utility.py 20.6 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
WenmuZhou's avatar
WenmuZhou committed
16
import os
WenmuZhou's avatar
WenmuZhou committed
17
import sys
LDOUBLEV's avatar
LDOUBLEV committed
18
19
import cv2
import numpy as np
LDOUBLEV's avatar
LDOUBLEV committed
20
21
import json
from PIL import Image, ImageDraw, ImageFont
22
import math
WenmuZhou's avatar
WenmuZhou committed
23
from paddle import inference
LDOUBLEV's avatar
LDOUBLEV committed
24
25
import time
from ppocr.utils.logging import get_logger
WenmuZhou's avatar
WenmuZhou committed
26

27
28
def str2bool(v):
    return v.lower() in ("true", "t", "1")
LDOUBLEV's avatar
LDOUBLEV committed
29
30


WenmuZhou's avatar
WenmuZhou committed
31
def init_args():
LDOUBLEV's avatar
LDOUBLEV committed
32
    parser = argparse.ArgumentParser()
WenmuZhou's avatar
WenmuZhou committed
33
    # params for prediction engine
LDOUBLEV's avatar
LDOUBLEV committed
34
35
36
    parser.add_argument("--use_gpu", type=str2bool, default=True)
    parser.add_argument("--ir_optim", type=str2bool, default=True)
    parser.add_argument("--use_tensorrt", type=str2bool, default=False)
LDOUBLEV's avatar
LDOUBLEV committed
37
    parser.add_argument("--min_subgraph_size", type=int, default=10)
LDOUBLEV's avatar
LDOUBLEV committed
38
    parser.add_argument("--precision", type=str, default="fp32")
39
    parser.add_argument("--gpu_mem", type=int, default=500)
LDOUBLEV's avatar
LDOUBLEV committed
40

WenmuZhou's avatar
WenmuZhou committed
41
    # params for text detector
LDOUBLEV's avatar
LDOUBLEV committed
42
43
44
    parser.add_argument("--image_dir", type=str)
    parser.add_argument("--det_algorithm", type=str, default='DB')
    parser.add_argument("--det_model_dir", type=str)
WenmuZhou's avatar
WenmuZhou committed
45
46
    parser.add_argument("--det_limit_side_len", type=float, default=960)
    parser.add_argument("--det_limit_type", type=str, default='max')
LDOUBLEV's avatar
LDOUBLEV committed
47

WenmuZhou's avatar
WenmuZhou committed
48
    # DB parmas
LDOUBLEV's avatar
LDOUBLEV committed
49
50
    parser.add_argument("--det_db_thresh", type=float, default=0.3)
    parser.add_argument("--det_db_box_thresh", type=float, default=0.5)
WenmuZhou's avatar
WenmuZhou committed
51
    parser.add_argument("--det_db_unclip_ratio", type=float, default=1.6)
LDOUBLEV's avatar
LDOUBLEV committed
52
    parser.add_argument("--max_batch_size", type=int, default=10)
LDOUBLEV's avatar
LDOUBLEV committed
53
    parser.add_argument("--use_dilation", type=bool, default=False)
littletomatodonkey's avatar
littletomatodonkey committed
54
    parser.add_argument("--det_db_score_mode", type=str, default="fast")
WenmuZhou's avatar
WenmuZhou committed
55
    # EAST parmas
LDOUBLEV's avatar
LDOUBLEV committed
56
57
58
59
    parser.add_argument("--det_east_score_thresh", type=float, default=0.8)
    parser.add_argument("--det_east_cover_thresh", type=float, default=0.1)
    parser.add_argument("--det_east_nms_thresh", type=float, default=0.2)

WenmuZhou's avatar
WenmuZhou committed
60
    # SAST parmas
licx's avatar
licx committed
61
62
    parser.add_argument("--det_sast_score_thresh", type=float, default=0.5)
    parser.add_argument("--det_sast_nms_thresh", type=float, default=0.2)
63
    parser.add_argument("--det_sast_polygon", type=bool, default=False)
licx's avatar
licx committed
64

