runner.go 37.1 KB
Newer Older
Jesse Gross's avatar
Jesse Gross committed
1
package ollamarunner
2
3

import (
4
	"bytes"
5
6
7
8
9
	"context"
	"encoding/json"
	"errors"
	"flag"
	"fmt"
10
	"hash/maphash"
11
	"image"
12
13
14
15
16
	"log"
	"log/slog"
	"net"
	"net/http"
	"os"
Jesse Gross's avatar
Jesse Gross committed
17
	"reflect"
18
19
20
21
22
23
	"regexp"
	"runtime"
	"strconv"
	"strings"
	"sync"
	"time"
24
	"unicode/utf8"
25

26
	"golang.org/x/image/bmp"
27
28
	"golang.org/x/sync/semaphore"

29
	"github.com/ollama/ollama/api"
30
	"github.com/ollama/ollama/envconfig"
31
	"github.com/ollama/ollama/fs/ggml"
32
	"github.com/ollama/ollama/llm"
33
	"github.com/ollama/ollama/logutil"
34
	"github.com/ollama/ollama/ml"
Michael Yang's avatar
Michael Yang committed
35
	"github.com/ollama/ollama/ml/nn/pooling"
Jesse Gross's avatar
Jesse Gross committed
36
	"github.com/ollama/ollama/model"
37
	"github.com/ollama/ollama/model/input"
Jesse Gross's avatar
Jesse Gross committed
38
39
40
41
	"github.com/ollama/ollama/runner/common"
	"github.com/ollama/ollama/sample"

	_ "github.com/ollama/ollama/model/models"
42
43
44
)

type Sequence struct {
45
	// ctxs are used for allocating tensors that last the lifetime of the sequence, such as
46
	// multimodal embeddings
47
	ctxs []ml.Context
48

49
50
51
	// mmStore holds multimodal embeddings to mange memory and enable splitting across batches
	mmStore multimodalStore

52
53
54
55
	// batch index
	iBatch int

	// prompt inputs left to evaluate
56
	inputs []*input.Input
57

Jesse Gross's avatar
Jesse Gross committed
58
	// inputs that have been added to a batch but not yet submitted to Forward
59
	pendingInputs []*input.Input
60

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
	// tokens that have been generated but not returned yet (e.g. for stop sequences)
	pendingResponses []string

	// input cache being used by this sequence
	cache *InputCacheSlot

	// channel to send responses over
	responses chan string

	// channel to stop decoding (such as if the remote connection is closed)
	quit chan bool

	// number of tokens to predict
	numPredict int

76
77
	// sampler with transforms to run on generated logits
	sampler sample.Sampler
78
79
80
81
82
83
84
85

	// channel to send back the embedding if embedding only
	embedding chan []float32

	// stop sequences
	stop []string

	// number of inputs to keep at the beginning when shifting context window
Jesse Gross's avatar
Jesse Gross committed
86
	numKeep int32
87
88
89
90

	// true if an embedding are to be returned instead of text generation
	embeddingOnly bool

91
	doneReason llm.DoneReason
92
93

	// Metrics
94
95
96
97
98
	startedAt, lastUpdatedAt time.Time
	processingDuration       time.Duration
	samplingDuration         time.Duration
	numPredicted             int
	numPromptInputs          int
99
100
101
}

type NewSequenceParams struct {
Jesse Gross's avatar
Jesse Gross committed
102
103
104
	numPredict int
	stop       []string
	numKeep    int32
105
	sampler    sample.Sampler
Jesse Gross's avatar
Jesse Gross committed
106
	embedding  bool
107
108
}

109
func (s *Server) NewSequence(prompt string, images []llm.ImageData, params NewSequenceParams) (*Sequence, error) {
110
111
	s.ready.Wait()

112
	inputs, ctxs, mmStore, err := s.inputs(prompt, images)
113
114
115
116
117
118
119
	if err != nil {
		return nil, fmt.Errorf("failed to process inputs: %w", err)
	} else if len(inputs) == 0 {
		return nil, errors.New("no input provided")
	}

	if params.numKeep < 0 {
Jesse Gross's avatar
Jesse Gross committed
120
		params.numKeep = int32(len(inputs))
121
122
	}

123
124
125
	// Ensure that at least 1 input can be discarded during shift
	params.numKeep = min(params.numKeep, s.cache.numCtx-1)

Jesse Gross's avatar
Jesse Gross committed
126
127
	if int32(len(inputs)) > s.cache.numCtx {
		discard := int32(len(inputs)) - s.cache.numCtx
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
		promptStart := params.numKeep + discard

		// If we need to truncate in the middle of a unbreakable batch, remove the entire batch
		sameBatch := 0
		for i, inp := range inputs {
			if sameBatch > 0 {
				sameBatch--

				if promptStart == int32(i) {
					promptStart++
				}
			} else if promptStart == int32(i) {
				break
			}

			if inp.SameBatch != 0 {
				if int32(i) < params.numKeep {
					return nil, fmt.Errorf("SameBatch may not be specified within numKeep (index: %v numKeep: %v SameBatch: %v)", i, params.numKeep, inp.SameBatch)
				}

				sameBatch = inp.SameBatch
			}
		}

		if promptStart >= int32(len(inputs)) {
			return nil, errors.New("entire prompt removed by truncation")
		}

156
		newInputs := inputs[:params.numKeep]
157
		newInputs = append(newInputs, inputs[promptStart:]...)
158
159

		slog.Warn("truncating input prompt", "limit", s.cache.numCtx, "prompt", len(inputs), "keep", params.numKeep, "new", len(newInputs))
160
		inputs = newInputs
161
162
	}

Jesse Gross's avatar
Jesse Gross committed
163
	// TODO(jessegross): Ingest cached history for grammar
164
165

	return &Sequence{
166
167
168
169
170
171
172
173
174
175
176
177
178
		ctxs:             ctxs,
		mmStore:          mmStore,
		inputs:           inputs,
		numPromptInputs:  len(inputs),
		numPredict:       params.numPredict,
		pendingResponses: make([]string, 0),
		responses:        make(chan string, 100),
		quit:             make(chan bool, 1),
		embedding:        make(chan []float32, 1),
		sampler:          params.sampler,
		embeddingOnly:    params.embedding,
		stop:             params.stop,
		numKeep:          params.numKeep,
179
180
181
182
183
	}, nil
}

// inputs processes the prompt and images into a list of inputs
// by splitting the prompt on [img-<n>] tags, tokenizing text and
Jesse Gross's avatar
Jesse Gross committed
184
// decoding images
185
186
func (s *Server) inputs(prompt string, images []llm.ImageData) ([]*input.Input, []ml.Context, multimodalStore, error) {
	var inputs []*input.Input
187
	var ctxs []ml.Context
188
	var mmStore multimodalStore
189

