predict_rec.py 11.8 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
LDOUBLEV's avatar
LDOUBLEV committed
14
15
import os
import sys
WenmuZhou's avatar
WenmuZhou committed
16

17
__dir__ = os.path.dirname(os.path.abspath(__file__))
LDOUBLEV's avatar
LDOUBLEV committed
18
sys.path.append(__dir__)
19
sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))
LDOUBLEV's avatar
LDOUBLEV committed
20

21
22
os.environ["FLAGS_allocator_strategy"] = 'auto_growth'

LDOUBLEV's avatar
LDOUBLEV committed
23
24
25
26
import cv2
import numpy as np
import math
import time
WenmuZhou's avatar
WenmuZhou committed
27
import traceback
tink2123's avatar
tink2123 committed
28
import paddle
29
30

import tools.infer.utility as utility
WenmuZhou's avatar
WenmuZhou committed
31
32
from ppocr.postprocess import build_post_process
from ppocr.utils.logging import get_logger
33
from ppocr.utils.utility import get_image_file_list, check_and_read_gif
LDOUBLEV's avatar
LDOUBLEV committed
34

WenmuZhou's avatar
WenmuZhou committed
35
36
logger = get_logger()

LDOUBLEV's avatar
LDOUBLEV committed
37
38
39

class TextRecognizer(object):
    def __init__(self, args):
40
        self.rec_image_shape = [int(v) for v in args.rec_image_shape.split(",")]
dyning's avatar
dyning committed
41
        self.character_type = args.rec_char_type
42
        self.rec_batch_num = args.rec_batch_num
tink2123's avatar
tink2123 committed
43
        self.rec_algorithm = args.rec_algorithm
WenmuZhou's avatar
WenmuZhou committed
44
45
        postprocess_params = {
            'name': 'CTCLabelDecode',
tink2123's avatar
tink2123 committed
46
            "character_type": args.rec_char_type,
47
            "character_dict_path": args.rec_char_dict_path,
WenmuZhou's avatar
WenmuZhou committed
48
            "use_space_char": args.use_space_char
tink2123's avatar
tink2123 committed
49
        }
tink2123's avatar
tink2123 committed
50
51
52
        if self.rec_algorithm == "SRN":
            postprocess_params = {
                'name': 'SRNLabelDecode',
WenmuZhou's avatar
WenmuZhou committed
53
54
55
56
57
58
59
                "character_type": args.rec_char_type,
                "character_dict_path": args.rec_char_dict_path,
                "use_space_char": args.use_space_char
            }
        elif self.rec_algorithm == "RARE":
            postprocess_params = {
                'name': 'AttnLabelDecode',
tink2123's avatar
tink2123 committed
60
61
62
63
                "character_type": args.rec_char_type,
                "character_dict_path": args.rec_char_dict_path,
                "use_space_char": args.use_space_char
            }
WenmuZhou's avatar
WenmuZhou committed
64
        self.postprocess_op = build_post_process(postprocess_params)
LDOUBLEV's avatar
LDOUBLEV committed
65
        self.predictor, self.input_tensor, self.output_tensors, self.config = \
WenmuZhou's avatar
WenmuZhou committed
66
            utility.create_predictor(args, 'rec', logger)
tink2123's avatar
tink2123 committed
67
68
69
70
71
72
73
        self.benchmark = args.benchmark
        if args.benchmark:
            import auto_log
            pid = os.getpid()
            self.autolog = auto_log.AutoLogger(
                model_name="rec",
                model_precision=args.precision,
tink2123's avatar
tink2123 committed
74
                batch_size=args.rec_batch_num,
tink2123's avatar
tink2123 committed
75
                data_shape="dynamic",
76
                save_path=None,  #args.save_log_path,
tink2123's avatar
tink2123 committed
77
78
79
80
81
82
83
                inference_config=self.config,
                pids=pid,
                process_name=None,
                gpu_ids=0 if args.use_gpu else None,
                time_keys=[
                    'preprocess_time', 'inference_time', 'postprocess_time'
                ],
84
85
                warmup=2,
                logger=logger)
LDOUBLEV's avatar
LDOUBLEV committed
86

87
    def resize_norm_img(self, img, max_wh_ratio):
LDOUBLEV's avatar
LDOUBLEV committed
88
        imgC, imgH, imgW = self.rec_image_shape
89
        assert imgC == img.shape[2]
90
        if self.character_type == "ch":
tink2123's avatar
tink2123 committed
91
            imgW = int((32 * max_wh_ratio))
92
        h, w = img.shape[:2]
93
94
95
96
97
        ratio = w / float(h)
        if math.ceil(imgH * ratio) > imgW:
            resized_w = imgW
        else:
            resized_w = int(math.ceil(imgH * ratio))
tink2123's avatar
tink2123 committed
98
        resized_image = cv2.resize(img, (resized_w, imgH))
LDOUBLEV's avatar
LDOUBLEV committed
99
100
101
102
103
104
105
106
        resized_image = resized_image.astype('float32')
        resized_image = resized_image.transpose((2, 0, 1)) / 255
        resized_image -= 0.5
        resized_image /= 0.5
        padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
        padding_im[:, :, 0:resized_w] = resized_image
        return padding_im

