutil.Trace("computeBatch: outputs are ready", "batchID", activeBatch.id)
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
		activeBatch.outputsReadyCh <- struct{}{}
	}()

	s.mu.Lock()

	// Gather the actual input token values now that they're ready
	batchInputs := make([]int32, len(activeBatch.batchInputs))
	for i := range batchInputs {
		batchInputs[i] = activeBatch.batchInputs[i].Token
	}

	// Now we run part of the decoding algorithm to adjust the seq.inputs with placeholder tokens
	// so that forwardBatch can build a batchInputs set which will eventually contain the actual
	// decoded tokens.
	nextBatchTokens := make([]*input.Input, len(s.seqs))
	iBatches := make([]int, len(s.seqs)) // Record the iBatch values before releasing the lock
623
	for i, seq := range s.seqs {
624
		iBatches[i] = -1
625
626
627
		if seq == nil {
			continue
		}
628
629
630
631
		// Skip over any newly added or skipped sequences
		if activeBatch.seqs[i] == nil {
			continue
		}
632

633
634
635
		// Detect if the sequence we're processing has already been completed and replaced
		// with a new sequence
		if seq != activeBatch.seqs[i] {
Michael Yang's avatar
Michael Yang committed
636
			logutil.Trace("computeBatch: sequence replaced, discarding its results", "batchID", activeBatch.id, "seqIdx", i)
637
638
639
640
641
642
643
644
645
646
647
			continue
		}

		// Pending inputs will actually be in the cache after we call Compute.
		// However, we have already resolved any placeholder tokens.
		//
		// It's possible for incoming sequences to look at the values that we've
		// added to the cache here and start relying on them before we've done
		// the computation. This is OK as long as we ensure that this batch's
		// computation happens before any future batch's and we never fail
		// (unless we take down the whole runner).
648
649
		if len(seq.pendingInputs) > 0 {
			seq.cache.Inputs = append(seq.cache.Inputs, seq.pendingInputs...)
650
			seq.pendingInputs = []*input.Input{}
651
652
		}

653
654
		// don't sample prompt processing
		if len(seq.inputs) != 0 {
Jesse Gross's avatar
Jesse Gross committed
655
			if !s.cache.enabled {
656
657
658
				s.hardErrCh <- fmt.Errorf("caching disabled but unable to fit entire input in a batch")
				s.mu.Unlock()
				return
Jesse Gross's avatar
Jesse Gross committed
659
			}
660
661
662
			continue
		}

Jesse Gross's avatar
Jesse Gross committed
663
		seq.numPredicted++
664
665
666
667
668
669
670
671
672
673
674
675
		nextToken := &input.Input{Token: 0} // placeholder we'll fill in after Compute/Floats
		seq.inputs = []*input.Input{nextToken}
		nextBatchTokens[i] = nextToken
		iBatches[i] = seq.iBatch
	}

	// At this point the seqs are ready for forwardBatch to move forward so unblock
	s.mu.Unlock()

	activeBatch.batch.Inputs.SetValueFromIntSlice(batchInputs)
	activeBatch.ctx.ComputeWithNotify(
		func() {
Michael Yang's avatar
Michael Yang committed
676
			logutil.Trace("computeBatch: signaling computeStartedCh", "batchID", activeBatch.id)
677
678
679
			activeBatch.computeStartedCh <- struct{}{}
		},
		activeBatch.modelOutput)
Michael Yang's avatar
Michael Yang committed
680
681

	outputs := activeBatch.modelOutput.Floats()
682

Michael Yang's avatar
Michael Yang committed
683
	logutil.Trace("computeBatch: logits ready", "batchID", activeBatch.id)
684
685
686
687

	s.mu.Lock()
	defer s.mu.Unlock()

Michael Yang's avatar
Michael Yang committed
688
	logutil.Trace("computeBatch: decoding", "batchID", activeBatch.id)
689
690
691
692
693
	for i, seq := range s.seqs {
		if seq == nil || nextBatchTokens[i] == nil {
			continue
		}