190
191
192
	var parts []string
	var matches [][]string

193
	multimodalProcessor, visionModel := s.model.(model.MultimodalProcessor)
194

195
196
197
198
	if visionModel {
		re := regexp.MustCompile(`\[img-(\d+)\]`)
		parts = re.Split(prompt, -1)
		matches = re.FindAllStringSubmatch(prompt, -1)
199
		mmStore = newMultimodalStore()
200
201
202
203
204
	} else {
		parts = []string{prompt}
	}

	postTokenize := false
205
206
	for i, part := range parts {
		// text - tokenize
207
		tokens, err := s.model.(model.TextProcessor).Encode(part, i == 0)
208
		if err != nil {
209
			return nil, nil, nil, err
210
		}
211

212
		for _, t := range tokens {
213
			inputs = append(inputs, &input.Input{Token: t})
214
215
		}

Jesse Gross's avatar
Jesse Gross committed
216
		// image - decode and store
217
218
219
220
221
222
223
224
225
226
227
228
		if i < len(matches) {
			n, _ := strconv.Atoi(matches[i][1])

			imageIndex := -1
			for j := range images {
				if images[j].ID == n {
					imageIndex = j
					break
				}
			}

			if imageIndex < 0 {
229
				return nil, nil, nil, fmt.Errorf("invalid image index: %d", n)
230
231
			}

232
			ctx := s.model.Backend().NewContext()
233
234
			runtime.SetFinalizer(ctx, func(c ml.Context) { c.Close() })
			ctxs = append(ctxs, ctx)
235
			imageEmbeddings, err := multimodalProcessor.EncodeMultimodal(ctx, images[imageIndex].Data)
Jesse Gross's avatar
Jesse Gross committed
236
			if err != nil {
237
				return nil, nil, nil, err
Jesse Gross's avatar
Jesse Gross committed
238
239
			}

240
241
242
243
			s.multimodalHash.Reset()
			_, _ = s.multimodalHash.Write(images[imageIndex].Data)
			imageHash := s.multimodalHash.Sum64()

244
245
			mmStore.addMultimodal(imageEmbeddings)

246
			inputs = append(inputs, &input.Input{Multimodal: imageEmbeddings, MultimodalHash: imageHash})
247
248
249
250
251
252
			postTokenize = true
		}
	}

	if visionModel && postTokenize {
		var err error
253
		inputs, err = multimodalProcessor.PostTokenize(inputs)
254
		if err != nil {
255
			return nil, nil, nil, err
256
257
258
		}
	}

259
	return inputs, ctxs, mmStore, nil
260
261
}

262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
type batchState struct {
	// id provides a counter for trace logging batches
	id int

	// ctx holds the backend context used for this batch
	ctx ml.Context

	// modelOutput holds the outputs from this batch
	modelOutput ml.Tensor

	// batchInputs holds the input token pointers which may start as
	// placeholders later filled in before calling ctx.Compute
	batchInputs []*input.Input

	// batch contains the inputs for a model forward pass
	batch input.Batch

	// full set of seqs at the time this batch was initiated
	seqs []*Sequence

	// Signaled when this batches inputs are ready and compute can proceed
	inputsReadyCh chan struct{}

	// Signaling when Compute is about to begin on this batch, and
	// seqs have been updated to prepare for the next batch
	computeStartedCh chan struct{}

	// Signaled when this batches outputs are complete and the next batch can proceed
	outputsReadyCh chan struct{}
}

293
type Server struct {
Jesse Gross's avatar
Jesse Gross committed
294
295
296
297
298
299
300
301
302
303
	// modelPath is the location of the model to be loaded
	modelPath string

	// loadMu prevents more than one load attempt from occurring at a time
	loadMu sync.Mutex

	// lastLoad is the load request from the previous load attempt. Used to
	// detect if we can reuse an existing memory allocation.
	lastLoad llm.LoadRequest

304
305
306
307
308
	// is the server ready to process requests?
	// protects access to model and image
	ready sync.WaitGroup

	// loaded model
Jesse Gross's avatar
Jesse Gross committed
309
	model model.Model
310

311
	// status for external health reporting - loading, ready to serve, etc.
312
	status llm.ServerStatus
313
314
315
316
317
318
319
320

	// current progress on loading the model
	progress float32

	// number of simultaneous requests to handle
	parallel int

	// maximum number of elements in a batch (per sequence)
321
	// TODO (jmorganca): make this n_batch
322
323
	batchSize int

324
325
326
	// Simple counter used only for trace logging batches
	batchID int

327
328
329
330
331
332
333
334
	// protects access to everything below this line
	// this is context state needed for decoding
	mu sync.Mutex

	// indicates that data is ready for processing
	cond *sync.Cond

	// the list of simultaneous sequences being evaluated
335
336
	seqs []*Sequence

337
338
339
340
	// seqs can have a maximum of parallel entries, which
	// is enfoced by seqSem
	seqsSem *semaphore.Weighted

341
342
343
	// KV cache
	cache *InputCache

344
345
346
	// next sequence for prompt processing to avoid starvation
	nextSeq int

347
348
349
	// multimodalHash generates hashes for comparing equality
	// of non-text data
	multimodalHash maphash.Hash
350
351
352
353
354
355
356
357
358
359
360
361
}

func (s *Server) allNil() bool {
	for _, item := range s.seqs {
		if item != nil {
			return false
		}
	}
	return true
}

func flushPending(seq *Sequence) bool {
362
363
364
365
366
367
368
369
370
371
372
	joined := strings.Join(seq.pendingResponses, "")
	seq.pendingResponses = []string{}

	// Check if there are any partial UTF-8 characters remaining.
	// We already check and queue as we are generating but some may
	// still make it here:
	// - Sequence is ending, e.g. generation limit has been hit
	// - Invalid characters in the middle of a string
	// This is a stricter check to ensure we never output invalid Unicode.
	for !utf8.ValidString(joined) {
		joined = joined[:len(joined)-1]
373
374
	}

375
376
377
378
379
380
381
382
383
384
	if len(joined) == 0 {
		return true
	}

	select {
	case seq.responses <- joined:
		return true
	case <-seq.quit:
		return false
	}
385
386
}

387
func (s *Server) removeSequence(seqIndex int, reason llm.DoneReason) {
388
389
390
391
392
393
394
395
	seq := s.seqs[seqIndex]

	flushPending(seq)
	seq.doneReason = reason
	close(seq.responses)
	close(seq.embedding)
	seq.cache.InUse = false
	s.seqs[seqIndex] = nil
396
	s.seqsSem.Release(1)
397
398
}

