utility.py 22 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
WenmuZhou's avatar
WenmuZhou committed
16
import os
WenmuZhou's avatar
WenmuZhou committed
17
import sys
LDOUBLEV's avatar
LDOUBLEV committed
18
19
import cv2
import numpy as np
LDOUBLEV's avatar
LDOUBLEV committed
20
21
import json
from PIL import Image, ImageDraw, ImageFont
22
import math
WenmuZhou's avatar
WenmuZhou committed
23
from paddle import inference
LDOUBLEV's avatar
LDOUBLEV committed
24
25
import time
from ppocr.utils.logging import get_logger
WenmuZhou's avatar
WenmuZhou committed
26

LDOUBLEV's avatar
LDOUBLEV committed
27

28
29
def str2bool(v):
    return v.lower() in ("true", "t", "1")
LDOUBLEV's avatar
LDOUBLEV committed
30
31


WenmuZhou's avatar
WenmuZhou committed
32
def init_args():
LDOUBLEV's avatar
LDOUBLEV committed
33
    parser = argparse.ArgumentParser()
WenmuZhou's avatar
WenmuZhou committed
34
    # params for prediction engine
LDOUBLEV's avatar
LDOUBLEV committed
35
36
37
    parser.add_argument("--use_gpu", type=str2bool, default=True)
    parser.add_argument("--ir_optim", type=str2bool, default=True)
    parser.add_argument("--use_tensorrt", type=str2bool, default=False)
LDOUBLEV's avatar
LDOUBLEV committed
38
    parser.add_argument("--min_subgraph_size", type=int, default=10)
LDOUBLEV's avatar
LDOUBLEV committed
39
    parser.add_argument("--precision", type=str, default="fp32")
40
    parser.add_argument("--gpu_mem", type=int, default=500)
LDOUBLEV's avatar
LDOUBLEV committed
41

WenmuZhou's avatar
WenmuZhou committed
42
    # params for text detector
LDOUBLEV's avatar
LDOUBLEV committed
43
44
45
    parser.add_argument("--image_dir", type=str)
    parser.add_argument("--det_algorithm", type=str, default='DB')
    parser.add_argument("--det_model_dir", type=str)
WenmuZhou's avatar
WenmuZhou committed
46
47
    parser.add_argument("--det_limit_side_len", type=float, default=960)
    parser.add_argument("--det_limit_type", type=str, default='max')
LDOUBLEV's avatar
LDOUBLEV committed
48

WenmuZhou's avatar
WenmuZhou committed
49
    # DB parmas
LDOUBLEV's avatar
LDOUBLEV committed
50
    parser.add_argument("--det_db_thresh", type=float, default=0.3)
LDOUBLEV's avatar
LDOUBLEV committed
51
52
    parser.add_argument("--det_db_box_thresh", type=float, default=0.6)
    parser.add_argument("--det_db_unclip_ratio", type=float, default=1.5)
LDOUBLEV's avatar
LDOUBLEV committed
53
    parser.add_argument("--max_batch_size", type=int, default=10)
littletomatodonkey's avatar
littletomatodonkey committed
54
    parser.add_argument("--use_dilation", type=str2bool, default=False)
littletomatodonkey's avatar
littletomatodonkey committed
55
    parser.add_argument("--det_db_score_mode", type=str, default="fast")
WenmuZhou's avatar
WenmuZhou committed
56
    # EAST parmas
LDOUBLEV's avatar
LDOUBLEV committed
57
58
59
60
    parser.add_argument("--det_east_score_thresh", type=float, default=0.8)
    parser.add_argument("--det_east_cover_thresh", type=float, default=0.1)
    parser.add_argument("--det_east_nms_thresh", type=float, default=0.2)

WenmuZhou's avatar
WenmuZhou committed
61
    # SAST parmas
licx's avatar
licx committed
62
63
    parser.add_argument("--det_sast_score_thresh", type=float, default=0.5)
    parser.add_argument("--det_sast_nms_thresh", type=float, default=0.2)
littletomatodonkey's avatar
littletomatodonkey committed
64
    parser.add_argument("--det_sast_polygon", type=str2bool, default=False)
licx's avatar
licx committed
65

