runner.go 35.7 KB
Newer Older
Jesse Gross's avatar
Jesse Gross committed
1
package ollamarunner
2
3

import (
4
	"bytes"
5
6
7
8
9
	"context"
	"encoding/json"
	"errors"
	"flag"
	"fmt"
10
	"hash/maphash"
11
	"image"
12
13
	"log"
	"log/slog"
Michael Yang's avatar
Michael Yang committed
14
	"math"
15
16
17
	"net"
	"net/http"
	"os"
Jesse Gross's avatar
Jesse Gross committed
18
	"reflect"
19
20
	"regexp"
	"runtime"
21
	"runtime/debug"
22
23
24
25
	"strconv"
	"strings"
	"sync"
	"time"
26
	"unicode/utf8"
27

28
	"golang.org/x/image/bmp"
29
30
	"golang.org/x/sync/semaphore"

31
	"github.com/ollama/ollama/api"
32
	"github.com/ollama/ollama/envconfig"
33
	"github.com/ollama/ollama/llm"
34
	"github.com/ollama/ollama/logutil"
35
	"github.com/ollama/ollama/ml"
Jesse Gross's avatar
Jesse Gross committed
36
	"github.com/ollama/ollama/model"
37
	"github.com/ollama/ollama/model/input"
38
	"github.com/ollama/ollama/parser"
Jesse Gross's avatar
Jesse Gross committed
39
40
41
42
	"github.com/ollama/ollama/runner/common"
	"github.com/ollama/ollama/sample"

	_ "github.com/ollama/ollama/model/models"
43
44
45
)

type Sequence struct {
46
	// ctxs are used for allocating tensors that last the lifetime of the sequence, such as
47
	// multimodal embeddings
48
	ctxs []ml.Context
49

50
51
52
	// mmStore holds multimodal embeddings to mange memory and enable splitting across batches
	mmStore multimodalStore

53
54
55
56
	// batch index
	iBatch int

	// prompt inputs left to evaluate
57
	inputs []*input.Input
58

Jesse Gross's avatar
Jesse Gross committed
59
	// inputs that have been added to a batch but not yet submitted to Forward
60
	pendingInputs []*input.Input
61

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
	// tokens that have been generated but not returned yet (e.g. for stop sequences)
	pendingResponses []string

	// input cache being used by this sequence
	cache *InputCacheSlot

	// channel to send responses over
	responses chan string

	// channel to stop decoding (such as if the remote connection is closed)
	quit chan bool

	// number of tokens to predict
	numPredict int

77
78
	// sampler with transforms to run on generated logits
	sampler sample.Sampler
79
80
81
82
83
84
85
86

	// channel to send back the embedding if embedding only
	embedding chan []float32

	// stop sequences
	stop []string

	// number of inputs to keep at the beginning when shifting context window
Jesse Gross's avatar
Jesse Gross committed
87
	numKeep int32
88
89
90
91

	// true if an embedding are to be returned instead of text generation
	embeddingOnly bool

92
	doneReason llm.DoneReason
93
94
95
96

	// Metrics
	startProcessingTime time.Time
	startGenerationTime time.Time
Jesse Gross's avatar
Jesse Gross committed
97
	numPredicted        int
98
99
100
101
	numPromptInputs     int
}

type NewSequenceParams struct {
Jesse Gross's avatar
Jesse Gross committed
102
103
104
	numPredict int
	stop       []string
	numKeep    int32
105
	sampler    sample.Sampler
Jesse Gross's avatar
Jesse Gross committed
106
	embedding  bool
107
108
}

109
func (s *Server) NewSequence(prompt string, images []llm.ImageData, params NewSequenceParams) (*Sequence, error) {
110
111
112
113
	s.ready.Wait()

	startTime := time.Now()

114
	inputs, ctxs, mmStore, err := s.inputs(prompt, images)
115
116
117
118
119
120
121
	if err != nil {
		return nil, fmt.Errorf("failed to process inputs: %w", err)
	} else if len(inputs) == 0 {
		return nil, errors.New("no input provided")
	}

	if params.numKeep < 0 {
Jesse Gross's avatar
Jesse Gross committed
122
		params.numKeep = int32(len(inputs))
123
124
	}

125
126
127
	// Ensure that at least 1 input can be discarded during shift
	params.numKeep = min(params.numKeep, s.cache.numCtx-1)

Jesse Gross's avatar
Jesse Gross committed
128
129
	if int32(len(inputs)) > s.cache.numCtx {
		discard := int32(len(inputs)) - s.cache.numCtx
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
		promptStart := params.numKeep + discard

		// If we need to truncate in the middle of a unbreakable batch, remove the entire batch
		sameBatch := 0
		for i, inp := range inputs {
			if sameBatch > 0 {
				sameBatch--

				if promptStart == int32(i) {
					promptStart++
				}
			} else if promptStart == int32(i) {
				break
			}

			if inp.SameBatch != 0 {
				if int32(i) < params.numKeep {
					return nil, fmt.Errorf("SameBatch may not be specified within numKeep (index: %v numKeep: %v SameBatch: %v)", i, params.numKeep, inp.SameBatch)
				}

				sameBatch = inp.SameBatch
			}
		}

		if promptStart >= int32(len(inputs)) {
			return nil, errors.New("entire prompt removed by truncation")
		}

158
		newInputs := inputs[:params.numKeep]
159
		newInputs = append(newInputs, inputs[promptStart:]...)
160
161

		slog.Warn("truncating input prompt", "limit", s.cache.numCtx, "prompt", len(inputs), "keep", params.numKeep, "new", len(newInputs))
162
		inputs = newInputs
163
164
	}

Jesse Gross's avatar
Jesse Gross committed
165
	// TODO(jessegross): Ingest cached history for grammar
166
167

	return &Sequence{
168
		ctxs:                ctxs,
169
		mmStore:             mmStore,
170
171
172
173
174
175
176
177
		inputs:              inputs,
		numPromptInputs:     len(inputs),
		startProcessingTime: startTime,
		numPredict:          params.numPredict,
		pendingResponses:    make([]string, 0),
		responses:           make(chan string, 100),
		quit:                make(chan bool, 1),
		embedding:           make(chan []float32, 1),
178
		sampler:             params.sampler,
179
180
181
182
183
184
185
186
		embeddingOnly:       params.embedding,
		stop:                params.stop,
		numKeep:             params.numKeep,
	}, nil
}