WenmuZhou's avatar
WenmuZhou committed
65
    # params for text recognizer
LDOUBLEV's avatar
LDOUBLEV committed
66
67
    parser.add_argument("--rec_algorithm", type=str, default='CRNN')
    parser.add_argument("--rec_model_dir", type=str)
tink2123's avatar
fix bug  
tink2123 committed
68
69
    parser.add_argument("--rec_image_shape", type=str, default="3, 32, 320")
    parser.add_argument("--rec_char_type", type=str, default='ch')
70
    parser.add_argument("--rec_batch_num", type=int, default=6)
tink2123's avatar
fix bug  
tink2123 committed
71
    parser.add_argument("--max_text_length", type=int, default=25)
LDOUBLEV's avatar
LDOUBLEV committed
72
73
74
75
    parser.add_argument(
        "--rec_char_dict_path",
        type=str,
        default="./ppocr/utils/ppocr_keys_v1.txt")
WenmuZhou's avatar
WenmuZhou committed
76
77
    parser.add_argument("--use_space_char", type=str2bool, default=True)
    parser.add_argument(
tink2123's avatar
tink2123 committed
78
        "--vis_font_path", type=str, default="./doc/fonts/simfang.ttf")
WenmuZhou's avatar
WenmuZhou committed
79
    parser.add_argument("--drop_score", type=float, default=0.5)
WenmuZhou's avatar
WenmuZhou committed
80

Jethong's avatar
Jethong committed
81
82
83
84
85
86
87
88
89
    # params for e2e
    parser.add_argument("--e2e_algorithm", type=str, default='PGNet')
    parser.add_argument("--e2e_model_dir", type=str)
    parser.add_argument("--e2e_limit_side_len", type=float, default=768)
    parser.add_argument("--e2e_limit_type", type=str, default='max')

    # PGNet parmas
    parser.add_argument("--e2e_pgnet_score_thresh", type=float, default=0.5)
    parser.add_argument(
Jethong's avatar
Jethong committed
90
        "--e2e_char_dict_path", type=str, default="./ppocr/utils/ic15_dict.txt")
Jethong's avatar
Jethong committed
91
    parser.add_argument("--e2e_pgnet_valid_set", type=str, default='totaltext')
Jethong's avatar
Jethong committed
92
    parser.add_argument("--e2e_pgnet_polygon", type=bool, default=True)
Jethong's avatar
Jethong committed
93
    parser.add_argument("--e2e_pgnet_mode", type=str, default='fast')
Jethong's avatar
Jethong committed
94

WenmuZhou's avatar
WenmuZhou committed
95
96
97
98
99
    # params for text classifier
    parser.add_argument("--use_angle_cls", type=str2bool, default=False)
    parser.add_argument("--cls_model_dir", type=str)
    parser.add_argument("--cls_image_shape", type=str, default="3, 48, 192")
    parser.add_argument("--label_list", type=list, default=['0', '180'])
100
    parser.add_argument("--cls_batch_num", type=int, default=6)
WenmuZhou's avatar
WenmuZhou committed
101
102
103
    parser.add_argument("--cls_thresh", type=float, default=0.9)

    parser.add_argument("--enable_mkldnn", type=str2bool, default=False)
LDOUBLEV's avatar
LDOUBLEV committed
104
    parser.add_argument("--cpu_threads", type=int, default=10)
WenmuZhou's avatar
WenmuZhou committed
105
    parser.add_argument("--use_pdserving", type=str2bool, default=False)
LDOUBLEV's avatar
LDOUBLEV committed
106
    parser.add_argument("--warmup", type=str2bool, default=True)
WenmuZhou's avatar
WenmuZhou committed
107

LDOUBLEV's avatar
LDOUBLEV committed
108
    # multi-process
littletomatodonkey's avatar
littletomatodonkey committed
109
    parser.add_argument("--use_mp", type=str2bool, default=False)
110
111
    parser.add_argument("--total_process_num", type=int, default=1)
    parser.add_argument("--process_id", type=int, default=0)
WenmuZhou's avatar
WenmuZhou committed
112