Jesse Gross's avatar
Jesse Gross committed
694
		if seq.numPredicted == 1 {
695
696
697
698
699
			seq.startGenerationTime = time.Now()
		}

		// if done processing the prompt, generate an embedding and return
		if seq.embeddingOnly {
Michael Yang's avatar
Michael Yang committed
700
			seq.embedding <- outputs
701
			s.removeSequence(i, llm.DoneReasonStop)
702
			continue
703
704
705
		}

		// sample a token
Michael Yang's avatar
Michael Yang committed
706
707
708
		vocabSize := len(outputs) / len(activeBatch.batch.Outputs)
		logutil.Trace("computeBatch: vocab details", "batchID", activeBatch.id, "seqIdx", i, "len(logits)", len(outputs), "len(activeBatch.batch.Outputs)", len(activeBatch.batch.Outputs), "vocabSize", vocabSize, "iBatches", iBatches)
		token, err := seq.sampler.Sample(outputs[iBatches[i]*vocabSize : (iBatches[i]+1)*vocabSize])
Jesse Gross's avatar
Jesse Gross committed
709
		if err != nil {
710
711
			s.hardErrCh <- fmt.Errorf("failed to sample token: %w", err)
			return
Jesse Gross's avatar
Jesse Gross committed
712
		}
713

714
715
		nextBatchTokens[i].Token = token

716
		// if it's an end of sequence token, break
Jesse Gross's avatar
Jesse Gross committed
717
		if s.model.(model.TextProcessor).Is(token, model.SpecialEOS) {
718
719
720
			// TODO (jmorganca): we should send this back
			// as it's important for the /api/generate context
			// seq.responses <- piece
Michael Yang's avatar
Michael Yang committed
721
			logutil.Trace("computeBatch: EOS", "batchID", activeBatch.id, "seqIdx", i)
722
			s.removeSequence(i, llm.DoneReasonStop)
723
724
725
			continue
		}

Jesse Gross's avatar
Jesse Gross committed
726
727
		piece, err := s.model.(model.TextProcessor).Decode([]int32{token})
		if err != nil {
728
729
			s.hardErrCh <- fmt.Errorf("failed to decode token: %w", err)
			return
Jesse Gross's avatar
Jesse Gross committed
730
731
		}

732
733
734
		seq.pendingResponses = append(seq.pendingResponses, piece)
		sequence := strings.Join(seq.pendingResponses, "")

Jesse Gross's avatar
Jesse Gross committed
735
		if ok, stop := common.FindStop(sequence, seq.stop); ok {
736
737
738
739
			slog.Debug("hit stop token", "pending", seq.pendingResponses, "stop", stop)

			var tokenTruncated bool
			origLen := len(seq.pendingResponses)
Jesse Gross's avatar
Jesse Gross committed
740
			seq.pendingResponses, tokenTruncated = common.TruncateStop(seq.pendingResponses, stop)
741
742
743
744
745
746
747
748
749
750
751
752
753
754
			newLen := len(seq.pendingResponses)

			// Update the cache based on the tokens that will be returned:
			// - We have 1 token more than is currently in the cache because
			// the last one generated wasn't submitted to Decode
			// - Remove any stop sequences that we stripped out
			// - If truncateStop removed a portion of a token, drop that
			// - As defense-in-depth, if truncatedToken didn't find a stop token
			// remove the extra one that we added to the cache len
			tokenLen := len(seq.cache.Inputs) + 1
			tokenLen -= origLen - newLen
			if tokenTruncated || origLen == newLen {
				tokenLen--
			}
755

756
			seq.cache.Inputs = seq.cache.Inputs[:tokenLen]
757

758
			s.removeSequence(i, llm.DoneReasonStop)
759
760
761
			continue
		}

Jesse Gross's avatar
Jesse Gross committed
762
		if common.ContainsStopSuffix(sequence, seq.stop) {
763
764
765
			continue
		}