WenmuZhou's avatar
WenmuZhou committed
66
    # params for text recognizer
LDOUBLEV's avatar
LDOUBLEV committed
67
68
    parser.add_argument("--rec_algorithm", type=str, default='CRNN')
    parser.add_argument("--rec_model_dir", type=str)
tink2123's avatar
fix bug  
tink2123 committed
69
70
    parser.add_argument("--rec_image_shape", type=str, default="3, 32, 320")
    parser.add_argument("--rec_char_type", type=str, default='ch')
71
    parser.add_argument("--rec_batch_num", type=int, default=6)
tink2123's avatar
fix bug  
tink2123 committed
72
    parser.add_argument("--max_text_length", type=int, default=25)
LDOUBLEV's avatar
LDOUBLEV committed
73
74
75
76
    parser.add_argument(
        "--rec_char_dict_path",
        type=str,
        default="./ppocr/utils/ppocr_keys_v1.txt")
WenmuZhou's avatar
WenmuZhou committed
77
78
    parser.add_argument("--use_space_char", type=str2bool, default=True)
    parser.add_argument(
tink2123's avatar
tink2123 committed
79
        "--vis_font_path", type=str, default="./doc/fonts/simfang.ttf")
WenmuZhou's avatar
WenmuZhou committed
80
    parser.add_argument("--drop_score", type=float, default=0.5)
WenmuZhou's avatar
WenmuZhou committed
81

Jethong's avatar
Jethong committed
82
83
84
85
86
87
88
89
90
    # params for e2e
    parser.add_argument("--e2e_algorithm", type=str, default='PGNet')
    parser.add_argument("--e2e_model_dir", type=str)
    parser.add_argument("--e2e_limit_side_len", type=float, default=768)
    parser.add_argument("--e2e_limit_type", type=str, default='max')

    # PGNet parmas
    parser.add_argument("--e2e_pgnet_score_thresh", type=float, default=0.5)
    parser.add_argument(
Jethong's avatar
Jethong committed
91
        "--e2e_char_dict_path", type=str, default="./ppocr/utils/ic15_dict.txt")
Jethong's avatar
Jethong committed
92
    parser.add_argument("--e2e_pgnet_valid_set", type=str, default='totaltext')
littletomatodonkey's avatar
littletomatodonkey committed
93
    parser.add_argument("--e2e_pgnet_polygon", type=str2bool, default=True)
Jethong's avatar
Jethong committed
94
    parser.add_argument("--e2e_pgnet_mode", type=str, default='fast')
Jethong's avatar
Jethong committed
95

WenmuZhou's avatar
WenmuZhou committed
96
97
98
99
100
    # params for text classifier
    parser.add_argument("--use_angle_cls", type=str2bool, default=False)
    parser.add_argument("--cls_model_dir", type=str)
    parser.add_argument("--cls_image_shape", type=str, default="3, 48, 192")
    parser.add_argument("--label_list", type=list, default=['0', '180'])
101
    parser.add_argument("--cls_batch_num", type=int, default=6)
WenmuZhou's avatar
WenmuZhou committed
102
103
104
    parser.add_argument("--cls_thresh", type=float, default=0.9)

    parser.add_argument("--enable_mkldnn", type=str2bool, default=False)
LDOUBLEV's avatar
LDOUBLEV committed
105
    parser.add_argument("--cpu_threads", type=int, default=10)
WenmuZhou's avatar
WenmuZhou committed
106
    parser.add_argument("--use_pdserving", type=str2bool, default=False)
LDOUBLEV's avatar
LDOUBLEV committed
107
    parser.add_argument("--warmup", type=str2bool, default=True)
WenmuZhou's avatar
WenmuZhou committed
108

LDOUBLEV's avatar
LDOUBLEV committed
109
    # multi-process
littletomatodonkey's avatar
littletomatodonkey committed
110
    parser.add_argument("--use_mp", type=str2bool, default=False)
111
112
    parser.add_argument("--total_process_num", type=int, default=1)
    parser.add_argument("--process_id", type=int, default=0)
WenmuZhou's avatar
WenmuZhou committed
113

littletomatodonkey's avatar
littletomatodonkey committed
114
    parser.add_argument("--benchmark", type=str2bool, default=False)
LDOUBLEV's avatar
LDOUBLEV committed
115
    parser.add_argument("--save_log_path", type=str, default="./log_output/")
Double_V's avatar
Double_V committed
116

WenmuZhou's avatar
WenmuZhou committed
117
    parser.add_argument("--show_log", type=str2bool, default=True)
WenmuZhou's avatar
WenmuZhou committed
118
    return parser
WenmuZhou's avatar
WenmuZhou committed
119