399
400
// track batch state between forwardBatch, computeBatch and predictForwardBatch

401
402
403
func (s *Server) run(ctx context.Context) {
	s.ready.Wait()

Michael Yang's avatar
Michael Yang committed
404
	supportsAsync := pooling.Type(s.model.Backend().Config().Uint("pooling_type")) == pooling.TypeNone
Michael Yang's avatar
Michael Yang committed
405

406
	var previousBatch batchState
407
408
409
410
411
	for {
		select {
		case <-ctx.Done():
			return
		default:
412
			var err error
413
			nextBatch, err := s.forwardBatch(previousBatch)
414
415
416
			if err != nil {
				panic(err)
			}
Michael Yang's avatar
Michael Yang committed
417
418

			if supportsAsync {
419
				go s.computeBatch(nextBatch)
Michael Yang's avatar
Michael Yang committed
420
			} else {
421
				s.computeBatch(nextBatch)
Michael Yang's avatar
Michael Yang committed
422
			}
423
424

			previousBatch = nextBatch
425
426
427
428
		}
	}
}

429
430
431
432
433
434
// forwardBatch will calculate a batch.
func (s *Server) forwardBatch(pendingBatch batchState) (nextBatch batchState, err error) {
	// If we have a pending batch still processing, wait until Compute has started
	// before setting up the next batch so the seqs inputs are ready to receive their
	// token values and we get the correct input pointers for the batchInputs
	if pendingBatch.ctx != nil {
Michael Yang's avatar
Michael Yang committed
435
		logutil.Trace("forwardBatch waiting for compute to start", "pendingBatch.id", pendingBatch.id)
436
		<-pendingBatch.computeStartedCh
Michael Yang's avatar
Michael Yang committed
437
		logutil.Trace("forwardBatch compute started, setting up next batch", "pendingBatch.id", pendingBatch.id, "id", s.batchID)
438
439
		nextBatch.inputsReadyCh = pendingBatch.outputsReadyCh // Chain the ouputs from the pending batch to the next inputs batch
	} else {
Michael Yang's avatar
Michael Yang committed
440
		logutil.Trace("forwardBatch no pending batch detected", "batchID", s.batchID)
441
442
443
444
445
		// No pendingBatch, so the inputs will be ready in the seqs immediately
		nextBatch.inputsReadyCh = make(chan struct{}, 1)
		nextBatch.inputsReadyCh <- struct{}{}
	}

446
447
448
449
450
451
	s.mu.Lock()
	for s.allNil() {
		s.cond.Wait() // Wait until an item is added
	}
	defer s.mu.Unlock()

452
453
454
455
456
457
458
459
460
461
462
	nextBatch.ctx = s.model.Backend().NewContext()
	defer func() {
		if err != nil {
			nextBatch.ctx.Close()
			nextBatch.ctx = nil
		}
	}()
	nextBatch.id = s.batchID
	nextBatch.seqs = append([]*Sequence{}, s.seqs...)
	nextBatch.computeStartedCh = make(chan struct{}, 1)
	nextBatch.outputsReadyCh = make(chan struct{}, 1)
463

464
465
	// Prepare the seqs and batch, but defer the input token values as we may not be ready yet
	var batchInputs []*input.Input
466
	var batchOutputs []int32
Jesse Gross's avatar
Jesse Gross committed
467
	var batch input.Batch
468

469
470
471
472
473
	resumeSeq := -1
	seqIdx := s.nextSeq - 1
	for range s.seqs {
		seqIdx = (seqIdx + 1) % len(s.seqs)
		seq := s.seqs[seqIdx]
474
475
476
477
478
		if seq == nil {
			continue
		}

		// if past the num predict limit
479
		if seq.numPredict > 0 && seq.numPredicted >= seq.numPredict {
480
			s.removeSequence(seqIdx, llm.DoneReasonLength)
481
			nextBatch.seqs[seqIdx] = nil
482
483
484
			continue
		}

Jesse Gross's avatar
Jesse Gross committed
485
486
		if !s.cache.enabled {
			seq.inputs = append(seq.cache.Inputs, seq.inputs...)
487
			seq.cache.Inputs = []*input.Input{}
Jesse Gross's avatar
Jesse Gross committed
488
489
		}

490
491
		batchSize := s.batchSize

492
		for i, inp := range seq.inputs {
493
494
			// If we are required to put following inputs into a single batch then extend the
			// batch size. Since we are only extending the size the minimum amount possible, this
495
			// will cause a break if we have existing inputs.
496
497
498
499
500
			minBatch := 1 + inp.SameBatch
			if minBatch > batchSize {
				batchSize = minBatch
			}

501
502
503
504
505
506
507
508
			// Stop if the required batch would put us over the total batch size (including tokens
			// added by other sequences). If we haven't been able to add anything yet then pick up
			// here again for the next batch to avoid starvation, though we can opportunistically
			// check if other sequences can still squeeze something in.
			if len(batchInputs)+minBatch > batchSize {
				if len(seq.pendingInputs) == 0 && resumeSeq == -1 {
					resumeSeq = seqIdx
				}
509
510
				break
			}
Jesse Gross's avatar
Jesse Gross committed
511

512
513
514
515
516
517
518
519
			// If the sum of our working set (already processed tokens, tokens we added to this
			// batch, required following tokens) exceeds the context size, then trigger a shift
			// now so we don't have to do one later when we can't break the batch.
			if int32(len(seq.cache.Inputs)+len(seq.pendingInputs)+minBatch) > s.cache.numCtx {
				if len(seq.pendingInputs) != 0 {
					break
				}

520
				err = s.cache.ShiftCacheSlot(seq.cache, seq.numKeep)
521
				if err != nil {
522
523
524
525
526
					var reprocess *ErrReprocessInputs
					if errors.As(err, &reprocess) {
						// Prepend these inputs to the sequence's inputs queue for reprocessing
						seq.inputs = append(reprocess.Inputs, seq.inputs...)
						// Skip this sequence but continue processing the rest
527
528
						nextBatch.seqs[seqIdx] = nil // clear this sequence for this batch
						err = nil
529
530
						continue
					} else {
531
						return
532
					}
533
534
535
				}
			}

536
			batchInputs = append(batchInputs, seq.inputs[i])
537
			if inp.Multimodal != nil {
538
539
				var mm []input.Multimodal
				mm, err = seq.mmStore.getMultimodal(s.model.Backend(), nextBatch.ctx, inp.Multimodal, false)
540
				if err != nil {
541
					return
542
543
				}
				batch.Multimodal = append(batch.Multimodal, input.MultimodalIndex{Index: len(batchInputs) - 1, Multimodal: mm})
544
545
			}

