predict_rec.py 6.13 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import utility
from ppocr.utils.utility import initial_logger
logger = initial_logger()
dyning's avatar
dyning committed
18
from ppocr.utils.utility import get_image_file_list
LDOUBLEV's avatar
LDOUBLEV committed
19
20
21
22
23
24
25
26
27
28
29
30
31
32
import cv2
import copy
import numpy as np
import math
import time
from ppocr.utils.character import CharacterOps


class TextRecognizer(object):
    def __init__(self, args):
        self.predictor, self.input_tensor, self.output_tensors =\
            utility.create_predictor(args, mode="rec")
        image_shape = [int(v) for v in args.rec_image_shape.split(",")]
        self.rec_image_shape = image_shape
dyning's avatar
dyning committed
33
        self.character_type = args.rec_char_type
34
        self.rec_batch_num = args.rec_batch_num
LDOUBLEV's avatar
LDOUBLEV committed
35
36
37
38
39
40
        char_ops_params = {}
        char_ops_params["character_type"] = args.rec_char_type
        char_ops_params["character_dict_path"] = args.rec_char_dict_path
        char_ops_params['loss_type'] = 'ctc'
        self.char_ops = CharacterOps(char_ops_params)

41
    def resize_norm_img(self, img, max_wh_ratio):
LDOUBLEV's avatar
LDOUBLEV committed
42
        imgC, imgH, imgW = self.rec_image_shape
dyning's avatar
dyning committed
43
44
        if self.character_type == "ch":
            imgW = int(32 * max_wh_ratio)
LDOUBLEV's avatar
LDOUBLEV committed
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
        h = img.shape[0]
        w = img.shape[1]
        ratio = w / float(h)
        if math.ceil(imgH * ratio) > imgW:
            resized_w = imgW
        else:
            resized_w = int(math.ceil(imgH * ratio))
        resized_image = cv2.resize(img, (resized_w, imgH))
        resized_image = resized_image.astype('float32')
        resized_image = resized_image.transpose((2, 0, 1)) / 255
        resized_image -= 0.5
        resized_image /= 0.5
        padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
        padding_im[:, :, 0:resized_w] = resized_image
        return padding_im

    def __call__(self, img_list):
        img_num = len(img_list)
        rec_res = []
64
        batch_num = self.rec_batch_num
LDOUBLEV's avatar
LDOUBLEV committed
65
66
67
68
        predict_time = 0
        for beg_img_no in range(0, img_num, batch_num):
            end_img_no = min(img_num, beg_img_no + batch_num)
            norm_img_batch = []
69
            max_wh_ratio = 0
LDOUBLEV's avatar
LDOUBLEV committed
70
            for ino in range(beg_img_no, end_img_no):
71
72
73
74
75
                h, w = img_list[ino].shape[0:2]
                wh_ratio = w * 1.0 / h
                max_wh_ratio = max(max_wh_ratio, wh_ratio)
            for ino in range(beg_img_no, end_img_no):
                norm_img = self.resize_norm_img(img_list[ino], max_wh_ratio)
LDOUBLEV's avatar
LDOUBLEV committed
76
77
78
79
80
81
82
                norm_img = norm_img[np.newaxis, :]
                norm_img_batch.append(norm_img)
            norm_img_batch = np.concatenate(norm_img_batch)
            norm_img_batch = norm_img_batch.copy()
            starttime = time.time()
            self.input_tensor.copy_from_cpu(norm_img_batch)
            self.predictor.zero_copy_run()
tink2123's avatar
tink2123 committed
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114

            if args.rec_algorithm != "RARE":
                rec_idx_batch = self.output_tensors[0].copy_to_cpu()
                rec_idx_lod = self.output_tensors[0].lod()[0]
                predict_batch = self.output_tensors[1].copy_to_cpu()
                predict_lod = self.output_tensors[1].lod()[0]
                elapse = time.time() - starttime
                predict_time += elapse
                for rno in range(len(rec_idx_lod) - 1):
                    beg = rec_idx_lod[rno]
                    end = rec_idx_lod[rno + 1]
                    rec_idx_tmp = rec_idx_batch[beg:end, 0]
                    preds_text = self.char_ops.decode(rec_idx_tmp)
                    beg = predict_lod[rno]
                    end = predict_lod[rno + 1]
                    probs = predict_batch[beg:end, :]
                    ind = np.argmax(probs, axis=1)
                    blank = probs.shape[1]
                    valid_ind = np.where(ind != (blank - 1))[0]
                    score = np.mean(probs[valid_ind, ind[valid_ind]])
                    rec_res.append([preds_text, score])
            else:
                rec_idx_batch = self.output_tensors[0].copy_to_cpu()
                predict_batch = self.output_tensors[1].copy_to_cpu()
                for rno in range(len(rec_idx_batch)):
                    end_pos = np.where(rec_idx_batch[rno, :] == 1)[0]
                    if len(end_pos) <= 1:
                        preds = rec_idx_batch[rno, 1:]
                        score = np.mean(predict_batch[rno, 1:])
                    else:
                        preds = rec_idx_batch[rno, 1:end_pos[1]]
                        score = np.mean(predict_batch[rno, 1:end_pos[1]])
tink2123's avatar
tink2123 committed
115
                    #attenton index has 2 offset: beg and end
tink2123's avatar
tink2123 committed
116
117
118
119
                    preds = preds - 2
                    preds_text = self.char_ops.decode(preds)
                    rec_res.append([preds_text, score])

LDOUBLEV's avatar
LDOUBLEV committed
120
121
122
123
124
        return rec_res, predict_time


if __name__ == "__main__":
    args = utility.parse_args()
dyning's avatar
dyning committed
125
    image_file_list = get_image_file_list(args.image_dir)
LDOUBLEV's avatar
LDOUBLEV committed
126
127
128
129
130
131
132
133
134
135
    text_recognizer = TextRecognizer(args)
    valid_image_file_list = []
    img_list = []
    for image_file in image_file_list:
        img = cv2.imread(image_file)
        if img is None:
            logger.info("error in loading image:{}".format(image_file))
            continue
        valid_image_file_list.append(image_file)
        img_list.append(img)
tink2123's avatar
tink2123 committed
136
137
138
139
140
    try:
        rec_res, predict_time = text_recognizer(img_list)
    except:
        logger.info(
            "ERROR!! \nInput image shape is not equal with config. TPS does not support variable shape.\n"
tink2123's avatar
tink2123 committed
141
            "Please set --rec_image_shape=input_shape and --rec_char_type='en' ")
tink2123's avatar
tink2123 committed
142
        exit()
LDOUBLEV's avatar
LDOUBLEV committed
143
144
145
146
    for ino in range(len(img_list)):
        print("Predicts of %s:%s" % (valid_image_file_list[ino], rec_res[ino]))
    print("Total predict time for %d images:%.3f" %
          (len(img_list), predict_time))