LDOUBLEV's avatar
LDOUBLEV committed
113
114
    parser.add_argument("--benchmark", type=bool, default=False)
    parser.add_argument("--save_log_path", type=str, default="./log_output/")
Double_V's avatar
Double_V committed
115

WenmuZhou's avatar
WenmuZhou committed
116
    parser.add_argument("--show_log", type=str2bool, default=True)
WenmuZhou's avatar
WenmuZhou committed
117
    return parser
WenmuZhou's avatar
WenmuZhou committed
118

119

120
def parse_args():
WenmuZhou's avatar
WenmuZhou committed
121
    parser = init_args()
LDOUBLEV's avatar
LDOUBLEV committed
122
123
124
    return parser.parse_args()


WenmuZhou's avatar
WenmuZhou committed
125
126
127
128
129
def create_predictor(args, mode, logger):
    if mode == "det":
        model_dir = args.det_model_dir
    elif mode == 'cls':
        model_dir = args.cls_model_dir
Jethong's avatar
Jethong committed
130
    elif mode == 'rec':
WenmuZhou's avatar
WenmuZhou committed
131
        model_dir = args.rec_model_dir
WenmuZhou's avatar
WenmuZhou committed
132
133
    elif mode == 'table':
        model_dir = args.table_model_dir
Jethong's avatar
Jethong committed
134
135
    else:
        model_dir = args.e2e_model_dir
WenmuZhou's avatar
WenmuZhou committed
136
137
138
139

    if model_dir is None:
        logger.info("not find {} model file path {}".format(mode, model_dir))
        sys.exit(0)
WenmuZhou's avatar
WenmuZhou committed
140
141
    model_file_path = model_dir + "/inference.pdmodel"
    params_file_path = model_dir + "/inference.pdiparams"
WenmuZhou's avatar
WenmuZhou committed
142
    if not os.path.exists(model_file_path):
LDOUBLEV's avatar
LDOUBLEV committed
143
        raise ValueError("not find model file path {}".format(model_file_path))
WenmuZhou's avatar
WenmuZhou committed
144
    if not os.path.exists(params_file_path):
LDOUBLEV's avatar
LDOUBLEV committed
145
146
        raise ValueError("not find params file path {}".format(
            params_file_path))
WenmuZhou's avatar
WenmuZhou committed
147

WenmuZhou's avatar
WenmuZhou committed
148
    config = inference.Config(model_file_path, params_file_path)
WenmuZhou's avatar
WenmuZhou committed
149

LDOUBLEV's avatar
LDOUBLEV committed
150
151
152
153
154
155
156
157
158
159
    if hasattr(args, 'precision'):
        if args.precision == "fp16" and args.use_tensorrt:
            precision = inference.PrecisionType.Half
        elif args.precision == "int8":
            precision = inference.PrecisionType.Int8
        else:
            precision = inference.PrecisionType.Float32
    else:
        precision = inference.PrecisionType.Float32