Jesse Gross's avatar
Jesse Gross committed
546
547
			batch.Positions = append(batch.Positions, int32(len(seq.cache.Inputs)+len(seq.pendingInputs)))
			batch.Sequences = append(batch.Sequences, seq.cache.Id)
Jesse Gross's avatar
Jesse Gross committed
548

549
550
551
			seq.iBatch = len(batchOutputs)
			if i+1 == len(seq.inputs) || seq.embeddingOnly {
				batchOutputs = append(batchOutputs, int32(len(batchInputs)-1))
Jesse Gross's avatar
Jesse Gross committed
552
			}
Michael Yang's avatar
Michael Yang committed
553
			logutil.Trace("forwardBatch iBatch", "batchID", s.batchID, "seqIdx", seqIdx, "seq.iBatch", seq.iBatch, "i+1", i+1, "len(seq.inputs)", len(seq.inputs))
554
			seq.pendingInputs = append(seq.pendingInputs, inp)
555
		}
556
557

		seq.inputs = seq.inputs[len(seq.pendingInputs):]
558
559
	}

560
561
562
563
564
565
566
	startedAt := time.Now()
	for i := range nextBatch.seqs {
		if nextBatch.seqs[i] != nil && nextBatch.seqs[i].startedAt.IsZero() {
			nextBatch.seqs[i].startedAt = startedAt
		}
	}

567
568
569
570
571
572
	if resumeSeq != -1 {
		s.nextSeq = resumeSeq
	} else {
		s.nextSeq = seqIdx + 1
	}

573
	if len(batchInputs) == 0 {
Michael Yang's avatar
Michael Yang committed
574
		logutil.Trace("forwardBatch no batchInputs, going idle", "batchID", s.batchID)
575
576
577
		nextBatch.ctx.Close()
		nextBatch.ctx = nil
		return
578
	}
579
	s.batchID++
580

581
582
	// Actual batchInputs values will be injected into the batch.Inputs tensor before calling Compute
	batch.Inputs = nextBatch.ctx.Input().Empty(ml.DTypeI32, len(batchInputs))
583
	batch.Outputs = nextBatch.ctx.Input().FromIntSlice(batchOutputs, len(batchOutputs))
584
	nextBatch.modelOutput, err = model.Forward(nextBatch.ctx, s.model, batch)
585
	if err != nil {
586
587
		err = fmt.Errorf("failed to build graph: %w", err)
		return
588
	}
589
590
	nextBatch.batchInputs = batchInputs
	nextBatch.batch = batch
591

592
593
594
595
596
597
598
599
600
601
602
603
	return
}

// Async processing of the next batch
func (s *Server) computeBatch(activeBatch batchState) {
	if activeBatch.ctx == nil {
		// Nothing to compute
		return
	}
	defer activeBatch.ctx.Close()

	// Wait until inputs are ready
Michael Yang's avatar
Michael Yang committed
604
	logutil.Trace("computeBatch: waiting for inputs to be ready", "batchID", activeBatch.id)
605
	<-activeBatch.inputsReadyCh
Michael Yang's avatar
Michael Yang committed
606
	logutil.Trace("computeBatch: inputs are ready", "batchID", activeBatch.id)
607

608
609
610
	// Once we complete, signal the next batch of inputs are ready
	// This will unblock the next computeBatch, or forwardBatch if new seqs come in
	defer func() {
Michael Yang's avatar
Michael Yang committed
611
		logutil.Trace("computeBatch: outputs are ready", "batchID", activeBatch.id)
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
		activeBatch.outputsReadyCh <- struct{}{}
	}()

	s.mu.Lock()

	// Gather the actual input token values now that they're ready
	batchInputs := make([]int32, len(activeBatch.batchInputs))
	for i := range batchInputs {
		batchInputs[i] = activeBatch.batchInputs[i].Token
	}

	// Now we run part of the decoding algorithm to adjust the seq.inputs with placeholder tokens
	// so that forwardBatch can build a batchInputs set which will eventually contain the actual
	// decoded tokens.
	nextBatchTokens := make([]*input.Input, len(s.seqs))
	iBatches := make([]int, len(s.seqs)) // Record the iBatch values before releasing the lock
628
	for i, seq := range s.seqs {
629
		iBatches[i] = -1
630
631
632
		if seq == nil {
			continue
		}
633
634
635
636
		// Skip over any newly added or skipped sequences
		if activeBatch.seqs[i] == nil {
			continue
		}
637

638
639
640
		// Detect if the sequence we're processing has already been completed and replaced
		// with a new sequence
		if seq != activeBatch.seqs[i] {
Michael Yang's avatar
Michael Yang committed
641
			logutil.Trace("computeBatch: sequence replaced, discarding its results", "batchID", activeBatch.id, "seqIdx", i)
642
643
644
645
646
647
648
649
650
651
652
			continue
		}

		// Pending inputs will actually be in the cache after we call Compute.
		// However, we have already resolved any placeholder tokens.
		//
		// It's possible for incoming sequences to look at the values that we've
		// added to the cache here and start relying on them before we've done
		// the computation. This is OK as long as we ensure that this batch's
		// computation happens before any future batch's and we never fail
		// (unless we take down the whole runner).
653
654
		if len(seq.pendingInputs) > 0 {
			seq.cache.Inputs = append(seq.cache.Inputs, seq.pendingInputs...)
655
			seq.pendingInputs = []*input.Input{}
656
657
		}

658
659
		// don't sample prompt processing
		if len(seq.inputs) != 0 {
Jesse Gross's avatar
Jesse Gross committed
660
			if !s.cache.enabled {
Michael Yang's avatar
Michael Yang committed
661
				panic("caching disabled but unable to fit entire input in a batch")
Jesse Gross's avatar
Jesse Gross committed
662
			}
663
664
665
			continue
		}

Jesse Gross's avatar
Jesse Gross committed
666
		seq.numPredicted++
667
668
669
670
671
672
673
674
675
676
677
678
		nextToken := &input.Input{Token: 0} // placeholder we'll fill in after Compute/Floats
		seq.inputs = []*input.Input{nextToken}
		nextBatchTokens[i] = nextToken
		iBatches[i] = seq.iBatch
	}

