"examples/dreambooth/train_dreambooth_lora_flux.py" did not exist on "6946facf6913ff76fbb6aa48fd69802b55677d5f"
predict_rec.py 5.73 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
LDOUBLEV's avatar
LDOUBLEV committed
14
15
import os
import sys
WenmuZhou's avatar
WenmuZhou committed
16

17
__dir__ = os.path.dirname(os.path.abspath(__file__))
LDOUBLEV's avatar
LDOUBLEV committed
18
sys.path.append(__dir__)
19
sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))
LDOUBLEV's avatar
LDOUBLEV committed
20
21
22
23
24

import cv2
import numpy as np
import math
import time
WenmuZhou's avatar
WenmuZhou committed
25
import traceback
26
27

import tools.infer.utility as utility
WenmuZhou's avatar
WenmuZhou committed
28
29
from ppocr.postprocess import build_post_process
from ppocr.utils.logging import get_logger
30
from ppocr.utils.utility import get_image_file_list, check_and_read_gif
LDOUBLEV's avatar
LDOUBLEV committed
31

WenmuZhou's avatar
WenmuZhou committed
32
33
logger = get_logger()

LDOUBLEV's avatar
LDOUBLEV committed
34
35
36

class TextRecognizer(object):
    def __init__(self, args):
37
        self.rec_image_shape = [int(v) for v in args.rec_image_shape.split(",")]
dyning's avatar
dyning committed
38
        self.character_type = args.rec_char_type
39
        self.rec_batch_num = args.rec_batch_num
tink2123's avatar
tink2123 committed
40
        self.rec_algorithm = args.rec_algorithm
WenmuZhou's avatar
WenmuZhou committed
41
42
        postprocess_params = {
            'name': 'CTCLabelDecode',
tink2123's avatar
tink2123 committed
43
            "character_type": args.rec_char_type,
44
            "character_dict_path": args.rec_char_dict_path,
WenmuZhou's avatar
WenmuZhou committed
45
            "use_space_char": args.use_space_char
tink2123's avatar
tink2123 committed
46
        }
WenmuZhou's avatar
WenmuZhou committed
47
48
49
        self.postprocess_op = build_post_process(postprocess_params)
        self.predictor, self.input_tensor, self.output_tensors = \
            utility.create_predictor(args, 'rec', logger)
LDOUBLEV's avatar
LDOUBLEV committed
50

51
    def resize_norm_img(self, img, max_wh_ratio):
LDOUBLEV's avatar
LDOUBLEV committed
52
        imgC, imgH, imgW = self.rec_image_shape
53
        assert imgC == img.shape[2]
54
        if self.character_type == "ch":
tink2123's avatar
tink2123 committed
55
            imgW = int((32 * max_wh_ratio))
56
        h, w = img.shape[:2]
57
58
59
60
61
        ratio = w / float(h)
        if math.ceil(imgH * ratio) > imgW:
            resized_w = imgW
        else:
            resized_w = int(math.ceil(imgH * ratio))
tink2123's avatar
tink2123 committed
62
        resized_image = cv2.resize(img, (resized_w, imgH))
LDOUBLEV's avatar
LDOUBLEV committed
63
64
65
66
67
68
69
70
71
72
        resized_image = resized_image.astype('float32')
        resized_image = resized_image.transpose((2, 0, 1)) / 255
        resized_image -= 0.5
        resized_image /= 0.5
        padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
        padding_im[:, :, 0:resized_w] = resized_image
        return padding_im

    def __call__(self, img_list):
        img_num = len(img_list)
73
        # Calculate the aspect ratio of all text bars
74
75
76
        width_list = []
        for img in img_list:
            width_list.append(img.shape[1] / float(img.shape[0]))
zhangxin's avatar
zhangxin committed
77
        # Sorting can speed up the recognition process
78
79
80
81
        indices = np.argsort(np.array(width_list))

