predict_rec.py 6.62 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
LDOUBLEV's avatar
LDOUBLEV committed
14
15
16
17
18
import os
import sys
__dir__ = os.path.dirname(__file__)
sys.path.append(__dir__)
sys.path.append(os.path.join(__dir__, '../..'))
LDOUBLEV's avatar
LDOUBLEV committed
19

LDOUBLEV's avatar
LDOUBLEV committed
20
import tools.infer.utility as utility
LDOUBLEV's avatar
LDOUBLEV committed
21
22
from ppocr.utils.utility import initial_logger
logger = initial_logger()
dyning's avatar
dyning committed
23
from ppocr.utils.utility import get_image_file_list
LDOUBLEV's avatar
LDOUBLEV committed
24
25
26
27
28
29
30
31
32
33
34
35
36
37
import cv2
import copy
import numpy as np
import math
import time
from ppocr.utils.character import CharacterOps


class TextRecognizer(object):
    def __init__(self, args):
        self.predictor, self.input_tensor, self.output_tensors =\
            utility.create_predictor(args, mode="rec")
        image_shape = [int(v) for v in args.rec_image_shape.split(",")]
        self.rec_image_shape = image_shape
dyning's avatar
dyning committed
38
        self.character_type = args.rec_char_type
39
        self.rec_batch_num = args.rec_batch_num
tink2123's avatar
tink2123 committed
40
        self.rec_algorithm = args.rec_algorithm
LDOUBLEV's avatar
LDOUBLEV committed
41
42
43
        char_ops_params = {}
        char_ops_params["character_type"] = args.rec_char_type
        char_ops_params["character_dict_path"] = args.rec_char_dict_path
tink2123's avatar
tink2123 committed
44
45
        if self.rec_algorithm != "RARE":
            char_ops_params['loss_type'] = 'ctc'
tink2123's avatar
tink2123 committed
46
            self.loss_type = 'ctc'
tink2123's avatar
tink2123 committed
47
48
        else:
            char_ops_params['loss_type'] = 'attention'
tink2123's avatar
tink2123 committed
49
            self.loss_type = 'attention'
LDOUBLEV's avatar
LDOUBLEV committed
50
51
        self.char_ops = CharacterOps(char_ops_params)

52
    def resize_norm_img(self, img, max_wh_ratio):
LDOUBLEV's avatar
LDOUBLEV committed
53
        imgC, imgH, imgW = self.rec_image_shape
dyning's avatar
dyning committed
54
55
        if self.character_type == "ch":
            imgW = int(32 * max_wh_ratio)
LDOUBLEV's avatar
LDOUBLEV committed
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
        h = img.shape[0]
        w = img.shape[1]
        ratio = w / float(h)
        if math.ceil(imgH * ratio) > imgW:
            resized_w = imgW
        else:
            resized_w = int(math.ceil(imgH * ratio))
        resized_image = cv2.resize(img, (resized_w, imgH))
        resized_image = resized_image.astype('float32')
        resized_image = resized_image.transpose((2, 0, 1)) / 255
        resized_image -= 0.5
        resized_image /= 0.5
        padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
        padding_im[:, :, 0:resized_w] = resized_image
        return padding_im

    def __call__(self, img_list):
        img_num = len(img_list)
        rec_res = []
75
        batch_num = self.rec_batch_num
LDOUBLEV's avatar
LDOUBLEV committed
76
77
78
79
        predict_time = 0
        for beg_img_no in range(0, img_num, batch_num):
            end_img_no = min(img_num, beg_img_no + batch_num)
            norm_img_batch = []
80
            max_wh_ratio = 0
LDOUBLEV's avatar
LDOUBLEV committed
81
            for ino in range(beg_img_no, end_img_no):
82
83
84
85
86
                h, w = img_list[ino].shape[0:2]
                wh_ratio = w * 1.0 / h
                max_wh_ratio = max(max_wh_ratio, wh_ratio)
            for ino in range(beg_img_no, end_img_no):
                norm_img = self.resize_norm_img(img_list[ino], max_wh_ratio)
LDOUBLEV's avatar
LDOUBLEV committed
87
88
89
90
91
92
93
                norm_img = norm_img[np.newaxis, :]
                norm_img_batch.append(norm_img)
            norm_img_batch = np.concatenate(norm_img_batch)
            norm_img_batch = norm_img_batch.copy()
            starttime = time.time()
            self.input_tensor.copy_from_cpu(norm_img_batch)
            self.predictor.zero_copy_run()
tink2123's avatar
tink2123 committed
94