120

121
def parse_args():
WenmuZhou's avatar
WenmuZhou committed
122
    parser = init_args()
LDOUBLEV's avatar
LDOUBLEV committed
123
124
125
    return parser.parse_args()


WenmuZhou's avatar
WenmuZhou committed
126
127
128
129
130
def create_predictor(args, mode, logger):
    if mode == "det":
        model_dir = args.det_model_dir
    elif mode == 'cls':
        model_dir = args.cls_model_dir
Jethong's avatar
Jethong committed
131
    elif mode == 'rec':
WenmuZhou's avatar
WenmuZhou committed
132
        model_dir = args.rec_model_dir
WenmuZhou's avatar
WenmuZhou committed
133
134
    elif mode == 'table':
        model_dir = args.table_model_dir
Jethong's avatar
Jethong committed
135
136
    else:
        model_dir = args.e2e_model_dir
WenmuZhou's avatar
WenmuZhou committed
137
138
139
140

    if model_dir is None:
        logger.info("not find {} model file path {}".format(mode, model_dir))
        sys.exit(0)
WenmuZhou's avatar
WenmuZhou committed
141
142
    model_file_path = model_dir + "/inference.pdmodel"
    params_file_path = model_dir + "/inference.pdiparams"
WenmuZhou's avatar
WenmuZhou committed
143
    if not os.path.exists(model_file_path):
LDOUBLEV's avatar
LDOUBLEV committed
144
        raise ValueError("not find model file path {}".format(model_file_path))
WenmuZhou's avatar
WenmuZhou committed
145
    if not os.path.exists(params_file_path):
LDOUBLEV's avatar
LDOUBLEV committed
146
147
        raise ValueError("not find params file path {}".format(
            params_file_path))
WenmuZhou's avatar
WenmuZhou committed
148

WenmuZhou's avatar
WenmuZhou committed
149
    config = inference.Config(model_file_path, params_file_path)
WenmuZhou's avatar
WenmuZhou committed
150

LDOUBLEV's avatar
LDOUBLEV committed
151
152
153
154
155
156
157
158
159
160
    if hasattr(args, 'precision'):
        if args.precision == "fp16" and args.use_tensorrt:
            precision = inference.PrecisionType.Half
        elif args.precision == "int8":
            precision = inference.PrecisionType.Int8
        else:
            precision = inference.PrecisionType.Float32
    else:
        precision = inference.PrecisionType.Float32