Jesse Gross's avatar
Jesse Gross committed
766
		if common.IncompleteUnicode(sequence) {
767
768
769
770
			continue
		}

		if !flushPending(seq) {
771
			s.removeSequence(i, llm.DoneReasonConnectionClosed)
772
773
774
775
776
		}
	}
}

func (s *Server) completion(w http.ResponseWriter, r *http.Request) {
777
	var req llm.CompletionRequest
778
779
780
781
782
	if err := json.NewDecoder(r.Body).Decode(&req); err != nil {
		http.Error(w, "Bad request", http.StatusBadRequest)
		return
	}

783
784
785
786
787
	if req.Options == nil {
		opts := api.DefaultOptions()
		req.Options = &opts
	}

788
789
790
791
792
793
794
795
796
797
	// Set the headers to indicate streaming
	w.Header().Set("Content-Type", "application/json")
	w.Header().Set("Transfer-Encoding", "chunked")

	flusher, ok := w.(http.Flusher)
	if !ok {
		http.Error(w, "Streaming not supported", http.StatusInternalServerError)
		return
	}

798
	var grammar *sample.GrammarSampler
799
800
	var err error
	if req.Grammar != "" {
801
		grammar, err = sample.NewGrammarSampler(s.model.(model.TextProcessor), req.Grammar)
802
803
804
805
		if err != nil {
			http.Error(w, "failed to load model vocabulary required for format", http.StatusInternalServerError)
			return
		}
806
		defer grammar.Free()
807
808
	}

809
	sampler := sample.NewSampler(
810
811
812
813
814
		req.Options.Temperature,
		req.Options.TopK,
		req.Options.TopP,
		req.Options.MinP,
		req.Options.Seed,
815
		grammar,
816
817
	)

818
	seq, err := s.NewSequence(req.Prompt, req.Images, NewSequenceParams{
819
820
821
		numPredict: req.Options.NumPredict,
		stop:       req.Options.Stop,
		numKeep:    int32(req.Options.NumKeep),
822
		sampler:    sampler,
Jesse Gross's avatar
Jesse Gross committed
823
		embedding:  false,
824
825
826
827
828
829
	})
	if err != nil {
		http.Error(w, fmt.Sprintf("Failed to create new sequence: %v", err), http.StatusInternalServerError)
		return
	}

830
	// Ensure there is a place to put the sequence, released when removed from s.seqs
831
	if err := s.seqsSem.Acquire(r.Context(), 1); err != nil {
832
833
834
		if errors.Is(err, context.Canceled) {
			slog.Info("aborting completion request due to client closing the connection")
		} else {
835
			http.Error(w, fmt.Sprintf("Failed to acquire semaphore: %v", err), http.StatusInternalServerError)
836
		}
837
838
839
		return
	}

840
	s.mu.Lock()
841
	found := false
842
843
	for i, sq := range s.seqs {
		if sq == nil {
Michael Yang's avatar
Michael Yang committed
844
			seq.cache, seq.inputs, err = s.cache.LoadCacheSlot(seq.inputs, true)
845
846
			if err != nil {
				s.mu.Unlock()
847
				s.seqsSem.Release(1)
848
849
850
				http.Error(w, fmt.Sprintf("Failed to load cache: %v", err), http.StatusInternalServerError)
				return
			}
851

852
853
			s.seqs[i] = seq
			s.cond.Signal()
854
			found = true
855
856
857
858
859
			break
		}
	}
	s.mu.Unlock()

860
	if !found {
861
		s.seqsSem.Release(1)
862
863
864
865
		http.Error(w, "could not find an available sequence", http.StatusInternalServerError)
		return
	}

