predict_rec.py 7.84 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
LDOUBLEV's avatar
LDOUBLEV committed
14
15
import os
import sys
16
__dir__ = os.path.dirname(os.path.abspath(__file__))
LDOUBLEV's avatar
LDOUBLEV committed
17
sys.path.append(__dir__)
18
sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))
LDOUBLEV's avatar
LDOUBLEV committed
19
20
21
22
23
24

import cv2
import copy
import numpy as np
import math
import time
25
26
27
28
29
30
31

import paddle.fluid as fluid

import tools.infer.utility as utility
from ppocr.utils.utility import initial_logger
logger = initial_logger()
from ppocr.utils.utility import get_image_file_list, check_and_read_gif
LDOUBLEV's avatar
LDOUBLEV committed
32
33
34
35
36
37
38
from ppocr.utils.character import CharacterOps


class TextRecognizer(object):
    def __init__(self, args):
        self.predictor, self.input_tensor, self.output_tensors =\
            utility.create_predictor(args, mode="rec")
39
        self.rec_image_shape = [int(v) for v in args.rec_image_shape.split(",")]
dyning's avatar
dyning committed
40
        self.character_type = args.rec_char_type
41
        self.rec_batch_num = args.rec_batch_num
tink2123's avatar
tink2123 committed
42
        self.rec_algorithm = args.rec_algorithm
littletomatodonkey's avatar
littletomatodonkey committed
43
        self.use_zero_copy_run = args.use_zero_copy_run
tink2123's avatar
tink2123 committed
44
45
        char_ops_params = {
            "character_type": args.rec_char_type,
46
            "character_dict_path": args.rec_char_dict_path,
tink2123's avatar
tink2123 committed
47
48
            "use_space_char": args.use_space_char,
            "max_text_length": args.max_text_length
tink2123's avatar
tink2123 committed
49
        }
tink2123's avatar
tink2123 committed
50
51
        if self.rec_algorithm != "RARE":
            char_ops_params['loss_type'] = 'ctc'
tink2123's avatar
tink2123 committed
52
            self.loss_type = 'ctc'
tink2123's avatar
tink2123 committed
53
54
        else:
            char_ops_params['loss_type'] = 'attention'
tink2123's avatar
tink2123 committed
55
            self.loss_type = 'attention'
LDOUBLEV's avatar
LDOUBLEV committed
56
57
        self.char_ops = CharacterOps(char_ops_params)

58
    def resize_norm_img(self, img, max_wh_ratio):
LDOUBLEV's avatar
LDOUBLEV committed
59
        imgC, imgH, imgW = self.rec_image_shape
60
        assert imgC == img.shape[2]
61
        if self.character_type == "ch":
tink2123's avatar
tink2123 committed
62
            imgW = int((32 * max_wh_ratio))
63
        h, w = img.shape[:2]
64
65
66
67
68
        ratio = w / float(h)
        if math.ceil(imgH * ratio) > imgW:
            resized_w = imgW
        else:
            resized_w = int(math.ceil(imgH * ratio))
tink2123's avatar
tink2123 committed
69
        resized_image = cv2.resize(img, (resized_w, imgH))
LDOUBLEV's avatar
LDOUBLEV committed
70
71
72
73
74
75
76
77
78
79
        resized_image = resized_image.astype('float32')
        resized_image = resized_image.transpose((2, 0, 1)) / 255
        resized_image -= 0.5
        resized_image /= 0.5
        padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
        padding_im[:, :, 0:resized_w] = resized_image
        return padding_im

    def __call__(self, img_list):
        img_num = len(img_list)
80
        # Calculate the aspect ratio of all text bars
81
82
83
        width_list = []
        for img in img_list:
            width_list.append(img.shape[1] / float(img.shape[0]))
zhangxin's avatar
zhangxin committed
84
        # Sorting can speed up the recognition process
85
86
87
88
        indices = np.argsort(np.array(width_list))

        # rec_res = []
        rec_res = [['', 0.0]] * img_num
89
        batch_num = self.rec_batch_num
LDOUBLEV's avatar
LDOUBLEV committed
90
91
92
93
        predict_time = 0
        for beg_img_no in range(0, img_num, batch_num):
            end_img_no = min(img_num, beg_img_no + batch_num)
            norm_img_batch = []
94
            max_wh_ratio = 0
LDOUBLEV's avatar
LDOUBLEV committed
95
            for ino in range(beg_img_no, end_img_no):
96
97
                # h, w = img_list[ino].shape[0:2]
                h, w = img_list[indices[ino]].shape[0:2]
98
99
100
                wh_ratio = w * 1.0 / h
                max_wh_ratio = max(max_wh_ratio, wh_ratio)
            for ino in range(beg_img_no, end_img_no):
101
                # norm_img = self.resize_norm_img(img_list[ino], max_wh_ratio)
tink2123's avatar
tink2123 committed
102
103
                norm_img = self.resize_norm_img(img_list[indices[ino]],
                                                max_wh_ratio)
LDOUBLEV's avatar
LDOUBLEV committed
104
105
106
107
108
                norm_img = norm_img[np.newaxis, :]
                norm_img_batch.append(norm_img)
            norm_img_batch = np.concatenate(norm_img_batch)
            norm_img_batch = norm_img_batch.copy()
            starttime = time.time()
littletomatodonkey's avatar
littletomatodonkey committed
109
110
111
112
113
114
            if self.use_zero_copy_run:
                self.input_tensor.copy_from_cpu(norm_img_batch)
                self.predictor.zero_copy_run()
            else:
                norm_img_batch = fluid.core.PaddleTensor(norm_img_batch)
                self.predictor.run([norm_img_batch])
tink2123's avatar
tink2123 committed
115