WenmuZhou's avatar
WenmuZhou committed
161
162
    if args.use_gpu:
        config.enable_use_gpu(args.gpu_mem, 0)
LDOUBLEV's avatar
LDOUBLEV committed
163
164
        if args.use_tensorrt:
            config.enable_tensorrt_engine(
Double_V's avatar
Double_V committed
165
                precision_mode=precision,
LDOUBLEV's avatar
LDOUBLEV committed
166
                max_batch_size=args.max_batch_size,
LDOUBLEV's avatar
LDOUBLEV committed
167
168
                min_subgraph_size=args.min_subgraph_size)
            # skip the minmum trt subgraph
LDOUBLEV's avatar
LDOUBLEV committed
169
        if mode == "det":
LDOUBLEV's avatar
LDOUBLEV committed
170
171
            min_input_shape = {
                "x": [1, 3, 50, 50],
fengshuai03's avatar
fengshuai03 committed
172
173
                "conv2d_92.tmp_0": [1, 120, 20, 20],
                "conv2d_91.tmp_0": [1, 24, 10, 10],
LDOUBLEV's avatar
LDOUBLEV committed
174
                "conv2d_59.tmp_0": [1, 96, 20, 20],
fengshuai03's avatar
fengshuai03 committed
175
176
177
178
179
180
                "nearest_interp_v2_1.tmp_0": [1, 256, 10, 10],
                "nearest_interp_v2_2.tmp_0": [1, 256, 20, 20],
                "conv2d_124.tmp_0": [1, 256, 20, 20],
                "nearest_interp_v2_3.tmp_0": [1, 64, 20, 20],
                "nearest_interp_v2_4.tmp_0": [1, 64, 20, 20],
                "nearest_interp_v2_5.tmp_0": [1, 64, 20, 20],
LDOUBLEV's avatar
LDOUBLEV committed
181
                "elementwise_add_7": [1, 56, 2, 2],
fengshuai03's avatar
fengshuai03 committed
182
                "nearest_interp_v2_0.tmp_0": [1, 256, 2, 2]
LDOUBLEV's avatar
LDOUBLEV committed
183
184
185
            }
            max_input_shape = {
                "x": [1, 3, 2000, 2000],
fengshuai03's avatar
fengshuai03 committed
186
187
                "conv2d_92.tmp_0": [1, 120, 400, 400],
                "conv2d_91.tmp_0": [1, 24, 200, 200],
LDOUBLEV's avatar
LDOUBLEV committed
188
                "conv2d_59.tmp_0": [1, 96, 400, 400],
fengshuai03's avatar
fengshuai03 committed
189
                "nearest_interp_v2_1.tmp_0": [1, 256, 200, 200],
LDOUBLEV's avatar
LDOUBLEV committed
190
                "conv2d_124.tmp_0": [1, 256, 400, 400],
fengshuai03's avatar
fengshuai03 committed
191
192
193
194
                "nearest_interp_v2_2.tmp_0": [1, 256, 400, 400],
                "nearest_interp_v2_3.tmp_0": [1, 64, 400, 400],
                "nearest_interp_v2_4.tmp_0": [1, 64, 400, 400],
                "nearest_interp_v2_5.tmp_0": [1, 64, 400, 400],
LDOUBLEV's avatar
LDOUBLEV committed
195
                "elementwise_add_7": [1, 56, 400, 400],
fengshuai03's avatar
fengshuai03 committed
196
                "nearest_interp_v2_0.tmp_0": [1, 256, 400, 400]
LDOUBLEV's avatar
LDOUBLEV committed
197
198
199
            }
            opt_input_shape = {
                "x": [1, 3, 640, 640],
fengshuai03's avatar
fengshuai03 committed
200
201
                "conv2d_92.tmp_0": [1, 120, 160, 160],
                "conv2d_91.tmp_0": [1, 24, 80, 80],
LDOUBLEV's avatar
LDOUBLEV committed
202
                "conv2d_59.tmp_0": [1, 96, 160, 160],
fengshuai03's avatar
fengshuai03 committed
203
204
                "nearest_interp_v2_1.tmp_0": [1, 256, 80, 80],
                "nearest_interp_v2_2.tmp_0": [1, 256, 160, 160],
LDOUBLEV's avatar
LDOUBLEV committed
205
                "conv2d_124.tmp_0": [1, 256, 160, 160],
fengshuai03's avatar
fengshuai03 committed
206
207
208
                "nearest_interp_v2_3.tmp_0": [1, 64, 160, 160],
                "nearest_interp_v2_4.tmp_0": [1, 64, 160, 160],
                "nearest_interp_v2_5.tmp_0": [1, 64, 160, 160],
LDOUBLEV's avatar
LDOUBLEV committed
209
                "elementwise_add_7": [1, 56, 40, 40],
fengshuai03's avatar
fengshuai03 committed
210
                "nearest_interp_v2_0.tmp_0": [1, 256, 40, 40]
LDOUBLEV's avatar
LDOUBLEV committed
211
            }
fengshuai03's avatar
fengshuai03 committed
212
            min_pact_shape = {
littletomatodonkey's avatar
littletomatodonkey committed
213
214
215
216
                "nearest_interp_v2_26.tmp_0": [1, 256, 20, 20],
                "nearest_interp_v2_27.tmp_0": [1, 64, 20, 20],
                "nearest_interp_v2_28.tmp_0": [1, 64, 20, 20],
                "nearest_interp_v2_29.tmp_0": [1, 64, 20, 20]
fengshuai03's avatar
fengshuai03 committed
217
218
            }
            max_pact_shape = {
littletomatodonkey's avatar
littletomatodonkey committed
219
220
221
222
                "nearest_interp_v2_26.tmp_0": [1, 256, 400, 400],
                "nearest_interp_v2_27.tmp_0": [1, 64, 400, 400],
                "nearest_interp_v2_28.tmp_0": [1, 64, 400, 400],
                "nearest_interp_v2_29.tmp_0": [1, 64, 400, 400]
fengshuai03's avatar
fengshuai03 committed
223
224
            }
            opt_pact_shape = {
littletomatodonkey's avatar
littletomatodonkey committed
225
226
227
228
                "nearest_interp_v2_26.tmp_0": [1, 256, 160, 160],
                "nearest_interp_v2_27.tmp_0": [1, 64, 160, 160],
                "nearest_interp_v2_28.tmp_0": [1, 64, 160, 160],
                "nearest_interp_v2_29.tmp_0": [1, 64, 160, 160]
fengshuai03's avatar
fengshuai03 committed
229
230
231
232
            }
            min_input_shape.update(min_pact_shape)
            max_input_shape.update(max_pact_shape)
            opt_input_shape.update(opt_pact_shape)
LDOUBLEV's avatar
LDOUBLEV committed
233
234
235
236
237
238
239
240
        elif mode == "rec":
            min_input_shape = {"x": [args.rec_batch_num, 3, 32, 10]}
            max_input_shape = {"x": [args.rec_batch_num, 3, 32, 2000]}
            opt_input_shape = {"x": [args.rec_batch_num, 3, 32, 320]}
        elif mode == "cls":
            min_input_shape = {"x": [args.rec_batch_num, 3, 48, 10]}
            max_input_shape = {"x": [args.rec_batch_num, 3, 48, 2000]}
            opt_input_shape = {"x": [args.rec_batch_num, 3, 48, 320]}
LDOUBLEV's avatar
LDOUBLEV committed
241
242
243
244
        else:
            min_input_shape = {"x": [1, 3, 10, 10]}
            max_input_shape = {"x": [1, 3, 1000, 1000]}
            opt_input_shape = {"x": [1, 3, 500, 500]}
LDOUBLEV's avatar
LDOUBLEV committed
245
246
247
        config.set_trt_dynamic_shape_info(min_input_shape, max_input_shape,
                                          opt_input_shape)