866
867
868
869
870
871
872
	for {
		select {
		case <-r.Context().Done():
			close(seq.quit)
			return
		case content, ok := <-seq.responses:
			if ok {
873
				if err := json.NewEncoder(w).Encode(&llm.CompletionResponse{
874
					Content: content,
875
876
877
878
879
880
881
882
				}); err != nil {
					http.Error(w, fmt.Sprintf("failed to encode response: %v", err), http.StatusInternalServerError)
					close(seq.quit)
					return
				}

				flusher.Flush()
			} else {
883
884
				if err := json.NewEncoder(w).Encode(&llm.CompletionResponse{
					Done:               true,
885
					DoneReason:         seq.doneReason,
886
887
888
889
					PromptEvalCount:    seq.numPromptInputs,
					PromptEvalDuration: seq.startGenerationTime.Sub(seq.startProcessingTime),
					EvalCount:          seq.numPredicted,
					EvalDuration:       time.Since(seq.startGenerationTime),
890
891
892
893
894
895
896
897
898
899
				}); err != nil {
					http.Error(w, fmt.Sprintf("failed to encode final response: %v", err), http.StatusInternalServerError)
				}

				return
			}
		}
	}
}

Michael Yang's avatar
Michael Yang committed
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
func (s *Server) embeddings(w http.ResponseWriter, r *http.Request) {
	if s.model.Backend().Config().Uint("pooling_type", math.MaxUint32) == math.MaxUint32 {
		http.Error(w, "this model does not support embeddings", http.StatusNotImplemented)
		return
	}

	var req llm.EmbeddingRequest
	if err := json.NewDecoder(r.Body).Decode(&req); err != nil {
		http.Error(w, fmt.Sprintf("bad request: %s", err), http.StatusBadRequest)
		return
	}

	w.Header().Set("Content-Type", "application/json")
	seq, err := s.NewSequence(req.Content, nil, NewSequenceParams{embedding: true})
	if err != nil {
		http.Error(w, fmt.Sprintf("failed to create new sequence: %v", err), http.StatusInternalServerError)
		return
	}

	if err := s.seqsSem.Acquire(r.Context(), 1); err != nil {
		if errors.Is(err, context.Canceled) {
			slog.Info("aborting embedding request due to client closing the connection")
		} else {
			http.Error(w, fmt.Sprintf("failed to acquire semaphore: %v", err), http.StatusInternalServerError)
		}
		return
	}

	s.mu.Lock()
	found := false
	for i, sq := range s.seqs {
		if sq == nil {
			seq.cache, seq.inputs, err = s.cache.LoadCacheSlot(seq.inputs, false)
			if err != nil {
				s.mu.Unlock()
				s.seqsSem.Release(1)
				http.Error(w, fmt.Sprintf("failed to load cache: %v", err), http.StatusInternalServerError)
				return
			}

			s.seqs[i] = seq
			s.cond.Signal()
			found = true
			break
		}
	}
	s.mu.Unlock()

	if !found {
		s.seqsSem.Release(1)
		http.Error(w, "could not find an available sequence", http.StatusInternalServerError)
		return
	}

	if err := json.NewEncoder(w).Encode(&llm.EmbeddingResponse{
		Embedding: <-seq.embedding,
	}); err != nil {
		http.Error(w, fmt.Sprintf("failed to encode response: %v", err), http.StatusInternalServerError)
	}
}

961
962
func (s *Server) health(w http.ResponseWriter, r *http.Request) {
	w.Header().Set("Content-Type", "application/json")
963
964
	if err := json.NewEncoder(w).Encode(&llm.ServerStatusResponse{
		Status:   s.status,
965
966
967
968
969
970
		Progress: s.progress,
	}); err != nil {
		http.Error(w, fmt.Sprintf("failed to encode response: %v", err), http.StatusInternalServerError)
	}
}

971
func (s *Server) reserveWorstCaseGraph() error {
972
973
974
	ctx := s.model.Backend().NewContext()
	defer ctx.Close()

975
	var err error
976
977
978
979
	inputs := make([]*input.Input, s.batchSize)
	for i := range inputs {
		inputs[i] = &input.Input{}
	}
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
	mmStore := newMultimodalStore()