// inputs processes the prompt and images into a list of inputs
// by splitting the prompt on [img-<n>] tags, tokenizing text and
Jesse Gross's avatar
Jesse Gross committed
187
// decoding images
188
189
func (s *Server) inputs(prompt string, images []llm.ImageData) ([]*input.Input, []ml.Context, multimodalStore, error) {
	var inputs []*input.Input
190
	var ctxs []ml.Context
191
	var mmStore multimodalStore
192

193
194
195
	var parts []string
	var matches [][]string

196
	multimodalProcessor, visionModel := s.model.(model.MultimodalProcessor)
197

198
199
200
201
	if visionModel {
		re := regexp.MustCompile(`\[img-(\d+)\]`)
		parts = re.Split(prompt, -1)
		matches = re.FindAllStringSubmatch(prompt, -1)
202
		mmStore = newMultimodalStore()
203
204
205
206
207
	} else {
		parts = []string{prompt}
	}

	postTokenize := false
208
209
	for i, part := range parts {
		// text - tokenize
210
		tokens, err := s.model.(model.TextProcessor).Encode(part, i == 0)
211
		if err != nil {
212
			return nil, nil, nil, err
213
		}
214

215
		for _, t := range tokens {
216
			inputs = append(inputs, &input.Input{Token: t})
217
218
		}

Jesse Gross's avatar
Jesse Gross committed
219
		// image - decode and store
220
221
222
223
224
225
226
227
228
229
230
231
		if i < len(matches) {
			n, _ := strconv.Atoi(matches[i][1])

			imageIndex := -1
			for j := range images {
				if images[j].ID == n {
					imageIndex = j
					break
				}
			}

			if imageIndex < 0 {
232
				return nil, nil, nil, fmt.Errorf("invalid image index: %d", n)
233
234
			}

235
			ctx := s.model.Backend().NewContext()
236
237
			runtime.SetFinalizer(ctx, func(c ml.Context) { c.Close() })
			ctxs = append(ctxs, ctx)
238
			imageEmbeddings, err := multimodalProcessor.EncodeMultimodal(ctx, images[imageIndex].Data)
Jesse Gross's avatar
Jesse Gross committed
239
			if err != nil {
240
				return nil, nil, nil, err
Jesse Gross's avatar
Jesse Gross committed
241
242
			}

243
244
245
246
			s.multimodalHash.Reset()
			_, _ = s.multimodalHash.Write(images[imageIndex].Data)
			imageHash := s.multimodalHash.Sum64()

247
248
			mmStore.addMultimodal(imageEmbeddings)

249
			inputs = append(inputs, &input.Input{Multimodal: imageEmbeddings, MultimodalHash: imageHash})
250
251
252
253
254
255
			postTokenize = true
		}
	}

	if visionModel && postTokenize {
		var err error
256
		inputs, err = multimodalProcessor.PostTokenize(inputs)
257
		if err != nil {
258
			return nil, nil, nil, err
259
260
261
		}
	}

262
	return inputs, ctxs, mmStore, nil
263
264
}

265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
type batchState struct {
	// id provides a counter for trace logging batches
	id int

	// ctx holds the backend context used for this batch
	ctx ml.Context

	// modelOutput holds the outputs from this batch
	modelOutput ml.Tensor

	// batchInputs holds the input token pointers which may start as
	// placeholders later filled in before calling ctx.Compute
	batchInputs []*input.Input

	// batch contains the inputs for a model forward pass
	batch input.Batch

	// full set of seqs at the time this batch was initiated
	seqs []*Sequence

	// Signaled when this batches inputs are ready and compute can proceed
	inputsReadyCh chan struct{}

	// Signaling when Compute is about to begin on this batch, and
	// seqs have been updated to prepare for the next batch
	computeStartedCh chan struct{}

	// Signaled when this batches outputs are complete and the next batch can proceed
	outputsReadyCh chan struct{}
}

296
type Server struct {
Jesse Gross's avatar
Jesse Gross committed
297
298
299
300
301
302
303
304
305
306
	// modelPath is the location of the model to be loaded
	modelPath string

	// loadMu prevents more than one load attempt from occurring at a time
	loadMu sync.Mutex

	// lastLoad is the load request from the previous load attempt. Used to
	// detect if we can reuse an existing memory allocation.
	lastLoad llm.LoadRequest

307
308
309
310
311
	// is the server ready to process requests?
	// protects access to model and image
	ready sync.WaitGroup

	// loaded model
Jesse Gross's avatar
Jesse Gross committed
312
	model model.Model
313

314
	// status for external health reporting - loading, ready to serve, etc.
315
	status llm.ServerStatus
316
317
318
319
320
321
322
323

	// current progress on loading the model
	progress float32

	// number of simultaneous requests to handle
	parallel int

	// maximum number of elements in a batch (per sequence)
324
	// TODO (jmorganca): make this n_batch
325
326
	batchSize int

327
328
329
330
331
332
	// Used to signal a hard failure during async processing which will panic the runner
	hardErrCh chan error

	// Simple counter used only for trace logging batches
	batchID int

333
334
335
336
337
338
339
340
	// protects access to everything below this line
	// this is context state needed for decoding
	mu sync.Mutex

	// indicates that data is ready for processing
	cond *sync.Cond

	// the list of simultaneous sequences being evaluated
341
342
	seqs []*Sequence

343
344
345
346
	// seqs can have a maximum of parallel entries, which
	// is enfoced by seqSem
	seqsSem *semaphore.Weighted

347
348
349
	// KV cache
	cache *InputCache

350
351
352
	// next sequence for prompt processing to avoid starvation
	nextSeq int

353
354
355
	// multimodalHash generates hashes for comparing equality
	// of non-text data
	multimodalHash maphash.Hash
356
357
358
359
360
361
362
363
364
365
366
367
}

func (s *Server) allNil() bool {
	for _, item := range s.seqs {
		if item != nil {
			return false
		}
	}
	return true
}

func flushPending(seq *Sequence) bool {
368
369
370
371
372
373
374
375
376
377
378
	joined := strings.Join(seq.pendingResponses, "")
	seq.pendingResponses = []string{}

