predict_rec.py 7.28 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
LDOUBLEV's avatar
LDOUBLEV committed
14
15
import os
import sys
16
__dir__ = os.path.dirname(os.path.abspath(__file__))
LDOUBLEV's avatar
LDOUBLEV committed
17
sys.path.append(__dir__)
18
sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))
LDOUBLEV's avatar
LDOUBLEV committed
19

LDOUBLEV's avatar
LDOUBLEV committed
20
import tools.infer.utility as utility
LDOUBLEV's avatar
LDOUBLEV committed
21
22
from ppocr.utils.utility import initial_logger
logger = initial_logger()
dyning's avatar
dyning committed
23
from ppocr.utils.utility import get_image_file_list
LDOUBLEV's avatar
LDOUBLEV committed
24
25
26
27
28
29
30
31
32
33
34
35
import cv2
import copy
import numpy as np
import math
import time
from ppocr.utils.character import CharacterOps


class TextRecognizer(object):
    def __init__(self, args):
        self.predictor, self.input_tensor, self.output_tensors =\
            utility.create_predictor(args, mode="rec")
36
        self.rec_image_shape = [int(v) for v in args.rec_image_shape.split(",")]
dyning's avatar
dyning committed
37
        self.character_type = args.rec_char_type
38
        self.rec_batch_num = args.rec_batch_num
tink2123's avatar
tink2123 committed
39
        self.rec_algorithm = args.rec_algorithm
40
41
        char_ops_params = {"character_type": args.rec_char_type,
                           "character_dict_path": args.rec_char_dict_path}
tink2123's avatar
tink2123 committed
42
43
        if self.rec_algorithm != "RARE":
            char_ops_params['loss_type'] = 'ctc'
tink2123's avatar
tink2123 committed
44
            self.loss_type = 'ctc'
tink2123's avatar
tink2123 committed
45
46
        else:
            char_ops_params['loss_type'] = 'attention'
tink2123's avatar
tink2123 committed
47
            self.loss_type = 'attention'
LDOUBLEV's avatar
LDOUBLEV committed
48
49
        self.char_ops = CharacterOps(char_ops_params)

50
    def resize_norm_img(self, img, max_wh_ratio):
LDOUBLEV's avatar
LDOUBLEV committed
51
        imgC, imgH, imgW = self.rec_image_shape
52
        assert imgC == img.shape[2]
53
54
        if self.character_type == "ch":
            imgW = int(math.ceil(32 * max_wh_ratio))
55
        h, w = img.shape[:2]
56
57
58
59
60
        ratio = w / float(h)
        if math.ceil(imgH * ratio) > imgW:
            resized_w = imgW
        else:
            resized_w = int(math.ceil(imgH * ratio))
61
        resized_image = cv2.resize(img, (resized_w, imgH), interpolation=cv2.INTER_CUBIC)
LDOUBLEV's avatar
LDOUBLEV committed
62
63
64
65
66
67
68
69
70
71
        resized_image = resized_image.astype('float32')
        resized_image = resized_image.transpose((2, 0, 1)) / 255
        resized_image -= 0.5
        resized_image /= 0.5
        padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
        padding_im[:, :, 0:resized_w] = resized_image
        return padding_im

    def __call__(self, img_list):
        img_num = len(img_list)
72
        # Calculate the aspect ratio of all text bars
73
74
75
        width_list = []
        for img in img_list:
            width_list.append(img.shape[1] / float(img.shape[0]))
76
        # Sorting can be accelerated
77
78
79
80
        indices = np.argsort(np.array(width_list))

        # rec_res = []
        rec_res = [['', 0.0]] * img_num
81
        batch_num = self.rec_batch_num
LDOUBLEV's avatar
LDOUBLEV committed
82
83
84
85
        predict_time = 0
        for beg_img_no in range(0, img_num, batch_num):
            end_img_no = min(img_num, beg_img_no + batch_num)
            norm_img_batch = []
86
            max_wh_ratio = 0
LDOUBLEV's avatar
LDOUBLEV committed
87
            for ino in range(beg_img_no, end_img_no):
88
89
                # h, w = img_list[ino].shape[0:2]
                h, w = img_list[indices[ino]].shape[0:2]
90
91
92
                wh_ratio = w * 1.0 / h
                max_wh_ratio = max(max_wh_ratio, wh_ratio)
            for ino in range(beg_img_no, end_img_no):
93
94
                # norm_img = self.resize_norm_img(img_list[ino], max_wh_ratio)
                norm_img = self.resize_norm_img(img_list[indices[ino]], max_wh_ratio)
LDOUBLEV's avatar
LDOUBLEV committed
95
96
97
98
99
100
101
                norm_img = norm_img[np.newaxis, :]
                norm_img_batch.append(norm_img)
            norm_img_batch = np.concatenate(norm_img_batch)
            norm_img_batch = norm_img_batch.copy()
            starttime = time.time()
            self.input_tensor.copy_from_cpu(norm_img_batch)
            self.predictor.zero_copy_run()
tink2123's avatar
tink2123 committed
102

