predict_rec.py 13.4 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
LDOUBLEV's avatar
LDOUBLEV committed
14
15
import os
import sys
Topdu's avatar
Topdu committed
16
from PIL import Image
17
__dir__ = os.path.dirname(os.path.abspath(__file__))
LDOUBLEV's avatar
LDOUBLEV committed
18
sys.path.append(__dir__)
19
sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))
LDOUBLEV's avatar
LDOUBLEV committed
20

21
22
os.environ["FLAGS_allocator_strategy"] = 'auto_growth'

LDOUBLEV's avatar
LDOUBLEV committed
23
24
25
26
import cv2
import numpy as np
import math
import time
WenmuZhou's avatar
WenmuZhou committed
27
import traceback
tink2123's avatar
tink2123 committed
28
import paddle
29
30

import tools.infer.utility as utility
WenmuZhou's avatar
WenmuZhou committed
31
32
from ppocr.postprocess import build_post_process
from ppocr.utils.logging import get_logger
33
from ppocr.utils.utility import get_image_file_list, check_and_read_gif
LDOUBLEV's avatar
LDOUBLEV committed
34

WenmuZhou's avatar
WenmuZhou committed
35
36
logger = get_logger()

LDOUBLEV's avatar
LDOUBLEV committed
37
38
39

class TextRecognizer(object):
    def __init__(self, args):
40
        self.rec_image_shape = [int(v) for v in args.rec_image_shape.split(",")]
dyning's avatar
dyning committed
41
        self.character_type = args.rec_char_type
42
        self.rec_batch_num = args.rec_batch_num
tink2123's avatar
tink2123 committed
43
        self.rec_algorithm = args.rec_algorithm
WenmuZhou's avatar
WenmuZhou committed
44
45
        postprocess_params = {
            'name': 'CTCLabelDecode',
tink2123's avatar
tink2123 committed
46
            "character_type": args.rec_char_type,
47
            "character_dict_path": args.rec_char_dict_path,
WenmuZhou's avatar
WenmuZhou committed
48
            "use_space_char": args.use_space_char
tink2123's avatar
tink2123 committed
49
        }
tink2123's avatar
tink2123 committed
50
51
52
        if self.rec_algorithm == "SRN":
            postprocess_params = {
                'name': 'SRNLabelDecode',
WenmuZhou's avatar
WenmuZhou committed
53
54
55
56
57
58
59
                "character_type": args.rec_char_type,
                "character_dict_path": args.rec_char_dict_path,
                "use_space_char": args.use_space_char
            }
        elif self.rec_algorithm == "RARE":
            postprocess_params = {
                'name': 'AttnLabelDecode',
tink2123's avatar
tink2123 committed
60
61
62
63
                "character_type": args.rec_char_type,
                "character_dict_path": args.rec_char_dict_path,
                "use_space_char": args.use_space_char
            }
Topdu's avatar
Topdu committed
64
65
66
67
68
69
70
        elif self.rec_algorithm == 'NRTR':
            postprocess_params = {
                'name': 'NRTRLabelDecode',
                "character_type": args.rec_char_type,
                "character_dict_path": args.rec_char_dict_path,
                "use_space_char": args.use_space_char
            }
WenmuZhou's avatar
WenmuZhou committed
71
        self.postprocess_op = build_post_process(postprocess_params)
LDOUBLEV's avatar
LDOUBLEV committed
72
        self.predictor, self.input_tensor, self.output_tensors, self.config = \
WenmuZhou's avatar
WenmuZhou committed
73
            utility.create_predictor(args, 'rec', logger)
tink2123's avatar
tink2123 committed
74
75
76
77
        self.benchmark = args.benchmark
        if args.benchmark:
            import auto_log
            pid = os.getpid()
LDOUBLEV's avatar
LDOUBLEV committed
78
            gpu_id = utility.get_infer_gpuid()
tink2123's avatar
tink2123 committed
79
80
81
            self.autolog = auto_log.AutoLogger(
                model_name="rec",
                model_precision=args.precision,
tink2123's avatar
tink2123 committed
82
                batch_size=args.rec_batch_num,
tink2123's avatar
tink2123 committed
83
                data_shape="dynamic",
84
                save_path=None,  #args.save_log_path,
tink2123's avatar
tink2123 committed
85
86
87
                inference_config=self.config,
                pids=pid,
                process_name=None,
LDOUBLEV's avatar
LDOUBLEV committed
88
                gpu_ids=gpu_id if args.use_gpu else None,
tink2123's avatar
tink2123 committed
89
90
91
                time_keys=[
                    'preprocess_time', 'inference_time', 'postprocess_time'
                ],
92
93
                warmup=2,
                logger=logger)
LDOUBLEV's avatar
LDOUBLEV committed
94