	// Check if there are any partial UTF-8 characters remaining.
	// We already check and queue as we are generating but some may
	// still make it here:
	// - Sequence is ending, e.g. generation limit has been hit
	// - Invalid characters in the middle of a string
	// This is a stricter check to ensure we never output invalid Unicode.
	for !utf8.ValidString(joined) {
		joined = joined[:len(joined)-1]
379
380
	}

381
382
383
384
385
386
387
388
389
390
	if len(joined) == 0 {
		return true
	}

	select {
	case seq.responses <- joined:
		return true
	case <-seq.quit:
		return false
	}
391
392
}

393
func (s *Server) removeSequence(seqIndex int, reason llm.DoneReason) {
394
395
396
397
398
399
400
401
	seq := s.seqs[seqIndex]

	flushPending(seq)
	seq.doneReason = reason
	close(seq.responses)
	close(seq.embedding)
	seq.cache.InUse = false
	s.seqs[seqIndex] = nil
402
	s.seqsSem.Release(1)
403
404
}

405
406
// track batch state between forwardBatch, computeBatch and predictForwardBatch

407
408
409
func (s *Server) run(ctx context.Context) {
	s.ready.Wait()

Michael Yang's avatar
Michael Yang committed
410
411
	supportsAsync := s.model.Backend().Config().Uint("pooling_type", math.MaxUint32) == math.MaxUint32

412
	var activeBatch batchState
413
414
415
416
	for {
		select {
		case <-ctx.Done():
			return
417
418
		case err := <-s.hardErrCh:
			panic(err)
419
		default:
420
421
			var err error
			activeBatch, err = s.forwardBatch(activeBatch)
422
423
424
			if err != nil {
				panic(err)
			}
Michael Yang's avatar
Michael Yang committed
425
426
427
428
429
430

			if supportsAsync {
				go s.computeBatch(activeBatch)
			} else {
				s.computeBatch(activeBatch)
			}
431
432
433
434
		}
	}
}

435
436
437
438
439
440
// forwardBatch will calculate a batch.
func (s *Server) forwardBatch(pendingBatch batchState) (nextBatch batchState, err error) {
	// If we have a pending batch still processing, wait until Compute has started
	// before setting up the next batch so the seqs inputs are ready to receive their
	// token values and we get the correct input pointers for the batchInputs
	if pendingBatch.ctx != nil {
Michael Yang's avatar
Michael Yang committed
441
		logutil.Trace("forwardBatch waiting for compute to start", "pendingBatch.id", pendingBatch.id)
442
		<-pendingBatch.computeStartedCh
Michael Yang's avatar
Michael Yang committed
443
		logutil.Trace("forwardBatch compute started, setting up next batch", "pendingBatch.id", pendingBatch.id, "id", s.batchID)
444
445
		nextBatch.inputsReadyCh = pendingBatch.outputsReadyCh // Chain the ouputs from the pending batch to the next inputs batch
	} else {
Michael Yang's avatar
Michael Yang committed
446
		logutil.Trace("forwardBatch no pending batch detected", "batchID", s.batchID)
447
448
449
450
451
		// No pendingBatch, so the inputs will be ready in the seqs immediately
		nextBatch.inputsReadyCh = make(chan struct{}, 1)
		nextBatch.inputsReadyCh <- struct{}{}
	}

452
453
454
455
456
457
	s.mu.Lock()
	for s.allNil() {
		s.cond.Wait() // Wait until an item is added
	}
	defer s.mu.Unlock()

458
459
460
461
462
463
464
465
466
467
468
	nextBatch.ctx = s.model.Backend().NewContext()
	defer func() {
		if err != nil {
			nextBatch.ctx.Close()
			nextBatch.ctx = nil
		}
	}()
	nextBatch.id = s.batchID
	nextBatch.seqs = append([]*Sequence{}, s.seqs...)
	nextBatch.computeStartedCh = make(chan struct{}, 1)
	nextBatch.outputsReadyCh = make(chan struct{}, 1)
469

470
471
	// Prepare the seqs and batch, but defer the input token values as we may not be ready yet
	var batchInputs []*input.Input
Jesse Gross's avatar
Jesse Gross committed
472
	var batch input.Batch
473

474
475
476
477
478
	resumeSeq := -1
	seqIdx := s.nextSeq - 1
	for range s.seqs {
		seqIdx = (seqIdx + 1) % len(s.seqs)
		seq := s.seqs[seqIdx]
479
480
481
482
483
		if seq == nil {
			continue
		}

		// if past the num predict limit
484
		if seq.numPredict > 0 && seq.numPredicted >= seq.numPredict {
485
			s.removeSequence(seqIdx, llm.DoneReasonLength)
486
			nextBatch.seqs[seqIdx] = nil
487
488
489
			continue
		}

Jesse Gross's avatar
Jesse Gross committed
490
491
		if !s.cache.enabled {
			seq.inputs = append(seq.cache.Inputs, seq.inputs...)
492
			seq.cache.Inputs = []*input.Input{}
Jesse Gross's avatar
Jesse Gross committed
493
494
		}

495
496
		batchSize := s.batchSize

497
		for i, inp := range seq.inputs {
498
499
			// If we are required to put following inputs into a single batch then extend the
			// batch size. Since we are only extending the size the minimum amount possible, this
500
			// will cause a break if we have existing inputs.
501
502
503
504
505
			minBatch := 1 + inp.SameBatch
			if minBatch > batchSize {
				batchSize = minBatch
			}

506
507
508
509
510
511
512
513
			// Stop if the required batch would put us over the total batch size (including tokens
			// added by other sequences). If we haven't been able to add anything yet then pick up
			// here again for the next batch to avoid starvation, though we can opportunistically
			// check if other sequences can still squeeze something in.
			if len(batchInputs)+minBatch > batchSize {
				if len(seq.pendingInputs) == 0 && resumeSeq == -1 {
					resumeSeq = seqIdx
				}
514
515
				break
			}
Jesse Gross's avatar
Jesse Gross committed
516

517
518
519
520
521
522
523
524
			// If the sum of our working set (already processed tokens, tokens we added to this
			// batch, required following tokens) exceeds the context size, then trigger a shift
			// now so we don't have to do one later when we can't break the batch.
			if int32(len(seq.cache.Inputs)+len(seq.pendingInputs)+minBatch) > s.cache.numCtx {
				if len(seq.pendingInputs) != 0 {
					break
				}

