predict_rec.py 7.57 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
LDOUBLEV's avatar
LDOUBLEV committed
14
15
import os
import sys
16
__dir__ = os.path.dirname(os.path.abspath(__file__))
LDOUBLEV's avatar
LDOUBLEV committed
17
sys.path.append(__dir__)
18
sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))
LDOUBLEV's avatar
LDOUBLEV committed
19

LDOUBLEV's avatar
LDOUBLEV committed
20
import tools.infer.utility as utility
LDOUBLEV's avatar
LDOUBLEV committed
21
22
from ppocr.utils.utility import initial_logger
logger = initial_logger()
LDOUBLEV's avatar
LDOUBLEV committed
23
from ppocr.utils.utility import get_image_file_list, check_and_read_gif
LDOUBLEV's avatar
LDOUBLEV committed
24
25
26
27
28
29
30
31
32
33
34
35
import cv2
import copy
import numpy as np
import math
import time
from ppocr.utils.character import CharacterOps


class TextRecognizer(object):
    def __init__(self, args):
        self.predictor, self.input_tensor, self.output_tensors =\
            utility.create_predictor(args, mode="rec")
36
        self.rec_image_shape = [int(v) for v in args.rec_image_shape.split(",")]
dyning's avatar
dyning committed
37
        self.character_type = args.rec_char_type
38
        self.rec_batch_num = args.rec_batch_num
tink2123's avatar
tink2123 committed
39
        self.rec_algorithm = args.rec_algorithm
tink2123's avatar
tink2123 committed
40
41
        char_ops_params = {
            "character_type": args.rec_char_type,
42
            "character_dict_path": args.rec_char_dict_path,
tink2123's avatar
tink2123 committed
43
44
            "use_space_char": args.use_space_char,
            "max_text_length": args.max_text_length
tink2123's avatar
tink2123 committed
45
        }
tink2123's avatar
tink2123 committed
46
47
        if self.rec_algorithm != "RARE":
            char_ops_params['loss_type'] = 'ctc'
tink2123's avatar
tink2123 committed
48
            self.loss_type = 'ctc'
tink2123's avatar
tink2123 committed
49
50
        else:
            char_ops_params['loss_type'] = 'attention'
tink2123's avatar
tink2123 committed
51
            self.loss_type = 'attention'
LDOUBLEV's avatar
LDOUBLEV committed
52
53
        self.char_ops = CharacterOps(char_ops_params)

54
    def resize_norm_img(self, img, max_wh_ratio):
LDOUBLEV's avatar
LDOUBLEV committed
55
        imgC, imgH, imgW = self.rec_image_shape
56
        assert imgC == img.shape[2]
57
        if self.character_type == "ch":
tink2123's avatar
tink2123 committed
58
            imgW = int((32 * max_wh_ratio))
59
        h, w = img.shape[:2]
60
61
62
63
64
        ratio = w / float(h)
        if math.ceil(imgH * ratio) > imgW:
            resized_w = imgW
        else:
            resized_w = int(math.ceil(imgH * ratio))
tink2123's avatar
tink2123 committed
65
        resized_image = cv2.resize(img, (resized_w, imgH))
LDOUBLEV's avatar
LDOUBLEV committed
66
67
68
69
70
71
72
73
74
75
        resized_image = resized_image.astype('float32')
        resized_image = resized_image.transpose((2, 0, 1)) / 255
        resized_image -= 0.5
        resized_image /= 0.5
        padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
        padding_im[:, :, 0:resized_w] = resized_image
        return padding_im

    def __call__(self, img_list):
        img_num = len(img_list)
76
        # Calculate the aspect ratio of all text bars
77
78
79
        width_list = []
        for img in img_list:
            width_list.append(img.shape[1] / float(img.shape[0]))
zhangxin's avatar
zhangxin committed
80
        # Sorting can speed up the recognition process
81
82
83
84
        indices = np.argsort(np.array(width_list))

        # rec_res = []
        rec_res = [['', 0.0]] * img_num
85
        batch_num = self.rec_batch_num
LDOUBLEV's avatar
LDOUBLEV committed
86
87
88
89
        predict_time = 0
        for beg_img_no in range(0, img_num, batch_num):
            end_img_no = min(img_num, beg_img_no + batch_num)
            norm_img_batch = []
90
            max_wh_ratio = 0
LDOUBLEV's avatar
LDOUBLEV committed
91
            for ino in range(beg_img_no, end_img_no):
92
93
                # h, w = img_list[ino].shape[0:2]
                h, w = img_list[indices[ino]].shape[0:2]
94
95
96
                wh_ratio = w * 1.0 / h
                max_wh_ratio = max(max_wh_ratio, wh_ratio)
            for ino in range(beg_img_no, end_img_no):
97
                # norm_img = self.resize_norm_img(img_list[ino], max_wh_ratio)
tink2123's avatar
tink2123 committed
98
99
                norm_img = self.resize_norm_img(img_list[indices[ino]],
                                                max_wh_ratio)
LDOUBLEV's avatar
LDOUBLEV committed
100
101
102
103
104
105
106
                norm_img = norm_img[np.newaxis, :]
                norm_img_batch.append(norm_img)
            norm_img_batch = np.concatenate(norm_img_batch)
            norm_img_batch = norm_img_batch.copy()
            starttime = time.time()
            self.input_tensor.copy_from_cpu(norm_img_batch)
            self.predictor.zero_copy_run()
tink2123's avatar
tink2123 committed
107