tink2123's avatar
tink2123 committed
95
            if self.loss_type == "ctc":
tink2123's avatar
tink2123 committed
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
                rec_idx_batch = self.output_tensors[0].copy_to_cpu()
                rec_idx_lod = self.output_tensors[0].lod()[0]
                predict_batch = self.output_tensors[1].copy_to_cpu()
                predict_lod = self.output_tensors[1].lod()[0]
                elapse = time.time() - starttime
                predict_time += elapse
                for rno in range(len(rec_idx_lod) - 1):
                    beg = rec_idx_lod[rno]
                    end = rec_idx_lod[rno + 1]
                    rec_idx_tmp = rec_idx_batch[beg:end, 0]
                    preds_text = self.char_ops.decode(rec_idx_tmp)
                    beg = predict_lod[rno]
                    end = predict_lod[rno + 1]
                    probs = predict_batch[beg:end, :]
                    ind = np.argmax(probs, axis=1)
                    blank = probs.shape[1]
                    valid_ind = np.where(ind != (blank - 1))[0]
                    score = np.mean(probs[valid_ind, ind[valid_ind]])
                    rec_res.append([preds_text, score])
            else:
                rec_idx_batch = self.output_tensors[0].copy_to_cpu()
                predict_batch = self.output_tensors[1].copy_to_cpu()
tink2123's avatar
tink2123 committed
118
119
                elapse = time.time() - starttime
                predict_time += elapse
tink2123's avatar
tink2123 committed
120
121
122
123
124
125
126
127
128
129
130
                for rno in range(len(rec_idx_batch)):
                    end_pos = np.where(rec_idx_batch[rno, :] == 1)[0]
                    if len(end_pos) <= 1:
                        preds = rec_idx_batch[rno, 1:]
                        score = np.mean(predict_batch[rno, 1:])
                    else:
                        preds = rec_idx_batch[rno, 1:end_pos[1]]
                        score = np.mean(predict_batch[rno, 1:end_pos[1]])
                    preds_text = self.char_ops.decode(preds)
                    rec_res.append([preds_text, score])

LDOUBLEV's avatar
LDOUBLEV committed
131
132
133
134
135
        return rec_res, predict_time


if __name__ == "__main__":
    args = utility.parse_args()
dyning's avatar
dyning committed
136
    image_file_list = get_image_file_list(args.image_dir)
LDOUBLEV's avatar
LDOUBLEV committed
137
138
139
140
141
142
143
144
145
146
    text_recognizer = TextRecognizer(args)
    valid_image_file_list = []
    img_list = []
    for image_file in image_file_list:
        img = cv2.imread(image_file)
        if img is None:
            logger.info("error in loading image:{}".format(image_file))
            continue
        valid_image_file_list.append(image_file)
        img_list.append(img)
tink2123's avatar
tink2123 committed
147
148
    try:
        rec_res, predict_time = text_recognizer(img_list)
tink2123's avatar
tink2123 committed
149
150
    except Exception as e:
        print(e)
tink2123's avatar
tink2123 committed
151
        logger.info(
tink2123's avatar
tink2123 committed
152
153
154
155
            "ERROR!!!! \n"
            "Please read the FAQ:https://github.com/PaddlePaddle/PaddleOCR#faq \n"
            "If your model has tps module:  "
            "TPS does not support variable shape.\n"
tink2123's avatar
tink2123 committed
156
            "Please set --rec_image_shape='3,32,100' and --rec_char_type='en' ")
tink2123's avatar
tink2123 committed
157
        exit()
LDOUBLEV's avatar
LDOUBLEV committed
158
159
160
161
    for ino in range(len(img_list)):
        print("Predicts of %s:%s" % (valid_image_file_list[ino], rec_res[ino]))
    print("Total predict time for %d images:%.3f" %
          (len(img_list), predict_time))