	// Multimodal strategy:
	// - Encode a 2048x2048 image. This assumes that a single image of this
	//   size is sufficient to trigger the worst case. This is currently true
	//   because for existing models, only a single image fits in a batch.
	// - Add the embedding to a full batch of tokens - this is necessary because
	//   the model may be looking for non-image data, such as <image> tags.
	// - Run PostTokenize to execute any transformations between generated
	//   embeddings and what the forward pass expects.
	// - The result may now be larger than a batch (images may not fit in a
	//   single batch), so trim based on what will fit and must be grouped together.
	// - Fill out the rest of the space with text tokens.
	if multimodalProcessor, ok := s.model.(model.MultimodalProcessor); ok {
		mmCtx := s.model.Backend().NewContext()
		defer mmCtx.Close()

		img := image.NewGray(image.Rect(0, 0, 2048, 2048))
		var buf bytes.Buffer
		bmp.Encode(&buf, img)

		if inputs[0].Multimodal, err = multimodalProcessor.EncodeMultimodal(mmCtx, buf.Bytes()); err == nil {
			mmStore.addMultimodal(inputs[0].Multimodal)

			inputs, err = multimodalProcessor.PostTokenize(inputs)
			if err != nil {
				return err
			}

			for i, inp := range inputs {
				minBatch := 1 + inp.SameBatch
				if minBatch > s.batchSize {
					inputs = inputs[i:min(i+minBatch, len(inputs))]
					break
				} else if i+minBatch > s.batchSize {
					inputs = inputs[:i]
					break
				}
			}

			if len(inputs) < s.batchSize {
1021
				newInputs := make([]*input.Input, s.batchSize)
1022
				copy(newInputs, inputs)
1023
1024
1025
				for i := len(inputs); i < s.batchSize; i++ {
					newInputs[i] = &input.Input{}
				}
1026
1027
1028
1029
1030
				inputs = newInputs
			}
		}
	}

1031
1032
	var batch input.Batch

1033
	batchInputs := make([]int32, len(inputs))
1034
1035
	batch.Positions = make([]int32, len(inputs))
	batch.Sequences = make([]int, len(inputs))
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
	for i, inp := range inputs {
		batchInputs[i] = inp.Token
		if inp.Multimodal != nil {
			mm, err := mmStore.getMultimodal(s.model.Backend(), ctx, inp.Multimodal, true)
			if err != nil {
				return err
			}
			batch.Multimodal = append(batch.Multimodal, input.MultimodalIndex{Index: i, Multimodal: mm})
		}

1046
1047
1048
1049
1050
1051
1052
1053
		batch.Positions[i] = int32(i)
	}

	batch.Outputs = make([]int32, s.parallel)
	for i := range batch.Outputs {
		batch.Outputs[i] = int32(i)
	}

1054
	batch.Inputs = ctx.Input().FromIntSlice(batchInputs, len(batchInputs))
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068

	cache := s.model.Config().Cache
	if cache != nil {
		err := cache.StartForward(ctx, batch, true)
		if err != nil {
			return err
		}
	}

	t, err := s.model.Forward(ctx, batch)
	if err != nil {
		return err
	}

1069
	ctx.Forward(t).Reserve()
1070
1071

	return nil
1072
}
1073

Jesse Gross's avatar
Jesse Gross committed
1074
1075
1076
// allocModel pre-allocates the maximum needed memory for a model
// based on the given parameters
func (s *Server) allocModel(
1077
	mpath string,
1078
	params ml.BackendParams,
Jesse Gross's avatar
Jesse Gross committed
1079
	loraPath []string,
Jesse Gross's avatar
Jesse Gross committed
1080
	parallel int,
1081
	kvCacheType string,
Jesse Gross's avatar
Jesse Gross committed
1082
	kvSize int,
1083
	multiUserCache bool,
Jesse Gross's avatar
Jesse Gross committed
1084
1085
1086
1087
1088
) (panicErr error) {
	// Convert memory allocation panics to errors
	defer func() {
		if r := recover(); r != nil {
			if err, ok := r.(error); ok {
1089
1090
1091
1092
1093
1094
				var noMem ml.ErrNoMem
				if errors.As(err, &noMem) {
					panicErr = noMem
				} else {
					panic(r)
				}
Jesse Gross's avatar
Jesse Gross committed
1095
1096
1097
1098
1099
1100
			} else {
				panic(r)
			}
		}
	}()