tink2123's avatar
tink2123 committed
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
    def resize_norm_img_srn(self, img, image_shape):
        imgC, imgH, imgW = image_shape

        img_black = np.zeros((imgH, imgW))
        im_hei = img.shape[0]
        im_wid = img.shape[1]

        if im_wid <= im_hei * 1:
            img_new = cv2.resize(img, (imgH * 1, imgH))
        elif im_wid <= im_hei * 2:
            img_new = cv2.resize(img, (imgH * 2, imgH))
        elif im_wid <= im_hei * 3:
            img_new = cv2.resize(img, (imgH * 3, imgH))
        else:
            img_new = cv2.resize(img, (imgW, imgH))

        img_np = np.asarray(img_new)
        img_np = cv2.cvtColor(img_np, cv2.COLOR_BGR2GRAY)
        img_black[:, 0:img_np.shape[1]] = img_np
        img_black = img_black[:, :, np.newaxis]

        row, col, c = img_black.shape
        c = 1

        return np.reshape(img_black, (c, row, col)).astype(np.float32)

    def srn_other_inputs(self, image_shape, num_heads, max_text_length):

        imgC, imgH, imgW = image_shape
        feature_dim = int((imgH / 8) * (imgW / 8))

        encoder_word_pos = np.array(range(0, feature_dim)).reshape(
            (feature_dim, 1)).astype('int64')
        gsrm_word_pos = np.array(range(0, max_text_length)).reshape(
            (max_text_length, 1)).astype('int64')

        gsrm_attn_bias_data = np.ones((1, max_text_length, max_text_length))
        gsrm_slf_attn_bias1 = np.triu(gsrm_attn_bias_data, 1).reshape(
            [-1, 1, max_text_length, max_text_length])
        gsrm_slf_attn_bias1 = np.tile(
            gsrm_slf_attn_bias1,
            [1, num_heads, 1, 1]).astype('float32') * [-1e9]

        gsrm_slf_attn_bias2 = np.tril(gsrm_attn_bias_data, -1).reshape(
            [-1, 1, max_text_length, max_text_length])
        gsrm_slf_attn_bias2 = np.tile(
            gsrm_slf_attn_bias2,
            [1, num_heads, 1, 1]).astype('float32') * [-1e9]

        encoder_word_pos = encoder_word_pos[np.newaxis, :]
        gsrm_word_pos = gsrm_word_pos[np.newaxis, :]

        return [
            encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1,
            gsrm_slf_attn_bias2
        ]

    def process_image_srn(self, img, image_shape, num_heads, max_text_length):
        norm_img = self.resize_norm_img_srn(img, image_shape)
        norm_img = norm_img[np.newaxis, :]

        [encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1, gsrm_slf_attn_bias2] = \
            self.srn_other_inputs(image_shape, num_heads, max_text_length)

        gsrm_slf_attn_bias1 = gsrm_slf_attn_bias1.astype(np.float32)
        gsrm_slf_attn_bias2 = gsrm_slf_attn_bias2.astype(np.float32)
        encoder_word_pos = encoder_word_pos.astype(np.int64)
        gsrm_word_pos = gsrm_word_pos.astype(np.int64)

        return (norm_img, encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1,
                gsrm_slf_attn_bias2)

LDOUBLEV's avatar
LDOUBLEV committed
179
180
    def __call__(self, img_list):
        img_num = len(img_list)
181
        # Calculate the aspect ratio of all text bars
182
183
184
        width_list = []
        for img in img_list:
            width_list.append(img.shape[1] / float(img.shape[0]))
zhangxin's avatar
zhangxin committed
185
        # Sorting can speed up the recognition process
186
187
        indices = np.argsort(np.array(width_list))
        rec_res = [['', 0.0]] * img_num
188
        batch_num = self.rec_batch_num
LDOUBLEV's avatar
LDOUBLEV committed
189
        st = time.time()
tink2123's avatar
tink2123 committed
190
191
        if self.benchmark:
            self.autolog.times.start()
LDOUBLEV's avatar
LDOUBLEV committed
192
193
194
        for beg_img_no in range(0, img_num, batch_num):
            end_img_no = min(img_num, beg_img_no + batch_num)
            norm_img_batch = []
195
            max_wh_ratio = 0
LDOUBLEV's avatar
LDOUBLEV committed
196
            for ino in range(beg_img_no, end_img_no):
197
                h, w = img_list[indices[ino]].shape[0:2]
198
199
200
                wh_ratio = w * 1.0 / h
                max_wh_ratio = max(max_wh_ratio, wh_ratio)
            for ino in range(beg_img_no, end_img_no):
tink2123's avatar
tink2123 committed
201
202
203
204
205
206
                if self.rec_algorithm != "SRN":
                    norm_img = self.resize_norm_img(img_list[indices[ino]],
                                                    max_wh_ratio)
                    norm_img = norm_img[np.newaxis, :]
                    norm_img_batch.append(norm_img)
                else:
LDOUBLEV's avatar
LDOUBLEV committed
207
208
                    norm_img = self.process_image_srn(
                        img_list[indices[ino]], self.rec_image_shape, 8, 25)
tink2123's avatar
tink2123 committed
209
210
211
212
213
214
215
216
217
                    encoder_word_pos_list = []
                    gsrm_word_pos_list = []
                    gsrm_slf_attn_bias1_list = []
                    gsrm_slf_attn_bias2_list = []
                    encoder_word_pos_list.append(norm_img[1])
                    gsrm_word_pos_list.append(norm_img[2])
                    gsrm_slf_attn_bias1_list.append(norm_img[3])
                    gsrm_slf_attn_bias2_list.append(norm_img[4])
                    norm_img_batch.append(norm_img[0])
LDOUBLEV's avatar
LDOUBLEV committed
218
219
            norm_img_batch = np.concatenate(norm_img_batch)
            norm_img_batch = norm_img_batch.copy()
tink2123's avatar
tink2123 committed
220
221
            if self.benchmark:
                self.autolog.times.stamp()
tink2123's avatar
tink2123 committed
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247