tink2123's avatar
tink2123 committed
108
            if self.loss_type == "ctc":
tink2123's avatar
tink2123 committed
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
                rec_idx_batch = self.output_tensors[0].copy_to_cpu()
                rec_idx_lod = self.output_tensors[0].lod()[0]
                predict_batch = self.output_tensors[1].copy_to_cpu()
                predict_lod = self.output_tensors[1].lod()[0]
                elapse = time.time() - starttime
                predict_time += elapse
                for rno in range(len(rec_idx_lod) - 1):
                    beg = rec_idx_lod[rno]
                    end = rec_idx_lod[rno + 1]
                    rec_idx_tmp = rec_idx_batch[beg:end, 0]
                    preds_text = self.char_ops.decode(rec_idx_tmp)
                    beg = predict_lod[rno]
                    end = predict_lod[rno + 1]
                    probs = predict_batch[beg:end, :]
                    ind = np.argmax(probs, axis=1)
                    blank = probs.shape[1]
                    valid_ind = np.where(ind != (blank - 1))[0]
LDOUBLEV's avatar
fix bug  
LDOUBLEV committed
126
                    if len(valid_ind) == 0:
127
                        continue
LDOUBLEV's avatar
LDOUBLEV committed
128
                    score = np.mean(probs[valid_ind, ind[valid_ind]])
129
130
                    # rec_res.append([preds_text, score])
                    rec_res[indices[beg_img_no + rno]] = [preds_text, score]
tink2123's avatar
tink2123 committed
131
132
133
            else:
                rec_idx_batch = self.output_tensors[0].copy_to_cpu()
                predict_batch = self.output_tensors[1].copy_to_cpu()
tink2123's avatar
tink2123 committed
134
135
                elapse = time.time() - starttime
                predict_time += elapse
tink2123's avatar
tink2123 committed
136
137
138
139
140
141
142
143
144
                for rno in range(len(rec_idx_batch)):
                    end_pos = np.where(rec_idx_batch[rno, :] == 1)[0]
                    if len(end_pos) <= 1:
                        preds = rec_idx_batch[rno, 1:]
                        score = np.mean(predict_batch[rno, 1:])
                    else:
                        preds = rec_idx_batch[rno, 1:end_pos[1]]
                        score = np.mean(predict_batch[rno, 1:end_pos[1]])
                    preds_text = self.char_ops.decode(preds)
145
146
                    # rec_res.append([preds_text, score])
                    rec_res[indices[beg_img_no + rno]] = [preds_text, score]
tink2123's avatar
tink2123 committed
147

LDOUBLEV's avatar
LDOUBLEV committed
148
149
150
        return rec_res, predict_time


151
def main(args):
dyning's avatar
dyning committed
152
    image_file_list = get_image_file_list(args.image_dir)
LDOUBLEV's avatar
LDOUBLEV committed
153
154
155
156
    text_recognizer = TextRecognizer(args)
    valid_image_file_list = []
    img_list = []
    for image_file in image_file_list:
LDOUBLEV's avatar
LDOUBLEV committed
157
158
159
        img, flag = check_and_read_gif(image_file)
        if not flag:
            img = cv2.imread(image_file)
LDOUBLEV's avatar
LDOUBLEV committed
160
161
162
163
164
        if img is None:
            logger.info("error in loading image:{}".format(image_file))
            continue
        valid_image_file_list.append(image_file)
        img_list.append(img)
tink2123's avatar
tink2123 committed
165
166
    try:
        rec_res, predict_time = text_recognizer(img_list)
tink2123's avatar
tink2123 committed
167
168
    except Exception as e:
        print(e)
tink2123's avatar
tink2123 committed
169
        logger.info(
tink2123's avatar
tink2123 committed
170
171
172
173
            "ERROR!!!! \n"
            "Please read the FAQ:https://github.com/PaddlePaddle/PaddleOCR#faq \n"
            "If your model has tps module:  "
            "TPS does not support variable shape.\n"
tink2123's avatar
tink2123 committed
174
            "Please set --rec_image_shape='3,32,100' and --rec_char_type='en' ")
tink2123's avatar
tink2123 committed
175
        exit()
LDOUBLEV's avatar
LDOUBLEV committed
176
177
178
179
    for ino in range(len(img_list)):
        print("Predicts of %s:%s" % (valid_image_file_list[ino], rec_res[ino]))
    print("Total predict time for %d images:%.3f" %
          (len(img_list), predict_time))
180
181
182
183


if __name__ == "__main__":
    main(utility.parse_args())