WenmuZhou's avatar
WenmuZhou committed
248
249
    else:
        config.disable_gpu()
LDOUBLEV's avatar
LDOUBLEV committed
250
251
252
        if hasattr(args, "cpu_threads"):
            config.set_cpu_math_library_num_threads(args.cpu_threads)
        else:
WenmuZhou's avatar
WenmuZhou committed
253
            # default cpu threads as 10
LDOUBLEV's avatar
LDOUBLEV committed
254
            config.set_cpu_math_library_num_threads(10)
WenmuZhou's avatar
WenmuZhou committed
255
256
257
258
259
        if args.enable_mkldnn:
            # cache 10 different shapes for mkldnn to avoid memory leak
            config.set_mkldnn_cache_capacity(10)
            config.enable_mkldnn()

LDOUBLEV's avatar
LDOUBLEV committed
260
261
    # enable memory optim
    config.enable_memory_optim()
LDOUBLEV's avatar
LDOUBLEV committed
262
    #config.disable_glog_info()
WenmuZhou's avatar
WenmuZhou committed
263

WenmuZhou's avatar
WenmuZhou committed
264
    config.delete_pass("conv_transpose_eltwiseadd_bn_fuse_pass")
WenmuZhou's avatar
WenmuZhou committed
265
    if mode == 'table':
WenmuZhou's avatar
WenmuZhou committed
266
        config.delete_pass("fc_fuse_pass")  # not supported for table
WenmuZhou's avatar
WenmuZhou committed
267
    config.switch_use_feed_fetch_ops(False)
WenmuZhou's avatar
WenmuZhou committed
268
    config.switch_ir_optim(True)
269

WenmuZhou's avatar
WenmuZhou committed
270
271
    # create predictor
    predictor = inference.create_predictor(config)
WenmuZhou's avatar
WenmuZhou committed
272
273
    input_names = predictor.get_input_names()
    for name in input_names:
WenmuZhou's avatar
WenmuZhou committed
274
        input_tensor = predictor.get_input_handle(name)
WenmuZhou's avatar
WenmuZhou committed
275
276
277
    output_names = predictor.get_output_names()
    output_tensors = []
    for output_name in output_names:
WenmuZhou's avatar
WenmuZhou committed
278
        output_tensor = predictor.get_output_handle(output_name)
WenmuZhou's avatar
WenmuZhou committed
279
        output_tensors.append(output_tensor)
LDOUBLEV's avatar
LDOUBLEV committed
280
    return predictor, input_tensor, output_tensors, config
WenmuZhou's avatar
WenmuZhou committed
281
282


LDOUBLEV's avatar
LDOUBLEV committed
283
284
285
286
287
288
289
290
291
292
293
294
295
296
def get_infer_gpuid():
    cmd = "nvidia-smi"
    res = os.popen(cmd).readlines()
    if len(res) == 0:
        return None
    cmd = "env | grep CUDA_VISIBLE_DEVICES"
    env_cuda = os.popen(cmd).readlines()
    if len(env_cuda) == 0:
        return 0
    else:
        gpu_id = env_cuda[0].strip().split("=")[1]
        return int(gpu_id[0])