	// At this point the seqs are ready for forwardBatch to move forward so unblock
	s.mu.Unlock()

	activeBatch.batch.Inputs.SetValueFromIntSlice(batchInputs)
	activeBatch.ctx.ComputeWithNotify(
		func() {
Michael Yang's avatar
Michael Yang committed
679
			logutil.Trace("computeBatch: signaling computeStartedCh", "batchID", activeBatch.id)
680
681
682
			activeBatch.computeStartedCh <- struct{}{}
		},
		activeBatch.modelOutput)
Michael Yang's avatar
Michael Yang committed
683
684

	outputs := activeBatch.modelOutput.Floats()
685
	t := time.Now()
686

Michael Yang's avatar
Michael Yang committed
687
	logutil.Trace("computeBatch: logits ready", "batchID", activeBatch.id)
688
689
690
691

	s.mu.Lock()
	defer s.mu.Unlock()

Michael Yang's avatar
Michael Yang committed
692
	logutil.Trace("computeBatch: decoding", "batchID", activeBatch.id)
693
694
695
696
697
	for i, seq := range s.seqs {
		if seq == nil || nextBatchTokens[i] == nil {
			continue
		}

698
		seq.lastUpdatedAt = t
Jesse Gross's avatar
Jesse Gross committed
699
		if seq.numPredicted == 1 {
700
701
			seq.processingDuration = seq.lastUpdatedAt.Sub(seq.startedAt)
			seq.startedAt = seq.lastUpdatedAt
702
703
704
705
		}

		// if done processing the prompt, generate an embedding and return
		if seq.embeddingOnly {
Michael Yang's avatar
Michael Yang committed
706
			seq.embedding <- outputs
707
			s.removeSequence(i, llm.DoneReasonStop)
708
			continue
709
710
711
		}

		// sample a token
712
713
		vocabSize := len(outputs) / activeBatch.batch.Outputs.Dim(0)
		logutil.Trace("computeBatch: vocab details", "batchID", activeBatch.id, "seqIdx", i, "len(logits)", len(outputs), "len(activeBatch.batch.Outputs)", activeBatch.batch.Outputs.Dim(0), "vocabSize", vocabSize, "iBatches", iBatches)
Michael Yang's avatar
Michael Yang committed
714
		token, err := seq.sampler.Sample(outputs[iBatches[i]*vocabSize : (iBatches[i]+1)*vocabSize])
Jesse Gross's avatar
Jesse Gross committed
715
		if err != nil {
Michael Yang's avatar
Michael Yang committed
716
			panic("failed to sample token")
Jesse Gross's avatar
Jesse Gross committed
717
		}
718

719
720
		nextBatchTokens[i].Token = token

721
		// if it's an end of sequence token, break
Jesse Gross's avatar
Jesse Gross committed
722
		if s.model.(model.TextProcessor).Is(token, model.SpecialEOS) {
723
724
725
			// TODO (jmorganca): we should send this back
			// as it's important for the /api/generate context
			// seq.responses <- piece
Michael Yang's avatar
Michael Yang committed
726
			logutil.Trace("computeBatch: EOS", "batchID", activeBatch.id, "seqIdx", i)
727
			s.removeSequence(i, llm.DoneReasonStop)
728
729
730
			continue
		}

Jesse Gross's avatar
Jesse Gross committed
731
732
		piece, err := s.model.(model.TextProcessor).Decode([]int32{token})
		if err != nil {
Michael Yang's avatar
Michael Yang committed
733
			panic("failed to decode token")
Jesse Gross's avatar
Jesse Gross committed
734
735
		}

736
737
738
		seq.pendingResponses = append(seq.pendingResponses, piece)
		sequence := strings.Join(seq.pendingResponses, "")

Jesse Gross's avatar
Jesse Gross committed
739
		if ok, stop := common.FindStop(sequence, seq.stop); ok {
740
741
742
743
			slog.Debug("hit stop token", "pending", seq.pendingResponses, "stop", stop)

			var tokenTruncated bool
			origLen := len(seq.pendingResponses)
Jesse Gross's avatar
Jesse Gross committed
744
			seq.pendingResponses, tokenTruncated = common.TruncateStop(seq.pendingResponses, stop)
745
746
747
748
749
750
751
752
753
754
755
756
757
758
			newLen := len(seq.pendingResponses)

			// Update the cache based on the tokens that will be returned:
			// - We have 1 token more than is currently in the cache because
			// the last one generated wasn't submitted to Decode
			// - Remove any stop sequences that we stripped out
			// - If truncateStop removed a portion of a token, drop that
			// - As defense-in-depth, if truncatedToken didn't find a stop token
			// remove the extra one that we added to the cache len
			tokenLen := len(seq.cache.Inputs) + 1
			tokenLen -= origLen - newLen
			if tokenTruncated || origLen == newLen {
				tokenLen--
			}
759

760
			seq.cache.Inputs = seq.cache.Inputs[:tokenLen]
761

762
			s.removeSequence(i, llm.DoneReasonStop)
763
764
765
			continue
		}

Jesse Gross's avatar
Jesse Gross committed
766
		if common.ContainsStopSuffix(sequence, seq.stop) {
767
768
769
			continue
		}

Jesse Gross's avatar
Jesse Gross committed
770
		if common.IncompleteUnicode(sequence) {
771
772
773
774
			continue
		}

		if !flushPending(seq) {
775
			s.removeSequence(i, llm.DoneReasonConnectionClosed)
776
777
		}
	}
778
779
780
781
782
783
784

	samplingDuration := time.Since(t)
	for i, seq := range s.seqs {
		if seq != nil && nextBatchTokens[i] != nil {
			s.seqs[i].samplingDuration += samplingDuration
		}
	}
785
786
787
}

func (s *Server) completion(w http.ResponseWriter, r *http.Request) {
788
	var req llm.CompletionRequest
789
790
791
792
793
	if err := json.NewDecoder(r.Body).Decode(&req); err != nil {
		http.Error(w, "Bad request", http.StatusBadRequest)
		return
	}

794
795
796
797
798
	if req.Options == nil {
		opts := api.DefaultOptions()
		req.Options = &opts
	}

799
800
801
802
803
804
805
806
807
808
	// Set the headers to indicate streaming
	w.Header().Set("Content-Type", "application/json")
	w.Header().Set("Transfer-Encoding", "chunked")

	flusher, ok := w.(http.Flusher)
	if !ok {
		http.Error(w, "Streaming not supported", http.StatusInternalServerError)
		return
	}

809
	var grammar *sample.GrammarSampler
810
811
	var err error
	if req.Grammar != "" {
812
		grammar, err = sample.NewGrammarSampler(s.model.(model.TextProcessor), req.Grammar)
813
814
815
816
		if err != nil {
			http.Error(w, "failed to load model vocabulary required for format", http.StatusInternalServerError)
			return
		}
817
		defer grammar.Free()
818
819
	}