525
				err = s.cache.ShiftCacheSlot(seq.cache, seq.numKeep)
526
				if err != nil {
527
528
529
530
531
					var reprocess *ErrReprocessInputs
					if errors.As(err, &reprocess) {
						// Prepend these inputs to the sequence's inputs queue for reprocessing
						seq.inputs = append(reprocess.Inputs, seq.inputs...)
						// Skip this sequence but continue processing the rest
532
533
						nextBatch.seqs[seqIdx] = nil // clear this sequence for this batch
						err = nil
534
535
						continue
					} else {
536
						return
537
					}
538
539
540
				}
			}

541
			batchInputs = append(batchInputs, seq.inputs[i])
542
			if inp.Multimodal != nil {
543
544
				var mm []input.Multimodal
				mm, err = seq.mmStore.getMultimodal(s.model.Backend(), nextBatch.ctx, inp.Multimodal, false)
545
				if err != nil {
546
					return
547
548
				}
				batch.Multimodal = append(batch.Multimodal, input.MultimodalIndex{Index: len(batchInputs) - 1, Multimodal: mm})
549
550
			}

Jesse Gross's avatar
Jesse Gross committed
551
552
			batch.Positions = append(batch.Positions, int32(len(seq.cache.Inputs)+len(seq.pendingInputs)))
			batch.Sequences = append(batch.Sequences, seq.cache.Id)
Jesse Gross's avatar
Jesse Gross committed
553

Jesse Gross's avatar
Jesse Gross committed
554
			seq.iBatch = len(batch.Outputs)
555
			if i+1 == len(seq.inputs) {
556
				batch.Outputs = append(batch.Outputs, int32(len(batchInputs)-1))
Jesse Gross's avatar
Jesse Gross committed
557
			}
Michael Yang's avatar
Michael Yang committed
558
			logutil.Trace("forwardBatch iBatch", "batchID", s.batchID, "seqIdx", seqIdx, "seq.iBatch", seq.iBatch, "i+1", i+1, "len(seq.inputs)", len(seq.inputs))
559
			seq.pendingInputs = append(seq.pendingInputs, inp)
560
		}
561
562

		seq.inputs = seq.inputs[len(seq.pendingInputs):]
563
564
	}

565
566
567
568
569
570
	if resumeSeq != -1 {
		s.nextSeq = resumeSeq
	} else {
		s.nextSeq = seqIdx + 1
	}

571
	if len(batchInputs) == 0 {
Michael Yang's avatar
Michael Yang committed
572
		logutil.Trace("forwardBatch no batchInputs, going idle", "batchID", s.batchID)
573
574
575
		nextBatch.ctx.Close()
		nextBatch.ctx = nil
		return
576
	}
577
	s.batchID++
578

579
580
581
	// Actual batchInputs values will be injected into the batch.Inputs tensor before calling Compute
	batch.Inputs = nextBatch.ctx.Input().Empty(ml.DTypeI32, len(batchInputs))
	nextBatch.modelOutput, err = model.Forward(nextBatch.ctx, s.model, batch)
582
	if err != nil {
583
584
		err = fmt.Errorf("failed to build graph: %w", err)
		return
585
	}
586
587
	nextBatch.batchInputs = batchInputs
	nextBatch.batch = batch
588

589
590
591
592
593
594
595
596
597
598
599
600
	return
}

// Async processing of the next batch
func (s *Server) computeBatch(activeBatch batchState) {
	if activeBatch.ctx == nil {
		// Nothing to compute
		return
	}
	defer activeBatch.ctx.Close()

	// Wait until inputs are ready
Michael Yang's avatar
Michael Yang committed
601
	logutil.Trace("computeBatch: waiting for inputs to be ready", "batchID", activeBatch.id)
602
	<-activeBatch.inputsReadyCh
Michael Yang's avatar
Michael Yang committed
603
	logutil.Trace("computeBatch: inputs are ready", "batchID", activeBatch.id)
604

605
606
607
	// Once we complete, signal the next batch of inputs are ready
	// This will unblock the next computeBatch, or forwardBatch if new seqs come in
	defer func() {
Michael Yang's avatar
Michael Yang committed
608
		logutil.Trace("computeBatch: outputs are ready", "batchID", activeBatch.id)
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
		activeBatch.outputsReadyCh <- struct{}{}
	}()

	s.mu.Lock()

	// Gather the actual input token values now that they're ready
	batchInputs := make([]int32, len(activeBatch.batchInputs))
	for i := range batchInputs {
		batchInputs[i] = activeBatch.batchInputs[i].Token
	}

	// Now we run part of the decoding algorithm to adjust the seq.inputs with placeholder tokens
	// so that forwardBatch can build a batchInputs set which will eventually contain the actual
	// decoded tokens.
	nextBatchTokens := make([]*input.Input, len(s.seqs))
	iBatches := make([]int, len(s.seqs)) // Record the iBatch values before releasing the lock
625
	for i, seq := range s.seqs {
626
		iBatches[i] = -1
627
628
629
		if seq == nil {
			continue
		}
630
631
632
633
		// Skip over any newly added or skipped sequences
		if activeBatch.seqs[i] == nil {
			continue
		}
634

635
636
637
		// Detect if the sequence we're processing has already been completed and replaced
		// with a new sequence
		if seq != activeBatch.seqs[i] {
Michael Yang's avatar
Michael Yang committed
638
			logutil.Trace("computeBatch: sequence replaced, discarding its results", "batchID", activeBatch.id, "seqIdx", i)
639
640
641
642
643
644
645
646
647
648
649
			continue
		}

		// Pending inputs will actually be in the cache after we call Compute.
		// However, we have already resolved any placeholder tokens.
		//
		// It's possible for incoming sequences to look at the values that we've
		// added to the cache here and start relying on them before we've done
		// the computation. This is OK as long as we ensure that this batch's
		// computation happens before any future batch's and we never fail
		// (unless we take down the whole runner).
650
651
		if len(seq.pendingInputs) > 0 {
			seq.cache.Inputs = append(seq.cache.Inputs, seq.pendingInputs...)
652
			seq.pendingInputs = []*input.Input{}
653
654
		}

655
656
		// don't sample prompt processing
		if len(seq.inputs) != 0 {
Jesse Gross's avatar
Jesse Gross committed
657
			if !s.cache.enabled {
658
659
660
				s.hardErrCh <- fmt.Errorf("caching disabled but unable to fit entire input in a batch")
				s.mu.Unlock()
				return
Jesse Gross's avatar
Jesse Gross committed
661
			}
662
663
664
			continue
		}