1101
	var err error
1102
	s.model, err = model.New(mpath, params)
1103
	if err != nil {
1104
		return err
1105
	}
1106

Jesse Gross's avatar
Jesse Gross committed
1107
	// TODO(jessegross): LoRA loading
Jesse Gross's avatar
Jesse Gross committed
1108
	if len(loraPath) > 0 {
1109
		return errors.New("loras are not yet implemented")
1110
1111
	}

1112
	s.cache, err = NewInputCache(s.model, kvCacheType, int32(kvSize), parallel, s.batchSize, multiUserCache)
1113
	if err != nil {
1114
		return err
1115
	}
1116

Jesse Gross's avatar
Jesse Gross committed
1117
1118
1119
1120
1121
1122
1123
1124
1125
	if !s.cache.enabled && parallel > 1 {
		parallel = 1
		slog.Warn("model does not support caching, disabling parallel processing")
	}

	s.parallel = parallel
	s.seqs = make([]*Sequence, s.parallel)
	s.seqsSem = semaphore.NewWeighted(int64(s.parallel))

1126
1127
1128
	return s.reserveWorstCaseGraph()
}

Jesse Gross's avatar
Jesse Gross committed
1129
1130
1131
1132
1133
1134
1135
// closeModel frees all memory associated with a model
func (s *Server) closeModel() {
	s.cache.Close()
	s.cache = nil
	if s.model != nil {
		s.model.Backend().Close()
		s.model = nil
1136
	}
Jesse Gross's avatar
Jesse Gross committed
1137
}
1138

Jesse Gross's avatar
Jesse Gross committed
1139
1140
1141
1142
// loadModel loads the weights for a model. The memory must already
// have been allocated with allocModel
func (s *Server) loadModel() {
	err := s.model.Backend().Load(context.TODO(),
1143
1144
1145
1146
		func(progress float32) {
			s.progress = progress
		})
	if err != nil {
Jesse Gross's avatar
Jesse Gross committed
1147
		panic(fmt.Errorf("failed to load model: %v", err))
1148
1149
	}

1150
	s.status = llm.ServerStatusReady
1151
1152
1153
	s.ready.Done()
}

Jesse Gross's avatar
Jesse Gross committed
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
// load is the handler called by the Ollama server to process different
// load operations
func (s *Server) load(w http.ResponseWriter, r *http.Request) {
	s.loadMu.Lock()
	defer s.loadMu.Unlock()

	w.Header().Set("Content-Type", "application/json")

	if s.status != llm.ServerStatusLaunched {
		http.Error(w, "model already loaded", http.StatusInternalServerError)
		return
	}

	var req llm.LoadRequest
	if err := json.NewDecoder(r.Body).Decode(&req); err != nil {
		http.Error(w, "bad request", http.StatusBadRequest)
		return
	}

	slog.Info("load", "request", req)

	if req.Operation == llm.LoadOperationClose {
		s.closeModel()
		if err := json.NewEncoder(w).Encode(&llm.LoadResponse{}); err != nil {
			http.Error(w, fmt.Sprintf("failed to encode response: %v", err), http.StatusInternalServerError)
		}
		return
	}

	s.lastLoad.Operation = req.Operation
	loadModel := s.model == nil || !reflect.DeepEqual(req, s.lastLoad)

	s.lastLoad = req

	if loadModel {
		s.closeModel()

		params := ml.BackendParams{
			AllocMemory:    req.Operation != llm.LoadOperationFit,
			NumThreads:     req.NumThreads,
			GPULayers:      req.GPULayers,
			FlashAttention: req.FlashAttention,
		}