820
	sampler := sample.NewSampler(
821
822
823
824
825
		req.Options.Temperature,
		req.Options.TopK,
		req.Options.TopP,
		req.Options.MinP,
		req.Options.Seed,
826
		grammar,
827
828
	)

829
	seq, err := s.NewSequence(req.Prompt, req.Images, NewSequenceParams{
830
831
832
		numPredict: req.Options.NumPredict,
		stop:       req.Options.Stop,
		numKeep:    int32(req.Options.NumKeep),
833
		sampler:    sampler,
Jesse Gross's avatar
Jesse Gross committed
834
		embedding:  false,
835
836
837
838
839
840
	})
	if err != nil {
		http.Error(w, fmt.Sprintf("Failed to create new sequence: %v", err), http.StatusInternalServerError)
		return
	}

841
	// Ensure there is a place to put the sequence, released when removed from s.seqs
842
	if err := s.seqsSem.Acquire(r.Context(), 1); err != nil {
843
844
845
		if errors.Is(err, context.Canceled) {
			slog.Info("aborting completion request due to client closing the connection")
		} else {
846
			http.Error(w, fmt.Sprintf("Failed to acquire semaphore: %v", err), http.StatusInternalServerError)
847
		}
848
849
850
		return
	}

851
	s.mu.Lock()
852
	found := false
853
854
	for i, sq := range s.seqs {
		if sq == nil {
Michael Yang's avatar
Michael Yang committed
855
			seq.cache, seq.inputs, err = s.cache.LoadCacheSlot(seq.inputs, true)
856
857
			if err != nil {
				s.mu.Unlock()
858
				s.seqsSem.Release(1)
859
860
861
				http.Error(w, fmt.Sprintf("Failed to load cache: %v", err), http.StatusInternalServerError)
				return
			}
862

863
864
			s.seqs[i] = seq
			s.cond.Signal()
865
			found = true
866
867
868
869
870
			break
		}
	}
	s.mu.Unlock()

871
	if !found {
872
		s.seqsSem.Release(1)
873
874
875
876
		http.Error(w, "could not find an available sequence", http.StatusInternalServerError)
		return
	}

877
878
879
880
881
882
883
	for {
		select {
		case <-r.Context().Done():
			close(seq.quit)
			return
		case content, ok := <-seq.responses:
			if ok {
884
				if err := json.NewEncoder(w).Encode(&llm.CompletionResponse{
885
					Content: content,
886
887
888
889
890
891
892
893
				}); err != nil {
					http.Error(w, fmt.Sprintf("failed to encode response: %v", err), http.StatusInternalServerError)
					close(seq.quit)
					return
				}

				flusher.Flush()
			} else {
894
895
				if err := json.NewEncoder(w).Encode(&llm.CompletionResponse{
					Done:               true,
896
					DoneReason:         seq.doneReason,
897
					PromptEvalCount:    seq.numPromptInputs,
898
					PromptEvalDuration: seq.processingDuration,
899
					EvalCount:          seq.numPredicted,
900
					EvalDuration:       seq.lastUpdatedAt.Sub(seq.startedAt) - seq.samplingDuration,
901
902
903
904
905
906
907
908
909
910
				}); err != nil {
					http.Error(w, fmt.Sprintf("failed to encode final response: %v", err), http.StatusInternalServerError)
				}

				return
			}
		}
	}
}

Michael Yang's avatar
Michael Yang committed
911
func (s *Server) embeddings(w http.ResponseWriter, r *http.Request) {
Michael Yang's avatar
Michael Yang committed
912
	if pooling.Type(s.model.Backend().Config().Uint("pooling_type")) == pooling.TypeNone {
Michael Yang's avatar
Michael Yang committed
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
		http.Error(w, "this model does not support embeddings", http.StatusNotImplemented)
		return
	}

	var req llm.EmbeddingRequest
	if err := json.NewDecoder(r.Body).Decode(&req); err != nil {
		http.Error(w, fmt.Sprintf("bad request: %s", err), http.StatusBadRequest)
		return
	}

	w.Header().Set("Content-Type", "application/json")
	seq, err := s.NewSequence(req.Content, nil, NewSequenceParams{embedding: true})
	if err != nil {
		http.Error(w, fmt.Sprintf("failed to create new sequence: %v", err), http.StatusInternalServerError)
		return
	}

	if err := s.seqsSem.Acquire(r.Context(), 1); err != nil {
		if errors.Is(err, context.Canceled) {
			slog.Info("aborting embedding request due to client closing the connection")
		} else {
			http.Error(w, fmt.Sprintf("failed to acquire semaphore: %v", err), http.StatusInternalServerError)
		}
		return
	}

	s.mu.Lock()
	found := false
	for i, sq := range s.seqs {
		if sq == nil {
			seq.cache, seq.inputs, err = s.cache.LoadCacheSlot(seq.inputs, false)
			if err != nil {
				s.mu.Unlock()
				s.seqsSem.Release(1)
				http.Error(w, fmt.Sprintf("failed to load cache: %v", err), http.StatusInternalServerError)
				return
			}

			s.seqs[i] = seq
			s.cond.Signal()
			found = true
			break
		}
	}
	s.mu.Unlock()

	if !found {
		s.seqsSem.Release(1)
		http.Error(w, "could not find an available sequence", http.StatusInternalServerError)
		return
	}

	if err := json.NewEncoder(w).Encode(&llm.EmbeddingResponse{
		Embedding: <-seq.embedding,
	}); err != nil {
		http.Error(w, fmt.Sprintf("failed to encode response: %v", err), http.StatusInternalServerError)
	}
}

972
973
func (s *Server) health(w http.ResponseWriter, r *http.Request) {
	w.Header().Set("Content-Type", "application/json")
974
975
	if err := json.NewEncoder(w).Encode(&llm.ServerStatusResponse{
		Status:   s.status,
976
977
978
979
980
981
		Progress: s.progress,
	}); err != nil {
		http.Error(w, fmt.Sprintf("failed to encode response: %v", err), http.StatusInternalServerError)
	}
}

982
func (s *Server) reserveWorstCaseGraph() error {
983
984
985
	ctx := s.model.Backend().NewContext()
	defer ctx.Close()

986
	var err error
987
988
989
990
	inputs := make([]*input.Input, s.batchSize)
	for i := range inputs {
		inputs[i] = &input.Input{}
	}
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
	mmStore := newMultimodalStore()