Jesse Gross's avatar
Jesse Gross committed
665
		seq.numPredicted++
666
667
668
669
670
671
672
673
674
675
676
677
		nextToken := &input.Input{Token: 0} // placeholder we'll fill in after Compute/Floats
		seq.inputs = []*input.Input{nextToken}
		nextBatchTokens[i] = nextToken
		iBatches[i] = seq.iBatch
	}

	// At this point the seqs are ready for forwardBatch to move forward so unblock
	s.mu.Unlock()

	activeBatch.batch.Inputs.SetValueFromIntSlice(batchInputs)
	activeBatch.ctx.ComputeWithNotify(
		func() {
Michael Yang's avatar
Michael Yang committed
678
			logutil.Trace("computeBatch: signaling computeStartedCh", "batchID", activeBatch.id)
679
680
681
			activeBatch.computeStartedCh <- struct{}{}
		},
		activeBatch.modelOutput)
Michael Yang's avatar
Michael Yang committed
682
683

	outputs := activeBatch.modelOutput.Floats()
684

Michael Yang's avatar
Michael Yang committed
685
	logutil.Trace("computeBatch: logits ready", "batchID", activeBatch.id)
686
687
688
689

	s.mu.Lock()
	defer s.mu.Unlock()

Michael Yang's avatar
Michael Yang committed
690
	logutil.Trace("computeBatch: decoding", "batchID", activeBatch.id)
691
692
693
694
695
	for i, seq := range s.seqs {
		if seq == nil || nextBatchTokens[i] == nil {
			continue
		}

Jesse Gross's avatar
Jesse Gross committed
696
		if seq.numPredicted == 1 {
697
698
699
700
701
			seq.startGenerationTime = time.Now()
		}

		// if done processing the prompt, generate an embedding and return
		if seq.embeddingOnly {
Michael Yang's avatar
Michael Yang committed
702
			seq.embedding <- outputs
703
			s.removeSequence(i, llm.DoneReasonStop)
704
			continue
705
706
707
		}

		// sample a token
Michael Yang's avatar
Michael Yang committed
708
709
710
		vocabSize := len(outputs) / len(activeBatch.batch.Outputs)
		logutil.Trace("computeBatch: vocab details", "batchID", activeBatch.id, "seqIdx", i, "len(logits)", len(outputs), "len(activeBatch.batch.Outputs)", len(activeBatch.batch.Outputs), "vocabSize", vocabSize, "iBatches", iBatches)
		token, err := seq.sampler.Sample(outputs[iBatches[i]*vocabSize : (iBatches[i]+1)*vocabSize])
Jesse Gross's avatar
Jesse Gross committed
711
		if err != nil {
712
713
			s.hardErrCh <- fmt.Errorf("failed to sample token: %w", err)
			return
Jesse Gross's avatar
Jesse Gross committed
714
		}
715

716
717
		nextBatchTokens[i].Token = token

718
		// if it's an end of sequence token, break
Jesse Gross's avatar
Jesse Gross committed
719
		if s.model.(model.TextProcessor).Is(token, model.SpecialEOS) {
720
721
722
			// TODO (jmorganca): we should send this back
			// as it's important for the /api/generate context
			// seq.responses <- piece
Michael Yang's avatar
Michael Yang committed
723
			logutil.Trace("computeBatch: EOS", "batchID", activeBatch.id, "seqIdx", i)
724
			s.removeSequence(i, llm.DoneReasonStop)
725
726
727
			continue
		}

Jesse Gross's avatar
Jesse Gross committed
728
729
		piece, err := s.model.(model.TextProcessor).Decode([]int32{token})
		if err != nil {
730
731
			s.hardErrCh <- fmt.Errorf("failed to decode token: %w", err)
			return
Jesse Gross's avatar
Jesse Gross committed
732
733
		}

734
735
736
		seq.pendingResponses = append(seq.pendingResponses, piece)
		sequence := strings.Join(seq.pendingResponses, "")

Jesse Gross's avatar
Jesse Gross committed
737
		if ok, stop := common.FindStop(sequence, seq.stop); ok {
738
739
740
741
			slog.Debug("hit stop token", "pending", seq.pendingResponses, "stop", stop)

			var tokenTruncated bool
			origLen := len(seq.pendingResponses)
Jesse Gross's avatar
Jesse Gross committed
742
			seq.pendingResponses, tokenTruncated = common.TruncateStop(seq.pendingResponses, stop)
743
744
745
746
747
748
749
750
751
752
753
754
755
756
			newLen := len(seq.pendingResponses)

			// Update the cache based on the tokens that will be returned:
			// - We have 1 token more than is currently in the cache because
			// the last one generated wasn't submitted to Decode
			// - Remove any stop sequences that we stripped out
			// - If truncateStop removed a portion of a token, drop that
			// - As defense-in-depth, if truncatedToken didn't find a stop token
			// remove the extra one that we added to the cache len
			tokenLen := len(seq.cache.Inputs) + 1
			tokenLen -= origLen - newLen
			if tokenTruncated || origLen == newLen {
				tokenLen--
			}
757

758
			seq.cache.Inputs = seq.cache.Inputs[:tokenLen]
759

760
			s.removeSequence(i, llm.DoneReasonStop)
761
762
763
			continue
		}

Jesse Gross's avatar
Jesse Gross committed
764
		if common.ContainsStopSuffix(sequence, seq.stop) {
765
766
767
			continue
		}

Jesse Gross's avatar
Jesse Gross committed
768
		if common.IncompleteUnicode(sequence) {
769
770
771
772
			continue
		}

		if !flushPending(seq) {
773
			s.removeSequence(i, llm.DoneReasonConnectionClosed)
774
775
776
777
778
		}
	}
}

func (s *Server) completion(w http.ResponseWriter, r *http.Request) {
779
	var req llm.CompletionRequest
780
781
782
783
784
	if err := json.NewDecoder(r.Body).Decode(&req); err != nil {
		http.Error(w, "Bad request", http.StatusBadRequest)
		return
	}

785
	tokenParser := parser.NewTokenParser(req.ParserType, req.PrefillString)
786

787
788
789
790
791
	if req.Options == nil {
		opts := api.DefaultOptions()
		req.Options = &opts
	}