95
    def resize_norm_img(self, img, max_wh_ratio):
LDOUBLEV's avatar
LDOUBLEV committed
96
        imgC, imgH, imgW = self.rec_image_shape
Topdu's avatar
Topdu committed
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
        if imgC == 1:
            img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
            # h = img.shape[0]
            # w = img.shape[1]
            # ratio = w / float(h)
            # if math.ceil(imgH * ratio) > imgW:
            #     resized_w = imgW
            # else:
            #     resized_w = int(math.ceil(imgH * ratio))
            # resized_image = cv2.resize(img, (resized_w, imgH))
            # #norm_img = np.expand_dims(resized_image, -1)
            # #norm_img = norm_img.transpose((2, 0, 1))
            # resized_image = resized_image.astype(np.float32) / 128. - 1.
            # padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
            # padding_im[0, :, 0:resized_w] = resized_image

            # return padding_im
            image_pil = Image.fromarray(np.uint8(img))
            img = image_pil.resize([100, 32], Image.ANTIALIAS)
            img = np.array(img)
            norm_img = np.expand_dims(img, -1)
            norm_img = norm_img.transpose((2, 0, 1))
            return norm_img.astype(np.float32) / 128. - 1.

121
        assert imgC == img.shape[2]
tink2123's avatar
tink2123 committed
122
123
        max_wh_ratio = max(max_wh_ratio, imgW / imgH)
        imgW = int((32 * max_wh_ratio))
124
        h, w = img.shape[:2]
125
126
127
128
129
        ratio = w / float(h)
        if math.ceil(imgH * ratio) > imgW:
            resized_w = imgW
        else:
            resized_w = int(math.ceil(imgH * ratio))
tink2123's avatar
tink2123 committed
130
        resized_image = cv2.resize(img, (resized_w, imgH))
LDOUBLEV's avatar
LDOUBLEV committed
131
132
133
134
135
136
137
138
        resized_image = resized_image.astype('float32')
        resized_image = resized_image.transpose((2, 0, 1)) / 255
        resized_image -= 0.5
        resized_image /= 0.5
        padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
        padding_im[:, :, 0:resized_w] = resized_image
        return padding_im

tink2123's avatar
tink2123 committed
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
    def resize_norm_img_srn(self, img, image_shape):
        imgC, imgH, imgW = image_shape

        img_black = np.zeros((imgH, imgW))
        im_hei = img.shape[0]
        im_wid = img.shape[1]

        if im_wid <= im_hei * 1:
            img_new = cv2.resize(img, (imgH * 1, imgH))
        elif im_wid <= im_hei * 2:
            img_new = cv2.resize(img, (imgH * 2, imgH))
        elif im_wid <= im_hei * 3:
            img_new = cv2.resize(img, (imgH * 3, imgH))
        else:
            img_new = cv2.resize(img, (imgW, imgH))

        img_np = np.asarray(img_new)
        img_np = cv2.cvtColor(img_np, cv2.COLOR_BGR2GRAY)
        img_black[:, 0:img_np.shape[1]] = img_np
        img_black = img_black[:, :, np.newaxis]

        row, col, c = img_black.shape
        c = 1

        return np.reshape(img_black, (c, row, col)).astype(np.float32)

    def srn_other_inputs(self, image_shape, num_heads, max_text_length):

        imgC, imgH, imgW = image_shape
        feature_dim = int((imgH / 8) * (imgW / 8))

        encoder_word_pos = np.array(range(0, feature_dim)).reshape(
            (feature_dim, 1)).astype('int64')
        gsrm_word_pos = np.array(range(0, max_text_length)).reshape(
            (max_text_length, 1)).astype('int64')

        gsrm_attn_bias_data = np.ones((1, max_text_length, max_text_length))
        gsrm_slf_attn_bias1 = np.triu(gsrm_attn_bias_data, 1).reshape(
            [-1, 1, max_text_length, max_text_length])
        gsrm_slf_attn_bias1 = np.tile(
            gsrm_slf_attn_bias1,
            [1, num_heads, 1, 1]).astype('float32') * [-1e9]