WenmuZhou's avatar
WenmuZhou committed
160
161
    if args.use_gpu:
        config.enable_use_gpu(args.gpu_mem, 0)
LDOUBLEV's avatar
LDOUBLEV committed
162
163
        if args.use_tensorrt:
            config.enable_tensorrt_engine(
Double_V's avatar
Double_V committed
164
                precision_mode=precision,
LDOUBLEV's avatar
LDOUBLEV committed
165
                max_batch_size=args.max_batch_size,
LDOUBLEV's avatar
LDOUBLEV committed
166
167
                min_subgraph_size=args.min_subgraph_size)
            # skip the minmum trt subgraph
LDOUBLEV's avatar
LDOUBLEV committed
168
        if mode == "det":
LDOUBLEV's avatar
LDOUBLEV committed
169
170
171
172
            min_input_shape = {
                "x": [1, 3, 50, 50],
                "conv2d_92.tmp_0": [1, 96, 20, 20],
                "conv2d_91.tmp_0": [1, 96, 10, 10],
LDOUBLEV's avatar
LDOUBLEV committed
173
                "conv2d_59.tmp_0": [1, 96, 20, 20],
LDOUBLEV's avatar
LDOUBLEV committed
174
175
                "nearest_interp_v2_1.tmp_0": [1, 96, 10, 10],
                "nearest_interp_v2_2.tmp_0": [1, 96, 20, 20],
LDOUBLEV's avatar
LDOUBLEV committed
176
                "conv2d_124.tmp_0": [1, 96, 20, 20],
LDOUBLEV's avatar
LDOUBLEV committed
177
178
179
180
181
182
183
184
185
186
                "nearest_interp_v2_3.tmp_0": [1, 24, 20, 20],
                "nearest_interp_v2_4.tmp_0": [1, 24, 20, 20],
                "nearest_interp_v2_5.tmp_0": [1, 24, 20, 20],
                "elementwise_add_7": [1, 56, 2, 2],
                "nearest_interp_v2_0.tmp_0": [1, 96, 2, 2]
            }
            max_input_shape = {
                "x": [1, 3, 2000, 2000],
                "conv2d_92.tmp_0": [1, 96, 400, 400],
                "conv2d_91.tmp_0": [1, 96, 200, 200],
LDOUBLEV's avatar
LDOUBLEV committed
187
                "conv2d_59.tmp_0": [1, 96, 400, 400],
LDOUBLEV's avatar
LDOUBLEV committed
188
                "nearest_interp_v2_1.tmp_0": [1, 96, 200, 200],
LDOUBLEV's avatar
LDOUBLEV committed
189
                "conv2d_124.tmp_0": [1, 256, 400, 400],
LDOUBLEV's avatar
LDOUBLEV committed
190
191
192
193
194
195
196
197
198
199
200
                "nearest_interp_v2_2.tmp_0": [1, 96, 400, 400],
                "nearest_interp_v2_3.tmp_0": [1, 24, 400, 400],
                "nearest_interp_v2_4.tmp_0": [1, 24, 400, 400],
                "nearest_interp_v2_5.tmp_0": [1, 24, 400, 400],
                "elementwise_add_7": [1, 56, 400, 400],
                "nearest_interp_v2_0.tmp_0": [1, 96, 400, 400]
            }
            opt_input_shape = {
                "x": [1, 3, 640, 640],
                "conv2d_92.tmp_0": [1, 96, 160, 160],
                "conv2d_91.tmp_0": [1, 96, 80, 80],
LDOUBLEV's avatar
LDOUBLEV committed
201
                "conv2d_59.tmp_0": [1, 96, 160, 160],
LDOUBLEV's avatar
LDOUBLEV committed
202
203
                "nearest_interp_v2_1.tmp_0": [1, 96, 80, 80],
                "nearest_interp_v2_2.tmp_0": [1, 96, 160, 160],
LDOUBLEV's avatar
LDOUBLEV committed
204
                "conv2d_124.tmp_0": [1, 256, 160, 160],
LDOUBLEV's avatar
LDOUBLEV committed
205
206
207
208
209
210
211
212
213
214
215
216
217
218
                "nearest_interp_v2_3.tmp_0": [1, 24, 160, 160],
                "nearest_interp_v2_4.tmp_0": [1, 24, 160, 160],
                "nearest_interp_v2_5.tmp_0": [1, 24, 160, 160],
                "elementwise_add_7": [1, 56, 40, 40],
                "nearest_interp_v2_0.tmp_0": [1, 96, 40, 40]
            }
        elif mode == "rec":
            min_input_shape = {"x": [args.rec_batch_num, 3, 32, 10]}
            max_input_shape = {"x": [args.rec_batch_num, 3, 32, 2000]}
            opt_input_shape = {"x": [args.rec_batch_num, 3, 32, 320]}
        elif mode == "cls":
            min_input_shape = {"x": [args.rec_batch_num, 3, 48, 10]}
            max_input_shape = {"x": [args.rec_batch_num, 3, 48, 2000]}
            opt_input_shape = {"x": [args.rec_batch_num, 3, 48, 320]}
LDOUBLEV's avatar
LDOUBLEV committed
219
220
221
222
        else:
            min_input_shape = {"x": [1, 3, 10, 10]}
            max_input_shape = {"x": [1, 3, 1000, 1000]}
            opt_input_shape = {"x": [1, 3, 500, 500]}
LDOUBLEV's avatar
LDOUBLEV committed
223
224
225
        config.set_trt_dynamic_shape_info(min_input_shape, max_input_shape,
                                          opt_input_shape)