Jethong's avatar
Jethong committed
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
def draw_e2e_res(dt_boxes, strs, img_path):
    src_im = cv2.imread(img_path)
    for box, str in zip(dt_boxes, strs):
        box = box.astype(np.int32).reshape((-1, 1, 2))
        cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
        cv2.putText(
            src_im,
            str,
            org=(int(box[0, 0, 0]), int(box[0, 0, 1])),
            fontFace=cv2.FONT_HERSHEY_COMPLEX,
            fontScale=0.7,
            color=(0, 255, 0),
            thickness=1)
    return src_im


LDOUBLEV's avatar
LDOUBLEV committed
313
def draw_text_det_res(dt_boxes, img_path):
LDOUBLEV's avatar
LDOUBLEV committed
314
315
316
317
    src_im = cv2.imread(img_path)
    for box in dt_boxes:
        box = np.array(box).astype(np.int32).reshape(-1, 2)
        cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
LDOUBLEV's avatar
LDOUBLEV committed
318
    return src_im
LDOUBLEV's avatar
LDOUBLEV committed
319
320


LDOUBLEV's avatar
LDOUBLEV committed
321
322
def resize_img(img, input_size=600):
    """
LDOUBLEV's avatar
LDOUBLEV committed
323
    resize img and limit the longest side of the image to input_size
LDOUBLEV's avatar
LDOUBLEV committed
324
325
326
327
328
    """
    img = np.array(img)
    im_shape = img.shape
    im_size_max = np.max(im_shape[0:2])
    im_scale = float(input_size) / float(im_size_max)
WenmuZhou's avatar
WenmuZhou committed
329
330
    img = cv2.resize(img, None, None, fx=im_scale, fy=im_scale)
    return img
LDOUBLEV's avatar
LDOUBLEV committed
331
332


WenmuZhou's avatar
WenmuZhou committed
333
334
335
336
337
def draw_ocr(image,
             boxes,
             txts=None,
             scores=None,
             drop_score=0.5,
LDOUBLEV's avatar
LDOUBLEV committed
338
             font_path="./doc/fonts/simfang.ttf"):
339
340
341
    """
    Visualize the results of OCR detection and recognition
    args:
LDOUBLEV's avatar
LDOUBLEV committed
342
        image(Image|array): RGB image
343
344
345
346
        boxes(list): boxes with shape(N, 4, 2)
        txts(list): the texts
        scores(list): txxs corresponding scores
        drop_score(float): only scores greater than drop_threshold will be visualized
WenmuZhou's avatar
WenmuZhou committed
347
        font_path: the path of font which is used to draw text
348
349
350
    return(array):
        the visualized img
    """
LDOUBLEV's avatar
LDOUBLEV committed
351
352
    if scores is None:
        scores = [1] * len(boxes)
WenmuZhou's avatar
WenmuZhou committed
353
354
355
356
    box_num = len(boxes)
    for i in range(box_num):
        if scores is not None and (scores[i] < drop_score or
                                   math.isnan(scores[i])):
LDOUBLEV's avatar
LDOUBLEV committed
357
            continue
WenmuZhou's avatar
WenmuZhou committed
358
        box = np.reshape(np.array(boxes[i]), [-1, 1, 2]).astype(np.int64)
LDOUBLEV's avatar
LDOUBLEV committed
359
        image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2)
WenmuZhou's avatar
WenmuZhou committed
360
    if txts is not None:
LDOUBLEV's avatar
LDOUBLEV committed
361
        img = np.array(resize_img(image, input_size=600))
362
        txt_img = text_visual(
WenmuZhou's avatar
WenmuZhou committed
363
364
365
366
367
368
            txts,
            scores,
            img_h=img.shape[0],
            img_w=600,
            threshold=drop_score,
            font_path=font_path)
369
        img = np.concatenate([np.array(img), np.array(txt_img)], axis=1)
LDOUBLEV's avatar
LDOUBLEV committed
370
371
        return img
    return image
372
373