        gsrm_slf_attn_bias2 = np.tril(gsrm_attn_bias_data, -1).reshape(
            [-1, 1, max_text_length, max_text_length])
        gsrm_slf_attn_bias2 = np.tile(
            gsrm_slf_attn_bias2,
            [1, num_heads, 1, 1]).astype('float32') * [-1e9]

        encoder_word_pos = encoder_word_pos[np.newaxis, :]
        gsrm_word_pos = gsrm_word_pos[np.newaxis, :]

        return [
            encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1,
            gsrm_slf_attn_bias2
        ]

    def process_image_srn(self, img, image_shape, num_heads, max_text_length):
        norm_img = self.resize_norm_img_srn(img, image_shape)
        norm_img = norm_img[np.newaxis, :]

        [encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1, gsrm_slf_attn_bias2] = \
            self.srn_other_inputs(image_shape, num_heads, max_text_length)

        gsrm_slf_attn_bias1 = gsrm_slf_attn_bias1.astype(np.float32)
        gsrm_slf_attn_bias2 = gsrm_slf_attn_bias2.astype(np.float32)
        encoder_word_pos = encoder_word_pos.astype(np.int64)
        gsrm_word_pos = gsrm_word_pos.astype(np.int64)

        return (norm_img, encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1,
                gsrm_slf_attn_bias2)

LDOUBLEV's avatar
LDOUBLEV committed
211
212
    def __call__(self, img_list):
        img_num = len(img_list)
213
        # Calculate the aspect ratio of all text bars
214
215
216
        width_list = []
        for img in img_list:
            width_list.append(img.shape[1] / float(img.shape[0]))
zhangxin's avatar
zhangxin committed
217
        # Sorting can speed up the recognition process
218
219
        indices = np.argsort(np.array(width_list))
        rec_res = [['', 0.0]] * img_num
220
        batch_num = self.rec_batch_num
LDOUBLEV's avatar
LDOUBLEV committed
221
        st = time.time()
tink2123's avatar
tink2123 committed
222
223
        if self.benchmark:
            self.autolog.times.start()
LDOUBLEV's avatar
LDOUBLEV committed
224
225
226
        for beg_img_no in range(0, img_num, batch_num):
            end_img_no = min(img_num, beg_img_no + batch_num)
            norm_img_batch = []
227
            max_wh_ratio = 0
LDOUBLEV's avatar
LDOUBLEV committed
228
            for ino in range(beg_img_no, end_img_no):
229
                h, w = img_list[indices[ino]].shape[0:2]
230
231
232
                wh_ratio = w * 1.0 / h
                max_wh_ratio = max(max_wh_ratio, wh_ratio)
            for ino in range(beg_img_no, end_img_no):
tink2123's avatar
tink2123 committed
233
234
235
236
237
238
                if self.rec_algorithm != "SRN":
                    norm_img = self.resize_norm_img(img_list[indices[ino]],
                                                    max_wh_ratio)
                    norm_img = norm_img[np.newaxis, :]
                    norm_img_batch.append(norm_img)
                else:
LDOUBLEV's avatar
LDOUBLEV committed
239
240
                    norm_img = self.process_image_srn(
                        img_list[indices[ino]], self.rec_image_shape, 8, 25)
tink2123's avatar
tink2123 committed
241
242
243
244
245
246
247
248
249
                    encoder_word_pos_list = []
                    gsrm_word_pos_list = []
                    gsrm_slf_attn_bias1_list = []
                    gsrm_slf_attn_bias2_list = []
                    encoder_word_pos_list.append(norm_img[1])
                    gsrm_word_pos_list.append(norm_img[2])
                    gsrm_slf_attn_bias1_list.append(norm_img[3])
                    gsrm_slf_attn_bias2_list.append(norm_img[4])
                    norm_img_batch.append(norm_img[0])
LDOUBLEV's avatar
LDOUBLEV committed
250
251
            norm_img_batch = np.concatenate(norm_img_batch)
            norm_img_batch = norm_img_batch.copy()
tink2123's avatar
tink2123 committed
252
253
            if self.benchmark:
                self.autolog.times.stamp()
tink2123's avatar
tink2123 committed
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279