792
793
794
795
796
797
798
799
800
801
	// Set the headers to indicate streaming
	w.Header().Set("Content-Type", "application/json")
	w.Header().Set("Transfer-Encoding", "chunked")

	flusher, ok := w.(http.Flusher)
	if !ok {
		http.Error(w, "Streaming not supported", http.StatusInternalServerError)
		return
	}

802
	var grammar *sample.GrammarSampler
803
804
	var err error
	if req.Grammar != "" {
805
		grammar, err = sample.NewGrammarSampler(s.model.(model.TextProcessor), req.Grammar)
806
807
808
809
		if err != nil {
			http.Error(w, "failed to load model vocabulary required for format", http.StatusInternalServerError)
			return
		}
810
		defer grammar.Free()
811
812
	}

813
	sampler := sample.NewSampler(
814
815
816
817
818
		req.Options.Temperature,
		req.Options.TopK,
		req.Options.TopP,
		req.Options.MinP,
		req.Options.Seed,
819
		grammar,
820
821
	)

822
	seq, err := s.NewSequence(req.Prompt, req.Images, NewSequenceParams{
823
824
825
		numPredict: req.Options.NumPredict,
		stop:       req.Options.Stop,
		numKeep:    int32(req.Options.NumKeep),
826
		sampler:    sampler,
Jesse Gross's avatar
Jesse Gross committed
827
		embedding:  false,
828
829
830
831
832
833
	})
	if err != nil {
		http.Error(w, fmt.Sprintf("Failed to create new sequence: %v", err), http.StatusInternalServerError)
		return
	}

834
	// Ensure there is a place to put the sequence, released when removed from s.seqs
835
	if err := s.seqsSem.Acquire(r.Context(), 1); err != nil {
836
837
838
		if errors.Is(err, context.Canceled) {
			slog.Info("aborting completion request due to client closing the connection")
		} else {
839
			http.Error(w, fmt.Sprintf("Failed to acquire semaphore: %v", err), http.StatusInternalServerError)
840
		}
841
842
843
		return
	}

844
	s.mu.Lock()
845
	found := false
846
847
	for i, sq := range s.seqs {
		if sq == nil {
Michael Yang's avatar
Michael Yang committed
848
			seq.cache, seq.inputs, err = s.cache.LoadCacheSlot(seq.inputs, true)
849
850
			if err != nil {
				s.mu.Unlock()
851
				s.seqsSem.Release(1)
852
853
854
				http.Error(w, fmt.Sprintf("Failed to load cache: %v", err), http.StatusInternalServerError)
				return
			}
855

856
857
			s.seqs[i] = seq
			s.cond.Signal()
858
			found = true
859
860
861
862
863
			break
		}
	}
	s.mu.Unlock()

864
	if !found {
865
		s.seqsSem.Release(1)
866
867
868
869
		http.Error(w, "could not find an available sequence", http.StatusInternalServerError)
		return
	}

870
871
872
873
874
875
876
	for {
		select {
		case <-r.Context().Done():
			close(seq.quit)
			return
		case content, ok := <-seq.responses:
			if ok {
877
878
879
880
881
				var thinking string
				var err error
				content, thinking, err = tokenParser.AddContent(content)
				if err != nil {
					http.Error(w, err.Error(), http.StatusInternalServerError)
882
883
884
885
					close(seq.quit)
					return
				}

886
				if err := json.NewEncoder(w).Encode(&llm.CompletionResponse{
887
888
					Content:  content,
					Thinking: thinking,
889
890
891
892
893
894
895
896
				}); err != nil {
					http.Error(w, fmt.Sprintf("failed to encode response: %v", err), http.StatusInternalServerError)
					close(seq.quit)
					return
				}

				flusher.Flush()
			} else {
897
				toolCalls := tokenParser.Drain()
898
				if err := json.NewEncoder(w).Encode(&llm.CompletionResponse{
899
					ToolCalls:          toolCalls,
900
					Done:               true,
901
					DoneReason:         seq.doneReason,
902
903
904
905
					PromptEvalCount:    seq.numPromptInputs,
					PromptEvalDuration: seq.startGenerationTime.Sub(seq.startProcessingTime),
					EvalCount:          seq.numPredicted,
					EvalDuration:       time.Since(seq.startGenerationTime),
906
907
908
909
910
911
912
913
914
915
				}); err != nil {
					http.Error(w, fmt.Sprintf("failed to encode final response: %v", err), http.StatusInternalServerError)
				}

				return
			}
		}
	}
}

Michael Yang's avatar
Michael Yang committed
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
func (s *Server) embeddings(w http.ResponseWriter, r *http.Request) {
	if s.model.Backend().Config().Uint("pooling_type", math.MaxUint32) == math.MaxUint32 {
		http.Error(w, "this model does not support embeddings", http.StatusNotImplemented)
		return
	}

	var req llm.EmbeddingRequest
	if err := json.NewDecoder(r.Body).Decode(&req); err != nil {
		http.Error(w, fmt.Sprintf("bad request: %s", err), http.StatusBadRequest)
		return
	}

	w.Header().Set("Content-Type", "application/json")
	seq, err := s.NewSequence(req.Content, nil, NewSequenceParams{embedding: true})
	if err != nil {
		http.Error(w, fmt.Sprintf("failed to create new sequence: %v", err), http.StatusInternalServerError)
		return
	}

	if err := s.seqsSem.Acquire(r.Context(), 1); err != nil {
		if errors.Is(err, context.Canceled) {
			slog.Info("aborting embedding request due to client closing the connection")
		} else {
			http.Error(w, fmt.Sprintf("failed to acquire semaphore: %v", err), http.StatusInternalServerError)
		}
		return
	}

	s.mu.Lock()
	found := false
	for i, sq := range s.seqs {
		if sq == nil {
			seq.cache, seq.inputs, err = s.cache.LoadCacheSlot(seq.inputs, false)
			if err != nil {
				s.mu.Unlock()
				s.seqsSem.Release(1)
				http.Error(w, fmt.Sprintf("failed to load cache: %v", err), http.StatusInternalServerError)
				return
			}

			s.seqs[i] = seq
			s.cond.Signal()
			found = true
			break
		}
	}
	s.mu.Unlock()

	if !found {
		s.seqsSem.Release(1)
		http.Error(w, "could not find an available sequence", http.StatusInternalServerError)
		return
	}

	if err := json.NewEncoder(w).Encode(&llm.EmbeddingResponse{
		Embedding: <-seq.embedding,
	}); err != nil {
		http.Error(w, fmt.Sprintf("failed to encode response: %v", err), http.StatusInternalServerError)
	}
}