WenmuZhou's avatar
WenmuZhou committed
374
375
376
377
378
379
def draw_ocr_box_txt(image,
                     boxes,
                     txts,
                     scores=None,
                     drop_score=0.5,
                     font_path="./doc/simfang.ttf"):
380
381
382
    h, w = image.height, image.width
    img_left = image.copy()
    img_right = Image.new('RGB', (w, h), (255, 255, 255))
383
384

    import random
LDOUBLEV's avatar
LDOUBLEV committed
385

386
387
388
    random.seed(0)
    draw_left = ImageDraw.Draw(img_left)
    draw_right = ImageDraw.Draw(img_right)
WenmuZhou's avatar
WenmuZhou committed
389
390
391
    for idx, (box, txt) in enumerate(zip(boxes, txts)):
        if scores is not None and scores[idx] < drop_score:
            continue
tink2123's avatar
tink2123 committed
392
393
        color = (random.randint(0, 255), random.randint(0, 255),
                 random.randint(0, 255))
394
        draw_left.polygon(box, fill=color)
tink2123's avatar
tink2123 committed
395
396
397
398
399
400
401
402
403
404
        draw_right.polygon(
            [
                box[0][0], box[0][1], box[1][0], box[1][1], box[2][0],
                box[2][1], box[3][0], box[3][1]
            ],
            outline=color)
        box_height = math.sqrt((box[0][0] - box[3][0])**2 + (box[0][1] - box[3][
            1])**2)
        box_width = math.sqrt((box[0][0] - box[1][0])**2 + (box[0][1] - box[1][
            1])**2)
405
406
        if box_height > 2 * box_width:
            font_size = max(int(box_width * 0.9), 10)
WenmuZhou's avatar
WenmuZhou committed
407
            font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
408
409
410
            cur_y = box[0][1]
            for c in txt:
                char_size = font.getsize(c)
tink2123's avatar
tink2123 committed
411
412
                draw_right.text(
                    (box[0][0] + 3, cur_y), c, fill=(0, 0, 0), font=font)
413
414
415
                cur_y += char_size[1]
        else:
            font_size = max(int(box_height * 0.8), 10)
WenmuZhou's avatar
WenmuZhou committed
416
            font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
tink2123's avatar
tink2123 committed
417
418
            draw_right.text(
                [box[0][0], box[0][1]], txt, fill=(0, 0, 0), font=font)
419
420
421
422
    img_left = Image.blend(image, img_left, 0.5)
    img_show = Image.new('RGB', (w * 2, h), (255, 255, 255))
    img_show.paste(img_left, (0, 0, w, h))
    img_show.paste(img_right, (w, 0, w * 2, h))
423
424
425
    return np.array(img_show)


426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
def str_count(s):
    """
    Count the number of Chinese characters,
    a single English character and a single number
    equal to half the length of Chinese characters.
    args:
        s(string): the input of string
    return(int):
        the number of Chinese characters
    """
    import string
    count_zh = count_pu = 0
    s_len = len(s)
    en_dg_count = 0
    for c in s:
        if c in string.ascii_letters or c.isdigit() or c.isspace():
            en_dg_count += 1
        elif c.isalpha():
            count_zh += 1
        else:
            count_pu += 1
    return s_len - math.ceil(en_dg_count / 2)


WenmuZhou's avatar
WenmuZhou committed
450
451
452
453
454
455
def text_visual(texts,
                scores,
                img_h=400,
                img_w=600,
                threshold=0.,
                font_path="./doc/simfang.ttf"):
456
457
458
459
460
461
462
    """
    create new blank img and draw txt on it
    args:
        texts(list): the text will be draw
        scores(list|None): corresponding score of each txt
        img_h(int): the height of blank img
        img_w(int): the width of blank img
WenmuZhou's avatar
WenmuZhou committed
463
        font_path: the path of font which is used to draw text
464
465
466
467
468
469
470
471
472
    return(array):
    """
    if scores is not None:
        assert len(texts) == len(
            scores), "The number of txts and corresponding scores must match"

    def create_blank_img():
        blank_img = np.ones(shape=[img_h, img_w], dtype=np.int8) * 255
        blank_img[:, img_w - 1:] = 0
LDOUBLEV's avatar
LDOUBLEV committed
473
474
        blank_img = Image.fromarray(blank_img).convert("RGB")
        draw_txt = ImageDraw.Draw(blank_img)
475
        return blank_img, draw_txt
LDOUBLEV's avatar
LDOUBLEV committed
476