		s.batchSize = req.BatchSize

		err := s.allocModel(s.modelPath, params, req.LoraPath, req.Parallel, req.KvCacheType, req.KvSize, req.MultiUserCache)
		if err != nil {
			s.closeModel()

			var noMem ml.ErrNoMem
			if errors.As(err, &noMem) {
				resp := llm.LoadResponse{Success: false, Memory: noMem.BackendMemory}
				if err := json.NewEncoder(w).Encode(&resp); err != nil {
					http.Error(w, fmt.Sprintf("failed to encode response: %v", err), http.StatusInternalServerError)
				}

				return
			}

			http.Error(w, fmt.Sprintf("failed to initialize model: %v", err), http.StatusInternalServerError)
			return
		}
	}

	mem := s.model.Backend().BackendMemory()

	switch req.Operation {
	case llm.LoadOperationFit:
		// LoadOperationFit can't be used for anything else, so just close it
		s.closeModel()

	// LoadOperationAlloc should stay open for future operations

	case llm.LoadOperationCommit:
		s.status = llm.ServerStatusLoadingModel
		go s.loadModel()
	}

	resp := llm.LoadResponse{Success: true, Memory: mem}
	if err := json.NewEncoder(w).Encode(&resp); err != nil {
		http.Error(w, fmt.Sprintf("failed to encode response: %v", err), http.StatusInternalServerError)
		return
	}
}

1240
1241
1242
1243
func Execute(args []string) error {
	fs := flag.NewFlagSet("runner", flag.ExitOnError)
	mpath := fs.String("model", "", "Path to model binary file")
	port := fs.Int("port", 8080, "Port to expose the server on")
1244
	_ = fs.Bool("verbose", false, "verbose output (default: disabled)")
1245

1246
1247
1248
1249
1250
1251
	fs.Usage = func() {
		fmt.Fprintf(fs.Output(), "Runner usage\n")
		fs.PrintDefaults()
	}
	if err := fs.Parse(args); err != nil {
		return err
1252
	}
1253
	slog.SetDefault(logutil.NewLogger(os.Stderr, envconfig.LogLevel()))
Jesse Gross's avatar
Jesse Gross committed
1254
	slog.Info("starting ollama engine")
1255

1256
1257
1258
	ctx, cancel := context.WithCancel(context.Background())
	defer cancel()

Jesse Gross's avatar
Jesse Gross committed
1259
1260
1261
	server := &Server{
		modelPath: *mpath,
		status:    llm.ServerStatusLaunched,
1262
		hardErrCh: make(chan error, 1),
1263
1264
	}

Jesse Gross's avatar
Jesse Gross committed
1265
1266
	server.cond = sync.NewCond(&server.mu)
	server.ready.Add(1)
1267
1268
1269
1270
1271
1272
1273

	go server.run(ctx)

	addr := "127.0.0.1:" + strconv.Itoa(*port)
	listener, err := net.Listen("tcp", addr)
	if err != nil {
		fmt.Println("Listen error:", err)
1274
		return err
1275
1276
1277
1278
	}
	defer listener.Close()

	mux := http.NewServeMux()
1279
	// TODO: support embeddings
Jesse Gross's avatar
Jesse Gross committed
1280
	mux.HandleFunc("POST /load", server.load)
Michael Yang's avatar
Michael Yang committed
1281
	mux.HandleFunc("POST /embedding", server.embeddings)
1282
1283
	mux.HandleFunc("POST /completion", server.completion)
	mux.HandleFunc("GET /health", server.health)
1284
1285
1286
1287
1288
1289
1290
1291

	httpServer := http.Server{
		Handler: mux,
	}

	log.Println("Server listening on", addr)
	if err := httpServer.Serve(listener); err != nil {
		log.Fatal("server error:", err)
1292
		return err
1293
1294
	}

1295
	return nil
1296
}