WenmuZhou's avatar
WenmuZhou committed
226
227
    else:
        config.disable_gpu()
LDOUBLEV's avatar
LDOUBLEV committed
228
229
230
        if hasattr(args, "cpu_threads"):
            config.set_cpu_math_library_num_threads(args.cpu_threads)
        else:
WenmuZhou's avatar
WenmuZhou committed
231
            # default cpu threads as 10
LDOUBLEV's avatar
LDOUBLEV committed
232
            config.set_cpu_math_library_num_threads(10)
WenmuZhou's avatar
WenmuZhou committed
233
234
235
236
237
        if args.enable_mkldnn:
            # cache 10 different shapes for mkldnn to avoid memory leak
            config.set_mkldnn_cache_capacity(10)
            config.enable_mkldnn()

LDOUBLEV's avatar
LDOUBLEV committed
238
239
    # enable memory optim
    config.enable_memory_optim()
LDOUBLEV's avatar
LDOUBLEV committed
240
    #config.disable_glog_info()
WenmuZhou's avatar
WenmuZhou committed
241

WenmuZhou's avatar
WenmuZhou committed
242
    config.delete_pass("conv_transpose_eltwiseadd_bn_fuse_pass")
WenmuZhou's avatar
WenmuZhou committed
243
    if mode == 'table':
WenmuZhou's avatar
WenmuZhou committed
244
        config.delete_pass("fc_fuse_pass")  # not supported for table
WenmuZhou's avatar
WenmuZhou committed
245
    config.switch_use_feed_fetch_ops(False)
WenmuZhou's avatar
WenmuZhou committed
246
    config.switch_ir_optim(True)
247

WenmuZhou's avatar
WenmuZhou committed
248
249
    # create predictor
    predictor = inference.create_predictor(config)
WenmuZhou's avatar
WenmuZhou committed
250
251
    input_names = predictor.get_input_names()
    for name in input_names:
WenmuZhou's avatar
WenmuZhou committed
252
        input_tensor = predictor.get_input_handle(name)
WenmuZhou's avatar
WenmuZhou committed
253
254
255
    output_names = predictor.get_output_names()
    output_tensors = []
    for output_name in output_names:
WenmuZhou's avatar
WenmuZhou committed
256
        output_tensor = predictor.get_output_handle(output_name)
WenmuZhou's avatar
WenmuZhou committed
257
        output_tensors.append(output_tensor)
LDOUBLEV's avatar
LDOUBLEV committed
258
    return predictor, input_tensor, output_tensors, config
WenmuZhou's avatar
WenmuZhou committed
259
260


Jethong's avatar
Jethong committed
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
def draw_e2e_res(dt_boxes, strs, img_path):
    src_im = cv2.imread(img_path)
    for box, str in zip(dt_boxes, strs):
        box = box.astype(np.int32).reshape((-1, 1, 2))
        cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
        cv2.putText(
            src_im,
            str,
            org=(int(box[0, 0, 0]), int(box[0, 0, 1])),
            fontFace=cv2.FONT_HERSHEY_COMPLEX,
            fontScale=0.7,
            color=(0, 255, 0),
            thickness=1)
    return src_im


LDOUBLEV's avatar
LDOUBLEV committed
277
def draw_text_det_res(dt_boxes, img_path):
LDOUBLEV's avatar
LDOUBLEV committed
278
279
280
281
    src_im = cv2.imread(img_path)
    for box in dt_boxes:
        box = np.array(box).astype(np.int32).reshape(-1, 2)
        cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
LDOUBLEV's avatar
LDOUBLEV committed
282
    return src_im
LDOUBLEV's avatar
LDOUBLEV committed
283
284