tink2123's avatar
tink2123 committed
103
            if self.loss_type == "ctc":
tink2123's avatar
tink2123 committed
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
                rec_idx_batch = self.output_tensors[0].copy_to_cpu()
                rec_idx_lod = self.output_tensors[0].lod()[0]
                predict_batch = self.output_tensors[1].copy_to_cpu()
                predict_lod = self.output_tensors[1].lod()[0]
                elapse = time.time() - starttime
                predict_time += elapse
                for rno in range(len(rec_idx_lod) - 1):
                    beg = rec_idx_lod[rno]
                    end = rec_idx_lod[rno + 1]
                    rec_idx_tmp = rec_idx_batch[beg:end, 0]
                    preds_text = self.char_ops.decode(rec_idx_tmp)
                    beg = predict_lod[rno]
                    end = predict_lod[rno + 1]
                    probs = predict_batch[beg:end, :]
                    ind = np.argmax(probs, axis=1)
                    blank = probs.shape[1]
                    valid_ind = np.where(ind != (blank - 1))[0]
                    score = np.mean(probs[valid_ind, ind[valid_ind]])
122
123
                    # rec_res.append([preds_text, score])
                    rec_res[indices[beg_img_no + rno]] = [preds_text, score]
tink2123's avatar
tink2123 committed
124
125
126
            else:
                rec_idx_batch = self.output_tensors[0].copy_to_cpu()
                predict_batch = self.output_tensors[1].copy_to_cpu()
tink2123's avatar
tink2123 committed
127
128
                elapse = time.time() - starttime
                predict_time += elapse
tink2123's avatar
tink2123 committed
129
130
131
132
133
134
135
136
137
                for rno in range(len(rec_idx_batch)):
                    end_pos = np.where(rec_idx_batch[rno, :] == 1)[0]
                    if len(end_pos) <= 1:
                        preds = rec_idx_batch[rno, 1:]
                        score = np.mean(predict_batch[rno, 1:])
                    else:
                        preds = rec_idx_batch[rno, 1:end_pos[1]]
                        score = np.mean(predict_batch[rno, 1:end_pos[1]])
                    preds_text = self.char_ops.decode(preds)
138
139
                    # rec_res.append([preds_text, score])
                    rec_res[indices[beg_img_no + rno]] = [preds_text, score]
tink2123's avatar
tink2123 committed
140

LDOUBLEV's avatar
LDOUBLEV committed
141
142
143
        return rec_res, predict_time


144
def main(args):
dyning's avatar
dyning committed
145
    image_file_list = get_image_file_list(args.image_dir)
LDOUBLEV's avatar
LDOUBLEV committed
146
147
148
149
    text_recognizer = TextRecognizer(args)
    valid_image_file_list = []
    img_list = []
    for image_file in image_file_list:
150
        img = cv2.imread(image_file, cv2.IMREAD_COLOR)
LDOUBLEV's avatar
LDOUBLEV committed
151
152
153
154
155
        if img is None:
            logger.info("error in loading image:{}".format(image_file))
            continue
        valid_image_file_list.append(image_file)
        img_list.append(img)
tink2123's avatar
tink2123 committed
156
157
    try:
        rec_res, predict_time = text_recognizer(img_list)
tink2123's avatar
tink2123 committed
158
159
    except Exception as e:
        print(e)
tink2123's avatar
tink2123 committed
160
        logger.info(
tink2123's avatar
tink2123 committed
161
162
163
164
            "ERROR!!!! \n"
            "Please read the FAQ:https://github.com/PaddlePaddle/PaddleOCR#faq \n"
            "If your model has tps module:  "
            "TPS does not support variable shape.\n"
tink2123's avatar
tink2123 committed
165
            "Please set --rec_image_shape='3,32,100' and --rec_char_type='en' ")
tink2123's avatar
tink2123 committed
166
        exit()
LDOUBLEV's avatar
LDOUBLEV committed
167
168
169
170
    for ino in range(len(img_list)):
        print("Predicts of %s:%s" % (valid_image_file_list[ino], rec_res[ino]))
    print("Total predict time for %d images:%.3f" %
          (len(img_list), predict_time))
171
172
173
174


if __name__ == "__main__":
    main(utility.parse_args())