477
478
479
480
    blank_img, draw_txt = create_blank_img()

    font_size = 20
    txt_color = (0, 0, 0)
WenmuZhou's avatar
WenmuZhou committed
481
    font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
482
483
484

    gap = font_size + 5
    txt_img_list = []
LDOUBLEV's avatar
LDOUBLEV committed
485
    count, index = 1, 0
486
487
    for idx, txt in enumerate(texts):
        index += 1
LDOUBLEV's avatar
LDOUBLEV committed
488
        if scores[idx] < threshold or math.isnan(scores[idx]):
489
490
491
492
493
494
495
496
497
498
499
            index -= 1
            continue
        first_line = True
        while str_count(txt) >= img_w // font_size - 4:
            tmp = txt
            txt = tmp[:img_w // font_size - 4]
            if first_line:
                new_txt = str(index) + ': ' + txt
                first_line = False
            else:
                new_txt = '    ' + txt
LDOUBLEV's avatar
LDOUBLEV committed
500
            draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
501
502
503
504
505
            txt = tmp[img_w // font_size - 4:]
            if count >= img_h // gap - 1:
                txt_img_list.append(np.array(blank_img))
                blank_img, draw_txt = create_blank_img()
                count = 0
LDOUBLEV's avatar
LDOUBLEV committed
506
            count += 1
507
508
509
        if first_line:
            new_txt = str(index) + ': ' + txt + '   ' + '%.3f' % (scores[idx])
        else:
LDOUBLEV's avatar
LDOUBLEV committed
510
            new_txt = "  " + txt + "  " + '%.3f' % (scores[idx])
LDOUBLEV's avatar
LDOUBLEV committed
511
        draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
512
        # whether add new blank img or not
LDOUBLEV's avatar
LDOUBLEV committed
513
        if count >= img_h // gap - 1 and idx + 1 < len(texts):
514
515
516
            txt_img_list.append(np.array(blank_img))
            blank_img, draw_txt = create_blank_img()
            count = 0
LDOUBLEV's avatar
LDOUBLEV committed
517
        count += 1
518
519
520
521
522
523
    txt_img_list.append(np.array(blank_img))
    if len(txt_img_list) == 1:
        blank_img = np.array(txt_img_list[0])
    else:
        blank_img = np.concatenate(txt_img_list, axis=1)
    return np.array(blank_img)
LDOUBLEV's avatar
LDOUBLEV committed
524
525


dyning's avatar
dyning committed
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
def base64_to_cv2(b64str):
    import base64
    data = base64.b64decode(b64str.encode('utf8'))
    data = np.fromstring(data, np.uint8)
    data = cv2.imdecode(data, cv2.IMREAD_COLOR)
    return data


def draw_boxes(image, boxes, scores=None, drop_score=0.5):
    if scores is None:
        scores = [1] * len(boxes)
    for (box, score) in zip(boxes, scores):
        if score < drop_score:
            continue
        box = np.reshape(np.array(box), [-1, 1, 2]).astype(np.int64)
        image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2)
    return image


WenmuZhou's avatar
WenmuZhou committed
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
def get_rotate_crop_image(img, points):
    '''
    img_height, img_width = img.shape[0:2]
    left = int(np.min(points[:, 0]))
    right = int(np.max(points[:, 0]))
    top = int(np.min(points[:, 1]))
    bottom = int(np.max(points[:, 1]))
    img_crop = img[top:bottom, left:right, :].copy()
    points[:, 0] = points[:, 0] - left
    points[:, 1] = points[:, 1] - top
    '''
    assert len(points) == 4, "shape of points must be 4*2"
    img_crop_width = int(
        max(
            np.linalg.norm(points[0] - points[1]),
            np.linalg.norm(points[2] - points[3])))
    img_crop_height = int(
        max(
            np.linalg.norm(points[0] - points[3]),
            np.linalg.norm(points[1] - points[2])))
    pts_std = np.float32([[0, 0], [img_crop_width, 0],
                          [img_crop_width, img_crop_height],
                          [0, img_crop_height]])
    M = cv2.getPerspectiveTransform(points, pts_std)
    dst_img = cv2.warpPerspective(
        img,
        M, (img_crop_width, img_crop_height),
        borderMode=cv2.BORDER_REPLICATE,
        flags=cv2.INTER_CUBIC)
    dst_img_height, dst_img_width = dst_img.shape[0:2]
    if dst_img_height * 1.0 / dst_img_width >= 1.5:
        dst_img = np.rot90(dst_img)
    return dst_img


LDOUBLEV's avatar
LDOUBLEV committed
580
if __name__ == '__main__':
LDOUBLEV's avatar
LDOUBLEV committed
581
    pass