977
978
func (s *Server) health(w http.ResponseWriter, r *http.Request) {
	w.Header().Set("Content-Type", "application/json")
979
980
	if err := json.NewEncoder(w).Encode(&llm.ServerStatusResponse{
		Status:   s.status,
981
982
983
984
985
986
		Progress: s.progress,
	}); err != nil {
		http.Error(w, fmt.Sprintf("failed to encode response: %v", err), http.StatusInternalServerError)
	}
}

987
func (s *Server) reserveWorstCaseGraph() error {
988
989
990
	ctx := s.model.Backend().NewContext()
	defer ctx.Close()

991
	var err error
992
993
994
995
	inputs := make([]*input.Input, s.batchSize)
	for i := range inputs {
		inputs[i] = &input.Input{}
	}
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
	mmStore := newMultimodalStore()

	// Multimodal strategy:
	// - Encode a 2048x2048 image. This assumes that a single image of this
	//   size is sufficient to trigger the worst case. This is currently true
	//   because for existing models, only a single image fits in a batch.
	// - Add the embedding to a full batch of tokens - this is necessary because
	//   the model may be looking for non-image data, such as <image> tags.
	// - Run PostTokenize to execute any transformations between generated
	//   embeddings and what the forward pass expects.
	// - The result may now be larger than a batch (images may not fit in a
	//   single batch), so trim based on what will fit and must be grouped together.
	// - Fill out the rest of the space with text tokens.
	if multimodalProcessor, ok := s.model.(model.MultimodalProcessor); ok {
		mmCtx := s.model.Backend().NewContext()
		defer mmCtx.Close()

		img := image.NewGray(image.Rect(0, 0, 2048, 2048))
		var buf bytes.Buffer
		bmp.Encode(&buf, img)

		if inputs[0].Multimodal, err = multimodalProcessor.EncodeMultimodal(mmCtx, buf.Bytes()); err == nil {
			mmStore.addMultimodal(inputs[0].Multimodal)

			inputs, err = multimodalProcessor.PostTokenize(inputs)
			if err != nil {
				return err
			}

			for i, inp := range inputs {
				minBatch := 1 + inp.SameBatch
				if minBatch > s.batchSize {
					inputs = inputs[i:min(i+minBatch, len(inputs))]
					break
				} else if i+minBatch > s.batchSize {
					inputs = inputs[:i]
					break
				}
			}

			if len(inputs) < s.batchSize {
1037
				newInputs := make([]*input.Input, s.batchSize)
1038
				copy(newInputs, inputs)
1039
1040
1041
				for i := len(inputs); i < s.batchSize; i++ {
					newInputs[i] = &input.Input{}
				}
1042
1043
1044
1045
1046
				inputs = newInputs
			}
		}
	}

1047
1048
	var batch input.Batch

1049
	batchInputs := make([]int32, len(inputs))
1050
1051
	batch.Positions = make([]int32, len(inputs))
	batch.Sequences = make([]int, len(inputs))
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
	for i, inp := range inputs {
		batchInputs[i] = inp.Token
		if inp.Multimodal != nil {
			mm, err := mmStore.getMultimodal(s.model.Backend(), ctx, inp.Multimodal, true)
			if err != nil {
				return err
			}
			batch.Multimodal = append(batch.Multimodal, input.MultimodalIndex{Index: i, Multimodal: mm})
		}

1062
1063
1064
1065
1066
1067
1068
1069
		batch.Positions[i] = int32(i)
	}

	batch.Outputs = make([]int32, s.parallel)
	for i := range batch.Outputs {
		batch.Outputs[i] = int32(i)
	}

1070
	batch.Inputs = ctx.Input().FromIntSlice(batchInputs, len(batchInputs))
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084

	cache := s.model.Config().Cache
	if cache != nil {
		err := cache.StartForward(ctx, batch, true)
		if err != nil {
			return err
		}
	}

	t, err := s.model.Forward(ctx, batch)
	if err != nil {
		return err
	}

1085
	ctx.Forward(t).Reserve()
1086
1087

	return nil
1088
}
1089

Jesse Gross's avatar
Jesse Gross committed
1090
1091
1092
// allocModel pre-allocates the maximum needed memory for a model
// based on the given parameters
func (s *Server) allocModel(
1093
	mpath string,
1094
	params ml.BackendParams,
Jesse Gross's avatar
Jesse Gross committed
1095
	loraPath []string,
Jesse Gross's avatar
Jesse Gross committed
1096
	parallel int,
1097
	kvCacheType string,
Jesse Gross's avatar
Jesse Gross committed
1098
	kvSize int,
1099
	multiUserCache bool,
Jesse Gross's avatar
Jesse Gross committed
1100
1101
1102
1103
) (panicErr error) {
	// Convert memory allocation panics to errors
	defer func() {
		if r := recover(); r != nil {
1104
			debug.PrintStack()
Jesse Gross's avatar
Jesse Gross committed
1105
1106
1107
1108
1109
1110
1111
1112
			if err, ok := r.(error); ok {
				panicErr = err
			} else {
				panic(r)
			}
		}
	}()

1113
	var err error
1114
	s.model, err = model.New(mpath, params)
1115
	if err != nil {
1116
		return err
1117
	}
1118

Jesse Gross's avatar
Jesse Gross committed
1119
	// TODO(jessegross): LoRA loading
Jesse Gross's avatar
Jesse Gross committed
1120
	if len(loraPath) > 0 {
1121
		return errors.New("loras are not yet implemented")
1122
1123
	}

1124
	s.cache, err = NewInputCache(s.model, kvCacheType, int32(kvSize), parallel, s.batchSize, multiUserCache)
1125
	if err != nil {
1126
		return err
1127
	}
1128

Jesse Gross's avatar
Jesse Gross committed
1129
1130
1131
1132
1133
1134
1135
1136
1137
	if !s.cache.enabled && parallel > 1 {
		parallel = 1
		slog.Warn("model does not support caching, disabling parallel processing")
	}

	s.parallel = parallel
	s.seqs = make([]*Sequence, s.parallel)
	s.seqsSem = semaphore.NewWeighted(int64(s.parallel))