LDOUBLEV's avatar
LDOUBLEV committed
285
286
def resize_img(img, input_size=600):
    """
LDOUBLEV's avatar
LDOUBLEV committed
287
    resize img and limit the longest side of the image to input_size
LDOUBLEV's avatar
LDOUBLEV committed
288
289
290
291
292
    """
    img = np.array(img)
    im_shape = img.shape
    im_size_max = np.max(im_shape[0:2])
    im_scale = float(input_size) / float(im_size_max)
WenmuZhou's avatar
WenmuZhou committed
293
294
    img = cv2.resize(img, None, None, fx=im_scale, fy=im_scale)
    return img
LDOUBLEV's avatar
LDOUBLEV committed
295
296


WenmuZhou's avatar
WenmuZhou committed
297
298
299
300
301
def draw_ocr(image,
             boxes,
             txts=None,
             scores=None,
             drop_score=0.5,
LDOUBLEV's avatar
LDOUBLEV committed
302
             font_path="./doc/fonts/simfang.ttf"):
303
304
305
    """
    Visualize the results of OCR detection and recognition
    args:
LDOUBLEV's avatar
LDOUBLEV committed
306
        image(Image|array): RGB image
307
308
309
310
        boxes(list): boxes with shape(N, 4, 2)
        txts(list): the texts
        scores(list): txxs corresponding scores
        drop_score(float): only scores greater than drop_threshold will be visualized
WenmuZhou's avatar
WenmuZhou committed
311
        font_path: the path of font which is used to draw text
312
313
314
    return(array):
        the visualized img
    """
LDOUBLEV's avatar
LDOUBLEV committed
315
316
    if scores is None:
        scores = [1] * len(boxes)
WenmuZhou's avatar
WenmuZhou committed
317
318
319
320
    box_num = len(boxes)
    for i in range(box_num):
        if scores is not None and (scores[i] < drop_score or
                                   math.isnan(scores[i])):
LDOUBLEV's avatar
LDOUBLEV committed
321
            continue
WenmuZhou's avatar
WenmuZhou committed
322
        box = np.reshape(np.array(boxes[i]), [-1, 1, 2]).astype(np.int64)
LDOUBLEV's avatar
LDOUBLEV committed
323
        image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2)
WenmuZhou's avatar
WenmuZhou committed
324
    if txts is not None:
LDOUBLEV's avatar
LDOUBLEV committed
325
        img = np.array(resize_img(image, input_size=600))
326
        txt_img = text_visual(
WenmuZhou's avatar
WenmuZhou committed
327
328
329
330
331
332
            txts,
            scores,
            img_h=img.shape[0],
            img_w=600,
            threshold=drop_score,
            font_path=font_path)
333
        img = np.concatenate([np.array(img), np.array(txt_img)], axis=1)
LDOUBLEV's avatar
LDOUBLEV committed
334
335
        return img
    return image
336
337


WenmuZhou's avatar
WenmuZhou committed
338
339
340
341
342
343
def draw_ocr_box_txt(image,
                     boxes,
                     txts,
                     scores=None,
                     drop_score=0.5,
                     font_path="./doc/simfang.ttf"):
344
345
346
    h, w = image.height, image.width
    img_left = image.copy()
    img_right = Image.new('RGB', (w, h), (255, 255, 255))
347
348