            if self.rec_algorithm == "SRN":
                encoder_word_pos_list = np.concatenate(encoder_word_pos_list)
                gsrm_word_pos_list = np.concatenate(gsrm_word_pos_list)
                gsrm_slf_attn_bias1_list = np.concatenate(
                    gsrm_slf_attn_bias1_list)
                gsrm_slf_attn_bias2_list = np.concatenate(
                    gsrm_slf_attn_bias2_list)

                inputs = [
                    norm_img_batch,
                    encoder_word_pos_list,
                    gsrm_word_pos_list,
                    gsrm_slf_attn_bias1_list,
                    gsrm_slf_attn_bias2_list,
                ]
                input_names = self.predictor.get_input_names()
                for i in range(len(input_names)):
                    input_tensor = self.predictor.get_input_handle(input_names[
                        i])
                    input_tensor.copy_from_cpu(inputs[i])
                self.predictor.run()
                outputs = []
                for output_tensor in self.output_tensors:
                    output = output_tensor.copy_to_cpu()
                    outputs.append(output)
tink2123's avatar
tink2123 committed
248
249
                if self.benchmark:
                    self.autolog.times.stamp()
tink2123's avatar
tink2123 committed
250
251
252
253
254
255
256
257
258
                preds = {"predict": outputs[2]}
            else:
                self.input_tensor.copy_from_cpu(norm_img_batch)
                self.predictor.run()

                outputs = []
                for output_tensor in self.output_tensors:
                    output = output_tensor.copy_to_cpu()
                    outputs.append(output)
tink2123's avatar
tink2123 committed
259
260
                if self.benchmark:
                    self.autolog.times.stamp()
tink2123's avatar
tink2123 committed
261
                preds = outputs[0]
WenmuZhou's avatar
WenmuZhou committed
262
263
264
            rec_result = self.postprocess_op(preds)
            for rno in range(len(rec_result)):
                rec_res[indices[beg_img_no + rno]] = rec_result[rno]
tink2123's avatar
tink2123 committed
265
266
            if self.benchmark:
                self.autolog.times.end(stamp=True)
LDOUBLEV's avatar
LDOUBLEV committed
267
        return rec_res, time.time() - st
LDOUBLEV's avatar
LDOUBLEV committed
268
269


270
def main(args):
dyning's avatar
dyning committed
271
    image_file_list = get_image_file_list(args.image_dir)
LDOUBLEV's avatar
LDOUBLEV committed
272
273
274
    text_recognizer = TextRecognizer(args)
    valid_image_file_list = []
    img_list = []
LDOUBLEV's avatar
LDOUBLEV committed
275

276
    # warmup 2 times
LDOUBLEV's avatar
LDOUBLEV committed
277
278
    if args.warmup:
        img = np.random.uniform(0, 255, [32, 320, 3]).astype(np.uint8)
279
        for i in range(2):
LDOUBLEV's avatar
LDOUBLEV committed
280
281
            res = text_recognizer([img])

LDOUBLEV's avatar
LDOUBLEV committed
282
    for image_file in image_file_list:
LDOUBLEV's avatar
LDOUBLEV committed
283
284
285
        img, flag = check_and_read_gif(image_file)
        if not flag:
            img = cv2.imread(image_file)
LDOUBLEV's avatar
LDOUBLEV committed
286
287
288
289
290
        if img is None:
            logger.info("error in loading image:{}".format(image_file))
            continue
        valid_image_file_list.append(image_file)
        img_list.append(img)
LDOUBLEV's avatar
LDOUBLEV committed
291
292
293
294
295
296
297
298
299
300
    try:
        rec_res, _ = text_recognizer(img_list)

    except Exception as E:
        logger.info(traceback.format_exc())
        logger.info(E)
        exit()
    for ino in range(len(img_list)):
        logger.info("Predicts of {}:{}".format(valid_image_file_list[ino],
                                               rec_res[ino]))
tink2123's avatar
tink2123 committed
301
302
    if args.benchmark:
        text_recognizer.autolog.report()
303
304
305
306


if __name__ == "__main__":
    main(utility.parse_args())