tink2123's avatar
tink2123 committed
116
            if self.loss_type == "ctc":
tink2123's avatar
tink2123 committed
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
                rec_idx_batch = self.output_tensors[0].copy_to_cpu()
                rec_idx_lod = self.output_tensors[0].lod()[0]
                predict_batch = self.output_tensors[1].copy_to_cpu()
                predict_lod = self.output_tensors[1].lod()[0]
                elapse = time.time() - starttime
                predict_time += elapse
                for rno in range(len(rec_idx_lod) - 1):
                    beg = rec_idx_lod[rno]
                    end = rec_idx_lod[rno + 1]
                    rec_idx_tmp = rec_idx_batch[beg:end, 0]
                    preds_text = self.char_ops.decode(rec_idx_tmp)
                    beg = predict_lod[rno]
                    end = predict_lod[rno + 1]
                    probs = predict_batch[beg:end, :]
                    ind = np.argmax(probs, axis=1)
                    blank = probs.shape[1]
                    valid_ind = np.where(ind != (blank - 1))[0]
LDOUBLEV's avatar
fix bug  
LDOUBLEV committed
134
                    if len(valid_ind) == 0:
135
                        continue
LDOUBLEV's avatar
LDOUBLEV committed
136
                    score = np.mean(probs[valid_ind, ind[valid_ind]])
137
138
                    # rec_res.append([preds_text, score])
                    rec_res[indices[beg_img_no + rno]] = [preds_text, score]
tink2123's avatar
tink2123 committed
139
140
141
            else:
                rec_idx_batch = self.output_tensors[0].copy_to_cpu()
                predict_batch = self.output_tensors[1].copy_to_cpu()
tink2123's avatar
tink2123 committed
142
143
                elapse = time.time() - starttime
                predict_time += elapse
tink2123's avatar
tink2123 committed
144
145
146
147
148
149
150
151
152
                for rno in range(len(rec_idx_batch)):
                    end_pos = np.where(rec_idx_batch[rno, :] == 1)[0]
                    if len(end_pos) <= 1:
                        preds = rec_idx_batch[rno, 1:]
                        score = np.mean(predict_batch[rno, 1:])
                    else:
                        preds = rec_idx_batch[rno, 1:end_pos[1]]
                        score = np.mean(predict_batch[rno, 1:end_pos[1]])
                    preds_text = self.char_ops.decode(preds)
153
154
                    # rec_res.append([preds_text, score])
                    rec_res[indices[beg_img_no + rno]] = [preds_text, score]
tink2123's avatar
tink2123 committed
155

LDOUBLEV's avatar
LDOUBLEV committed
156
157
158
        return rec_res, predict_time


159
def main(args):
dyning's avatar
dyning committed
160
    image_file_list = get_image_file_list(args.image_dir)
LDOUBLEV's avatar
LDOUBLEV committed
161
162
163
164
    text_recognizer = TextRecognizer(args)
    valid_image_file_list = []
    img_list = []
    for image_file in image_file_list:
LDOUBLEV's avatar
LDOUBLEV committed
165
166
167
        img, flag = check_and_read_gif(image_file)
        if not flag:
            img = cv2.imread(image_file)
LDOUBLEV's avatar
LDOUBLEV committed
168
169
170
171
172
        if img is None:
            logger.info("error in loading image:{}".format(image_file))
            continue
        valid_image_file_list.append(image_file)
        img_list.append(img)
tink2123's avatar
tink2123 committed
173
174
    try:
        rec_res, predict_time = text_recognizer(img_list)
tink2123's avatar
tink2123 committed
175
176
    except Exception as e:
        print(e)
tink2123's avatar
tink2123 committed
177
        logger.info(
tink2123's avatar
tink2123 committed
178
179
180
181
            "ERROR!!!! \n"
            "Please read the FAQ:https://github.com/PaddlePaddle/PaddleOCR#faq \n"
            "If your model has tps module:  "
            "TPS does not support variable shape.\n"
tink2123's avatar
tink2123 committed
182
            "Please set --rec_image_shape='3,32,100' and --rec_char_type='en' ")
tink2123's avatar
tink2123 committed
183
        exit()
LDOUBLEV's avatar
LDOUBLEV committed
184
185
186
187
    for ino in range(len(img_list)):
        print("Predicts of %s:%s" % (valid_image_file_list[ino], rec_res[ino]))
    print("Total predict time for %d images:%.3f" %
          (len(img_list), predict_time))
188
189
190
191


if __name__ == "__main__":
    main(utility.parse_args())