    import random
LDOUBLEV's avatar
LDOUBLEV committed
349

350
351
352
    random.seed(0)
    draw_left = ImageDraw.Draw(img_left)
    draw_right = ImageDraw.Draw(img_right)
WenmuZhou's avatar
WenmuZhou committed
353
354
355
    for idx, (box, txt) in enumerate(zip(boxes, txts)):
        if scores is not None and scores[idx] < drop_score:
            continue
tink2123's avatar
tink2123 committed
356
357
        color = (random.randint(0, 255), random.randint(0, 255),
                 random.randint(0, 255))
358
        draw_left.polygon(box, fill=color)
tink2123's avatar
tink2123 committed
359
360
361
362
363
364
365
366
367
368
        draw_right.polygon(
            [
                box[0][0], box[0][1], box[1][0], box[1][1], box[2][0],
                box[2][1], box[3][0], box[3][1]
            ],
            outline=color)
        box_height = math.sqrt((box[0][0] - box[3][0])**2 + (box[0][1] - box[3][
            1])**2)
        box_width = math.sqrt((box[0][0] - box[1][0])**2 + (box[0][1] - box[1][
            1])**2)
369
370
        if box_height > 2 * box_width:
            font_size = max(int(box_width * 0.9), 10)
WenmuZhou's avatar
WenmuZhou committed
371
            font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
372
373
374
            cur_y = box[0][1]
            for c in txt:
                char_size = font.getsize(c)
tink2123's avatar
tink2123 committed
375
376
                draw_right.text(
                    (box[0][0] + 3, cur_y), c, fill=(0, 0, 0), font=font)
377
378
379
                cur_y += char_size[1]
        else:
            font_size = max(int(box_height * 0.8), 10)
WenmuZhou's avatar
WenmuZhou committed
380
            font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
tink2123's avatar
tink2123 committed
381
382
            draw_right.text(
                [box[0][0], box[0][1]], txt, fill=(0, 0, 0), font=font)
383
384
385
386
    img_left = Image.blend(image, img_left, 0.5)
    img_show = Image.new('RGB', (w * 2, h), (255, 255, 255))
    img_show.paste(img_left, (0, 0, w, h))
    img_show.paste(img_right, (w, 0, w * 2, h))
387
388
389
    return np.array(img_show)


390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
def str_count(s):
    """
    Count the number of Chinese characters,
    a single English character and a single number
    equal to half the length of Chinese characters.
    args:
        s(string): the input of string
    return(int):
        the number of Chinese characters
    """
    import string
    count_zh = count_pu = 0
    s_len = len(s)
    en_dg_count = 0
    for c in s:
        if c in string.ascii_letters or c.isdigit() or c.isspace():
            en_dg_count += 1
        elif c.isalpha():
            count_zh += 1
        else:
            count_pu += 1
    return s_len - math.ceil(en_dg_count / 2)


WenmuZhou's avatar
WenmuZhou committed
414
415
416
417
418
419
def text_visual(texts,
                scores,
                img_h=400,
                img_w=600,
                threshold=0.,
                font_path="./doc/simfang.ttf"):
420
421
422
423
424
425
426
    """
    create new blank img and draw txt on it
    args:
        texts(list): the text will be draw
        scores(list|None): corresponding score of each txt
        img_h(int): the height of blank img
        img_w(int): the width of blank img
WenmuZhou's avatar
WenmuZhou committed
427
        font_path: the path of font which is used to draw text
428
429
430
431
432
433
434
435
436
    return(array):
    """
    if scores is not None:
        assert len(texts) == len(
            scores), "The number of txts and corresponding scores must match"

    def create_blank_img():
        blank_img = np.ones(shape=[img_h, img_w], dtype=np.int8) * 255
        blank_img[:, img_w - 1:] = 0
LDOUBLEV's avatar
LDOUBLEV committed
437
438
        blank_img = Image.fromarray(blank_img).convert("RGB")
        draw_txt = ImageDraw.Draw(blank_img)
439
        return blank_img, draw_txt
LDOUBLEV's avatar
LDOUBLEV committed
440

441
442
443
444
    blank_img, draw_txt = create_blank_img()

    font_size = 20
    txt_color = (0, 0, 0)
WenmuZhou's avatar
WenmuZhou committed
445
    font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
446
447
448