            if self.rec_algorithm == "SRN":
                encoder_word_pos_list = np.concatenate(encoder_word_pos_list)
                gsrm_word_pos_list = np.concatenate(gsrm_word_pos_list)
                gsrm_slf_attn_bias1_list = np.concatenate(
                    gsrm_slf_attn_bias1_list)
                gsrm_slf_attn_bias2_list = np.concatenate(
                    gsrm_slf_attn_bias2_list)

                inputs = [
                    norm_img_batch,
                    encoder_word_pos_list,
                    gsrm_word_pos_list,
                    gsrm_slf_attn_bias1_list,
                    gsrm_slf_attn_bias2_list,
                ]
                input_names = self.predictor.get_input_names()
                for i in range(len(input_names)):
                    input_tensor = self.predictor.get_input_handle(input_names[
                        i])
                    input_tensor.copy_from_cpu(inputs[i])
                self.predictor.run()
                outputs = []
                for output_tensor in self.output_tensors:
                    output = output_tensor.copy_to_cpu()
                    outputs.append(output)
tink2123's avatar
tink2123 committed
280
281
                if self.benchmark:
                    self.autolog.times.stamp()
tink2123's avatar
tink2123 committed
282
283
284
285
286
287
288
289
                preds = {"predict": outputs[2]}
            else:
                self.input_tensor.copy_from_cpu(norm_img_batch)
                self.predictor.run()
                outputs = []
                for output_tensor in self.output_tensors:
                    output = output_tensor.copy_to_cpu()
                    outputs.append(output)
tink2123's avatar
tink2123 committed
290
291
                if self.benchmark:
                    self.autolog.times.stamp()
Topdu's avatar
Topdu committed
292
293
294
295
                if len(outputs) != 1:
                    preds = outputs
                else:
                    preds = outputs[0]
WenmuZhou's avatar
WenmuZhou committed
296
297
298
            rec_result = self.postprocess_op(preds)
            for rno in range(len(rec_result)):
                rec_res[indices[beg_img_no + rno]] = rec_result[rno]
tink2123's avatar
tink2123 committed
299
300
            if self.benchmark:
                self.autolog.times.end(stamp=True)
LDOUBLEV's avatar
LDOUBLEV committed
301
        return rec_res, time.time() - st
LDOUBLEV's avatar
LDOUBLEV committed
302
303


304
def main(args):
dyning's avatar
dyning committed
305
    image_file_list = get_image_file_list(args.image_dir)
LDOUBLEV's avatar
LDOUBLEV committed
306
307
308
    text_recognizer = TextRecognizer(args)
    valid_image_file_list = []
    img_list = []
LDOUBLEV's avatar
LDOUBLEV committed
309

310
    # warmup 2 times
LDOUBLEV's avatar
LDOUBLEV committed
311
312
    if args.warmup:
        img = np.random.uniform(0, 255, [32, 320, 3]).astype(np.uint8)
313
        for i in range(2):
LDOUBLEV's avatar
LDOUBLEV committed
314
            res = text_recognizer([img] * int(args.rec_batch_num))
LDOUBLEV's avatar
LDOUBLEV committed
315

LDOUBLEV's avatar
LDOUBLEV committed
316
    for image_file in image_file_list:
LDOUBLEV's avatar
LDOUBLEV committed
317
318
319
        img, flag = check_and_read_gif(image_file)
        if not flag:
            img = cv2.imread(image_file)
LDOUBLEV's avatar
LDOUBLEV committed
320
321
322
323
324
        if img is None:
            logger.info("error in loading image:{}".format(image_file))
            continue
        valid_image_file_list.append(image_file)
        img_list.append(img)
LDOUBLEV's avatar
LDOUBLEV committed
325
326
327
328
329
330
331
332
333
334
    try:
        rec_res, _ = text_recognizer(img_list)

    except Exception as E:
        logger.info(traceback.format_exc())
        logger.info(E)
        exit()
    for ino in range(len(img_list)):
        logger.info("Predicts of {}:{}".format(valid_image_file_list[ino],
                                               rec_res[ino]))
tink2123's avatar
tink2123 committed
335
336
    if args.benchmark:
        text_recognizer.autolog.report()
337
338
339
340


if __name__ == "__main__":
    main(utility.parse_args())