	// Multimodal strategy:
	// - Encode a 2048x2048 image. This assumes that a single image of this
	//   size is sufficient to trigger the worst case. This is currently true
	//   because for existing models, only a single image fits in a batch.
	// - Add the embedding to a full batch of tokens - this is necessary because
	//   the model may be looking for non-image data, such as <image> tags.
	// - Run PostTokenize to execute any transformations between generated
	//   embeddings and what the forward pass expects.
	// - The result may now be larger than a batch (images may not fit in a
	//   single batch), so trim based on what will fit and must be grouped together.
	// - Fill out the rest of the space with text tokens.
	if multimodalProcessor, ok := s.model.(model.MultimodalProcessor); ok {
		mmCtx := s.model.Backend().NewContext()
		defer mmCtx.Close()

		img := image.NewGray(image.Rect(0, 0, 2048, 2048))
		var buf bytes.Buffer
		bmp.Encode(&buf, img)

		if inputs[0].Multimodal, err = multimodalProcessor.EncodeMultimodal(mmCtx, buf.Bytes()); err == nil {
			mmStore.addMultimodal(inputs[0].Multimodal)

			inputs, err = multimodalProcessor.PostTokenize(inputs)
			if err != nil {
				return err
			}

			for i, inp := range inputs {
				minBatch := 1 + inp.SameBatch
				if minBatch > s.batchSize {
					inputs = inputs[i:min(i+minBatch, len(inputs))]
					break
				} else if i+minBatch > s.batchSize {
					inputs = inputs[:i]
					break
				}
			}

			if len(inputs) < s.batchSize {
1032
				newInputs := make([]*input.Input, s.batchSize)
1033
				copy(newInputs, inputs)
1034
1035
1036
				for i := len(inputs); i < s.batchSize; i++ {
					newInputs[i] = &input.Input{}
				}
1037
1038
1039
1040
1041
				inputs = newInputs
			}
		}
	}

1042
1043
	var batch input.Batch

1044
	batchInputs := make([]int32, len(inputs))
1045
1046
	batch.Positions = make([]int32, len(inputs))
	batch.Sequences = make([]int, len(inputs))
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
	for i, inp := range inputs {
		batchInputs[i] = inp.Token
		if inp.Multimodal != nil {
			mm, err := mmStore.getMultimodal(s.model.Backend(), ctx, inp.Multimodal, true)
			if err != nil {
				return err
			}
			batch.Multimodal = append(batch.Multimodal, input.MultimodalIndex{Index: i, Multimodal: mm})
		}

1057
1058
1059
		batch.Positions[i] = int32(i)
	}

1060
	batch.Inputs = ctx.Input().FromIntSlice(batchInputs, len(batchInputs))
1061
	batch.Outputs = ctx.Input().Empty(ml.DTypeI32, s.parallel)
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075

	cache := s.model.Config().Cache
	if cache != nil {
		err := cache.StartForward(ctx, batch, true)
		if err != nil {
			return err
		}
	}

	t, err := s.model.Forward(ctx, batch)
	if err != nil {
		return err
	}

1076
	ctx.Forward(t).Reserve()
1077
1078

	return nil
1079
}
1080

Jesse Gross's avatar
Jesse Gross committed
1081
1082
1083
// allocModel pre-allocates the maximum needed memory for a model
// based on the given parameters
func (s *Server) allocModel(
1084
	mpath string,
1085
	params ml.BackendParams,
Jesse Gross's avatar
Jesse Gross committed
1086
	loraPath []string,
Jesse Gross's avatar
Jesse Gross committed
1087
	parallel int,
1088
	kvCacheType string,
Jesse Gross's avatar
Jesse Gross committed
1089
	kvSize int,
1090
	multiUserCache bool,
Jesse Gross's avatar
Jesse Gross committed
1091
1092
1093
1094
1095
) (panicErr error) {
	// Convert memory allocation panics to errors
	defer func() {
		if r := recover(); r != nil {
			if err, ok := r.(error); ok {
1096
1097
1098
1099
1100
1101
				var noMem ml.ErrNoMem
				if errors.As(err, &noMem) {
					panicErr = noMem
				} else {
					panic(r)
				}
Jesse Gross's avatar
Jesse Gross committed
1102
1103
1104
1105
1106
1107
			} else {
				panic(r)
			}
		}
	}()

1108
	var err error
1109
	s.model, err = model.New(mpath, params)
1110
	if err != nil {
1111
		return err
1112
	}
1113

Jesse Gross's avatar
Jesse Gross committed
1114
	// TODO(jessegross): LoRA loading
Jesse Gross's avatar
Jesse Gross committed
1115
	if len(loraPath) > 0 {
1116
		return errors.New("loras are not yet implemented")
1117
1118
	}

1119
	s.cache, err = NewInputCache(s.model, kvCacheType, int32(kvSize), parallel, s.batchSize, multiUserCache)
1120
	if err != nil {
1121
		return err
1122
	}
1123

Jesse Gross's avatar
Jesse Gross committed
1124
1125
1126
1127
1128
1129
1130
1131
1132
	if !s.cache.enabled && parallel > 1 {
		parallel = 1
		slog.Warn("model does not support caching, disabling parallel processing")
	}

	s.parallel = parallel
	s.seqs = make([]*Sequence, s.parallel)
	s.seqsSem = semaphore.NewWeighted(int64(s.parallel))

1133
1134
1135
	return s.reserveWorstCaseGraph()
}

Jesse Gross's avatar
Jesse Gross committed
1136
1137
1138
1139
1140
1141
1142
// closeModel frees all memory associated with a model
func (s *Server) closeModel() {
	s.cache.Close()
	s.cache = nil
	if s.model != nil {
		s.model.Backend().Close()
		s.model = nil
1143
	}
Jesse Gross's avatar
Jesse Gross committed
1144
}
1145

Jesse Gross's avatar
Jesse Gross committed
1146
1147
1148
1149
// loadModel loads the weights for a model. The memory must already
// have been allocated with allocModel
func (s *Server) loadModel() {
	err := s.model.Backend().Load(context.TODO(),
1150
1151
1152
1153
		func(progress float32) {
			s.progress = progress
		})
	if err != nil {
Jesse Gross's avatar
Jesse Gross committed
1154
		panic(fmt.Errorf("failed to load model: %v", err))
1155
1156
	}