1138
1139
1140
	return s.reserveWorstCaseGraph()
}

Jesse Gross's avatar
Jesse Gross committed
1141
1142
1143
1144
1145
1146
1147
// closeModel frees all memory associated with a model
func (s *Server) closeModel() {
	s.cache.Close()
	s.cache = nil
	if s.model != nil {
		s.model.Backend().Close()
		s.model = nil
1148
	}
Jesse Gross's avatar
Jesse Gross committed
1149
}
1150

Jesse Gross's avatar
Jesse Gross committed
1151
1152
1153
1154
// loadModel loads the weights for a model. The memory must already
// have been allocated with allocModel
func (s *Server) loadModel() {
	err := s.model.Backend().Load(context.TODO(),
1155
1156
1157
1158
		func(progress float32) {
			s.progress = progress
		})
	if err != nil {
Jesse Gross's avatar
Jesse Gross committed
1159
		panic(fmt.Errorf("failed to load model: %v", err))
1160
1161
	}

1162
	s.status = llm.ServerStatusReady
1163
1164
1165
	s.ready.Done()
}

Jesse Gross's avatar
Jesse Gross committed
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
// load is the handler called by the Ollama server to process different
// load operations
func (s *Server) load(w http.ResponseWriter, r *http.Request) {
	s.loadMu.Lock()
	defer s.loadMu.Unlock()

	w.Header().Set("Content-Type", "application/json")

	if s.status != llm.ServerStatusLaunched {
		http.Error(w, "model already loaded", http.StatusInternalServerError)
		return
	}

	var req llm.LoadRequest
	if err := json.NewDecoder(r.Body).Decode(&req); err != nil {
		http.Error(w, "bad request", http.StatusBadRequest)
		return
	}

	slog.Info("load", "request", req)

	if req.Operation == llm.LoadOperationClose {
		s.closeModel()
		if err := json.NewEncoder(w).Encode(&llm.LoadResponse{}); err != nil {
			http.Error(w, fmt.Sprintf("failed to encode response: %v", err), http.StatusInternalServerError)
		}
		return
	}

	s.lastLoad.Operation = req.Operation
	loadModel := s.model == nil || !reflect.DeepEqual(req, s.lastLoad)

	s.lastLoad = req

	if loadModel {
		s.closeModel()

		params := ml.BackendParams{
			AllocMemory:    req.Operation != llm.LoadOperationFit,
			NumThreads:     req.NumThreads,
			GPULayers:      req.GPULayers,
			FlashAttention: req.FlashAttention,
		}

		s.batchSize = req.BatchSize

		err := s.allocModel(s.modelPath, params, req.LoraPath, req.Parallel, req.KvCacheType, req.KvSize, req.MultiUserCache)
		if err != nil {
			s.closeModel()

			var noMem ml.ErrNoMem
			if errors.As(err, &noMem) {
				resp := llm.LoadResponse{Success: false, Memory: noMem.BackendMemory}
				if err := json.NewEncoder(w).Encode(&resp); err != nil {
					http.Error(w, fmt.Sprintf("failed to encode response: %v", err), http.StatusInternalServerError)
				}

				return
			}

			http.Error(w, fmt.Sprintf("failed to initialize model: %v", err), http.StatusInternalServerError)
			return
		}
	}

	mem := s.model.Backend().BackendMemory()

	switch req.Operation {
	case llm.LoadOperationFit:
		// LoadOperationFit can't be used for anything else, so just close it
		s.closeModel()

	// LoadOperationAlloc should stay open for future operations

	case llm.LoadOperationCommit:
		s.status = llm.ServerStatusLoadingModel
		go s.loadModel()
	}

	resp := llm.LoadResponse{Success: true, Memory: mem}
	if err := json.NewEncoder(w).Encode(&resp); err != nil {
		http.Error(w, fmt.Sprintf("failed to encode response: %v", err), http.StatusInternalServerError)
		return
	}
}

1252
1253
1254
1255
func Execute(args []string) error {
	fs := flag.NewFlagSet("runner", flag.ExitOnError)
	mpath := fs.String("model", "", "Path to model binary file")
	port := fs.Int("port", 8080, "Port to expose the server on")
1256
	_ = fs.Bool("verbose", false, "verbose output (default: disabled)")
1257

1258
1259
1260
1261
1262
1263
	fs.Usage = func() {
		fmt.Fprintf(fs.Output(), "Runner usage\n")
		fs.PrintDefaults()
	}
	if err := fs.Parse(args); err != nil {
		return err
1264
	}
1265
	slog.SetDefault(logutil.NewLogger(os.Stderr, envconfig.LogLevel()))
Jesse Gross's avatar
Jesse Gross committed
1266
	slog.Info("starting ollama engine")
1267

1268
1269
1270
	ctx, cancel := context.WithCancel(context.Background())
	defer cancel()

Jesse Gross's avatar
Jesse Gross committed
1271
1272
1273
	server := &Server{
		modelPath: *mpath,
		status:    llm.ServerStatusLaunched,
1274
		hardErrCh: make(chan error, 1),
1275
1276
	}

Jesse Gross's avatar
Jesse Gross committed
1277
1278
	server.cond = sync.NewCond(&server.mu)
	server.ready.Add(1)
1279
1280
1281
1282
1283
1284
1285

	go server.run(ctx)

	addr := "127.0.0.1:" + strconv.Itoa(*port)
	listener, err := net.Listen("tcp", addr)
	if err != nil {
		fmt.Println("Listen error:", err)
1286
		return err
1287
1288
1289
1290
	}
	defer listener.Close()

	mux := http.NewServeMux()
1291
	// TODO: support embeddings
Jesse Gross's avatar
Jesse Gross committed
1292
	mux.HandleFunc("POST /load", server.load)
Michael Yang's avatar
Michael Yang committed
1293
	mux.HandleFunc("POST /embedding", server.embeddings)
1294
1295
	mux.HandleFunc("POST /completion", server.completion)
	mux.HandleFunc("GET /health", server.health)
1296
1297
1298
1299
1300
1301
1302
1303

	httpServer := http.Server{
		Handler: mux,
	}

	log.Println("Server listening on", addr)
	if err := httpServer.Serve(listener); err != nil {
		log.Fatal("server error:", err)
1304
		return err
1305
1306
	}

1307
	return nil
1308
}