    gap = font_size + 5
    txt_img_list = []
LDOUBLEV's avatar
LDOUBLEV committed
449
    count, index = 1, 0
450
451
    for idx, txt in enumerate(texts):
        index += 1
LDOUBLEV's avatar
LDOUBLEV committed
452
        if scores[idx] < threshold or math.isnan(scores[idx]):
453
454
455
456
457
458
459
460
461
462
463
            index -= 1
            continue
        first_line = True
        while str_count(txt) >= img_w // font_size - 4:
            tmp = txt
            txt = tmp[:img_w // font_size - 4]
            if first_line:
                new_txt = str(index) + ': ' + txt
                first_line = False
            else:
                new_txt = '    ' + txt
LDOUBLEV's avatar
LDOUBLEV committed
464
            draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
465
466
467
468
469
            txt = tmp[img_w // font_size - 4:]
            if count >= img_h // gap - 1:
                txt_img_list.append(np.array(blank_img))
                blank_img, draw_txt = create_blank_img()
                count = 0
LDOUBLEV's avatar
LDOUBLEV committed
470
            count += 1
471
472
473
        if first_line:
            new_txt = str(index) + ': ' + txt + '   ' + '%.3f' % (scores[idx])
        else:
LDOUBLEV's avatar
LDOUBLEV committed
474
            new_txt = "  " + txt + "  " + '%.3f' % (scores[idx])
LDOUBLEV's avatar
LDOUBLEV committed
475
        draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
476
        # whether add new blank img or not
LDOUBLEV's avatar
LDOUBLEV committed
477
        if count >= img_h // gap - 1 and idx + 1 < len(texts):
478
479
480
            txt_img_list.append(np.array(blank_img))
            blank_img, draw_txt = create_blank_img()
            count = 0
LDOUBLEV's avatar
LDOUBLEV committed
481
        count += 1
482
483
484
485
486
487
    txt_img_list.append(np.array(blank_img))
    if len(txt_img_list) == 1:
        blank_img = np.array(txt_img_list[0])
    else:
        blank_img = np.concatenate(txt_img_list, axis=1)
    return np.array(blank_img)
LDOUBLEV's avatar
LDOUBLEV committed
488
489


dyning's avatar
dyning committed
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
def base64_to_cv2(b64str):
    import base64
    data = base64.b64decode(b64str.encode('utf8'))
    data = np.fromstring(data, np.uint8)
    data = cv2.imdecode(data, cv2.IMREAD_COLOR)
    return data


def draw_boxes(image, boxes, scores=None, drop_score=0.5):
    if scores is None:
        scores = [1] * len(boxes)
    for (box, score) in zip(boxes, scores):
        if score < drop_score:
            continue
        box = np.reshape(np.array(box), [-1, 1, 2]).astype(np.int64)
        image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2)
    return image


WenmuZhou's avatar
WenmuZhou committed
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
def get_rotate_crop_image(img, points):
    '''
    img_height, img_width = img.shape[0:2]
    left = int(np.min(points[:, 0]))
    right = int(np.max(points[:, 0]))
    top = int(np.min(points[:, 1]))
    bottom = int(np.max(points[:, 1]))
    img_crop = img[top:bottom, left:right, :].copy()
    points[:, 0] = points[:, 0] - left
    points[:, 1] = points[:, 1] - top
    '''
    assert len(points) == 4, "shape of points must be 4*2"
    img_crop_width = int(
        max(
            np.linalg.norm(points[0] - points[1]),
            np.linalg.norm(points[2] - points[3])))
    img_crop_height = int(
        max(
            np.linalg.norm(points[0] - points[3]),
            np.linalg.norm(points[1] - points[2])))
    pts_std = np.float32([[0, 0], [img_crop_width, 0],
                          [img_crop_width, img_crop_height],
                          [0, img_crop_height]])
    M = cv2.getPerspectiveTransform(points, pts_std)
    dst_img = cv2.warpPerspective(
        img,
        M, (img_crop_width, img_crop_height),
        borderMode=cv2.BORDER_REPLICATE,
        flags=cv2.INTER_CUBIC)
    dst_img_height, dst_img_width = dst_img.shape[0:2]
    if dst_img_height * 1.0 / dst_img_width >= 1.5:
        dst_img = np.rot90(dst_img)
    return dst_img


LDOUBLEV's avatar
LDOUBLEV committed
544
if __name__ == '__main__':
LDOUBLEV's avatar
LDOUBLEV committed
545
    pass