1157
	s.status = llm.ServerStatusReady
1158
1159
1160
	s.ready.Done()
}

Jesse Gross's avatar
Jesse Gross committed
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
// load is the handler called by the Ollama server to process different
// load operations
func (s *Server) load(w http.ResponseWriter, r *http.Request) {
	s.loadMu.Lock()
	defer s.loadMu.Unlock()

	w.Header().Set("Content-Type", "application/json")

	if s.status != llm.ServerStatusLaunched {
		http.Error(w, "model already loaded", http.StatusInternalServerError)
		return
	}

	var req llm.LoadRequest
	if err := json.NewDecoder(r.Body).Decode(&req); err != nil {
		http.Error(w, "bad request", http.StatusBadRequest)
		return
	}

	slog.Info("load", "request", req)

	if req.Operation == llm.LoadOperationClose {
		s.closeModel()
		if err := json.NewEncoder(w).Encode(&llm.LoadResponse{}); err != nil {
			http.Error(w, fmt.Sprintf("failed to encode response: %v", err), http.StatusInternalServerError)
		}
		return
	}

	s.lastLoad.Operation = req.Operation
	loadModel := s.model == nil || !reflect.DeepEqual(req, s.lastLoad)

	s.lastLoad = req

	if loadModel {
		s.closeModel()

		params := ml.BackendParams{
			AllocMemory:    req.Operation != llm.LoadOperationFit,
			NumThreads:     req.NumThreads,
			GPULayers:      req.GPULayers,
			FlashAttention: req.FlashAttention,
		}

		s.batchSize = req.BatchSize

		err := s.allocModel(s.modelPath, params, req.LoraPath, req.Parallel, req.KvCacheType, req.KvSize, req.MultiUserCache)
		if err != nil {
			s.closeModel()

			var noMem ml.ErrNoMem
			if errors.As(err, &noMem) {
				resp := llm.LoadResponse{Success: false, Memory: noMem.BackendMemory}
				if err := json.NewEncoder(w).Encode(&resp); err != nil {
					http.Error(w, fmt.Sprintf("failed to encode response: %v", err), http.StatusInternalServerError)
				}

				return
			}

			http.Error(w, fmt.Sprintf("failed to initialize model: %v", err), http.StatusInternalServerError)
			return
		}
	}

	mem := s.model.Backend().BackendMemory()

	switch req.Operation {
	case llm.LoadOperationFit:
		// LoadOperationFit can't be used for anything else, so just close it
		s.closeModel()

	// LoadOperationAlloc should stay open for future operations

	case llm.LoadOperationCommit:
		s.status = llm.ServerStatusLoadingModel
		go s.loadModel()
	}

	resp := llm.LoadResponse{Success: true, Memory: mem}
	if err := json.NewEncoder(w).Encode(&resp); err != nil {
		http.Error(w, fmt.Sprintf("failed to encode response: %v", err), http.StatusInternalServerError)
		return
	}
}

1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
// info is the handler called by the Ollama server to report information
// about the GPU devices in use by this runner
func (s *Server) info(w http.ResponseWriter, r *http.Request) {
	s.loadMu.Lock()
	defer s.loadMu.Unlock()

	w.Header().Set("Content-Type", "application/json")

	m := s.model

	if m == nil {
		startLoad := time.Now()

		// Dummy load to get the backend wired up
		f, err := os.CreateTemp("", "*.bin")
		if err != nil {
			http.Error(w, fmt.Sprintf("failed to initialize baackend: %v", err), http.StatusInternalServerError)
			return
		}
		defer f.Close()
		defer os.Remove(f.Name())

		if err := ggml.WriteGGUF(f, ggml.KV{
			"general.architecture": "llama",
			"tokenizer.ggml.model": "gpt2",
		}, nil); err != nil {
			http.Error(w, fmt.Sprintf("failed to initialize baackend: %v", err), http.StatusInternalServerError)
			return
		}

		m, err = model.New(f.Name(), ml.BackendParams{NumThreads: runtime.NumCPU(), AllocMemory: false, GPULayers: ml.GPULayersList{{}}})
		if err != nil {
			http.Error(w, fmt.Sprintf("failed to initialize baackend: %v", err), http.StatusInternalServerError)
			return
		}
		slog.Debug("dummy model load took", "duration", time.Since(startLoad))
	}

	startDevices := time.Now()
	infos := m.Backend().BackendDevices()
	slog.Debug("gathering device infos took", "duration", time.Since(startDevices))
	if err := json.NewEncoder(w).Encode(&infos); err != nil {
		http.Error(w, fmt.Sprintf("failed to encode response: %v", err), http.StatusInternalServerError)
	}
}

1293
1294
1295
1296
func Execute(args []string) error {
	fs := flag.NewFlagSet("runner", flag.ExitOnError)
	mpath := fs.String("model", "", "Path to model binary file")
	port := fs.Int("port", 8080, "Port to expose the server on")
1297
	_ = fs.Bool("verbose", false, "verbose output (default: disabled)")
1298

1299
1300
1301
1302
1303
1304
	fs.Usage = func() {
		fmt.Fprintf(fs.Output(), "Runner usage\n")
		fs.PrintDefaults()
	}
	if err := fs.Parse(args); err != nil {
		return err
1305
	}
1306
	slog.SetDefault(logutil.NewLogger(os.Stderr, envconfig.LogLevel()))
Jesse Gross's avatar
Jesse Gross committed
1307
	slog.Info("starting ollama engine")
1308

1309
1310
1311
	ctx, cancel := context.WithCancel(context.Background())
	defer cancel()

Jesse Gross's avatar
Jesse Gross committed
1312
1313
1314
	server := &Server{
		modelPath: *mpath,
		status:    llm.ServerStatusLaunched,
1315
1316
	}

Jesse Gross's avatar
Jesse Gross committed
1317
1318
	server.cond = sync.NewCond(&server.mu)
	server.ready.Add(1)
1319
1320
1321
1322
1323
1324
1325

	go server.run(ctx)

	addr := "127.0.0.1:" + strconv.Itoa(*port)
	listener, err := net.Listen("tcp", addr)
	if err != nil {
		fmt.Println("Listen error:", err)
1326
		return err
1327
1328
1329
1330
	}
	defer listener.Close()

	mux := http.NewServeMux()
1331
	// TODO: support embeddings
1332
	mux.HandleFunc("GET /info", server.info)
Jesse Gross's avatar
Jesse Gross committed
1333
	mux.HandleFunc("POST /load", server.load)
Michael Yang's avatar
Michael Yang committed
1334
	mux.HandleFunc("POST /embedding", server.embeddings)
1335
1336
	mux.HandleFunc("POST /completion", server.completion)
	mux.HandleFunc("GET /health", server.health)
1337
1338
1339
1340
1341
1342
1343
1344

	httpServer := http.Server{
		Handler: mux,
	}

	log.Println("Server listening on", addr)
	if err := httpServer.Serve(listener); err != nil {
		log.Fatal("server error:", err)
1345
		return err
1346
1347
	}

1348
	return nil
1349
}