        # rec_res = []
        rec_res = [['', 0.0]] * img_num
82
        batch_num = self.rec_batch_num
WenmuZhou's avatar
WenmuZhou committed
83
        elapse = 0
LDOUBLEV's avatar
LDOUBLEV committed
84
85
86
        for beg_img_no in range(0, img_num, batch_num):
            end_img_no = min(img_num, beg_img_no + batch_num)
            norm_img_batch = []
87
            max_wh_ratio = 0
LDOUBLEV's avatar
LDOUBLEV committed
88
            for ino in range(beg_img_no, end_img_no):
89
90
                # h, w = img_list[ino].shape[0:2]
                h, w = img_list[indices[ino]].shape[0:2]
91
92
93
                wh_ratio = w * 1.0 / h
                max_wh_ratio = max(max_wh_ratio, wh_ratio)
            for ino in range(beg_img_no, end_img_no):
94
                # norm_img = self.resize_norm_img(img_list[ino], max_wh_ratio)
tink2123's avatar
tink2123 committed
95
96
                norm_img = self.resize_norm_img(img_list[indices[ino]],
                                                max_wh_ratio)
LDOUBLEV's avatar
LDOUBLEV committed
97
98
99
100
101
                norm_img = norm_img[np.newaxis, :]
                norm_img_batch.append(norm_img)
            norm_img_batch = np.concatenate(norm_img_batch)
            norm_img_batch = norm_img_batch.copy()
            starttime = time.time()
WenmuZhou's avatar
WenmuZhou committed
102
103
            self.input_tensor.copy_from_cpu(norm_img_batch)
            self.predictor.run()
WenmuZhou's avatar
WenmuZhou committed
104
105
106
107
108
            outputs = []
            for output_tensor in self.output_tensors:
                output = output_tensor.copy_to_cpu()
                outputs.append(output)
            preds = outputs[0]
WenmuZhou's avatar
WenmuZhou committed
109
110
111
            rec_result = self.postprocess_op(preds)
            for rno in range(len(rec_result)):
                rec_res[indices[beg_img_no + rno]] = rec_result[rno]
112
            elapse += time.time() - starttime
WenmuZhou's avatar
WenmuZhou committed
113
        return rec_res, elapse
LDOUBLEV's avatar
LDOUBLEV committed
114
115


116
def main(args):
dyning's avatar
dyning committed
117
    image_file_list = get_image_file_list(args.image_dir)
LDOUBLEV's avatar
LDOUBLEV committed
118
119
120
121
    text_recognizer = TextRecognizer(args)
    valid_image_file_list = []
    img_list = []
    for image_file in image_file_list:
LDOUBLEV's avatar
LDOUBLEV committed
122
123
124
        img, flag = check_and_read_gif(image_file)
        if not flag:
            img = cv2.imread(image_file)
LDOUBLEV's avatar
LDOUBLEV committed
125
126
127
128
129
        if img is None:
            logger.info("error in loading image:{}".format(image_file))
            continue
        valid_image_file_list.append(image_file)
        img_list.append(img)
tink2123's avatar
tink2123 committed
130
131
    try:
        rec_res, predict_time = text_recognizer(img_list)
WenmuZhou's avatar
WenmuZhou committed
132
133
    except:
        logger.info(traceback.format_exc())
tink2123's avatar
tink2123 committed
134
        logger.info(
tink2123's avatar
tink2123 committed
135
136
137
138
            "ERROR!!!! \n"
            "Please read the FAQ:https://github.com/PaddlePaddle/PaddleOCR#faq \n"
            "If your model has tps module:  "
            "TPS does not support variable shape.\n"
tink2123's avatar
tink2123 committed
139
            "Please set --rec_image_shape='3,32,100' and --rec_char_type='en' ")
tink2123's avatar
tink2123 committed
140
        exit()
LDOUBLEV's avatar
LDOUBLEV committed
141
    for ino in range(len(img_list)):
WenmuZhou's avatar
WenmuZhou committed
142
143
        logger.info("Predicts of {}:{}".format(valid_image_file_list[ino],
                                               rec_res[ino]))
WenmuZhou's avatar
WenmuZhou committed
144
    logger.info("Total predict time for {} images, cost: {:.3f}".format(
WenmuZhou's avatar
WenmuZhou committed
145
        len(img_list), predict_time))
146
147
148
149


if __name__ == "__main__":
    main(utility.parse_args())