utility.py 7.29 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import os, sys
from ppocr.utils.utility import initial_logger
logger = initial_logger()
from paddle.fluid.core import PaddleTensor
from paddle.fluid.core import AnalysisConfig
from paddle.fluid.core import create_paddle_predictor
import cv2
import numpy as np
LDOUBLEV's avatar
LDOUBLEV committed
24
25
import json
from PIL import Image, ImageDraw, ImageFont
LDOUBLEV's avatar
LDOUBLEV committed
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47


def parse_args():
    def str2bool(v):
        return v.lower() in ("true", "t", "1")

    parser = argparse.ArgumentParser()
    #params for prediction engine
    parser.add_argument("--use_gpu", type=str2bool, default=True)
    parser.add_argument("--ir_optim", type=str2bool, default=True)
    parser.add_argument("--use_tensorrt", type=str2bool, default=False)
    parser.add_argument("--gpu_mem", type=int, default=8000)

    #params for text detector
    parser.add_argument("--image_dir", type=str)
    parser.add_argument("--det_algorithm", type=str, default='DB')
    parser.add_argument("--det_model_dir", type=str)
    parser.add_argument("--det_max_side_len", type=float, default=960)

    #DB parmas
    parser.add_argument("--det_db_thresh", type=float, default=0.3)
    parser.add_argument("--det_db_box_thresh", type=float, default=0.5)
48
    parser.add_argument("--det_db_unclip_ratio", type=float, default=2.0)
LDOUBLEV's avatar
LDOUBLEV committed
49
50
51
52
53
54
55
56
57
58
59

    #EAST parmas
    parser.add_argument("--det_east_score_thresh", type=float, default=0.8)
    parser.add_argument("--det_east_cover_thresh", type=float, default=0.1)
    parser.add_argument("--det_east_nms_thresh", type=float, default=0.2)

    #params for text recognizer
    parser.add_argument("--rec_algorithm", type=str, default='CRNN')
    parser.add_argument("--rec_model_dir", type=str)
    parser.add_argument("--rec_image_shape", type=str, default="3, 32, 320")
    parser.add_argument("--rec_char_type", type=str, default='ch')
60
    parser.add_argument("--rec_batch_num", type=int, default=30)
LDOUBLEV's avatar
LDOUBLEV committed
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
    parser.add_argument(
        "--rec_char_dict_path",
        type=str,
        default="./ppocr/utils/ppocr_keys_v1.txt")
    return parser.parse_args()


def create_predictor(args, mode):
    if mode == "det":
        model_dir = args.det_model_dir
    else:
        model_dir = args.rec_model_dir

    if model_dir is None:
        logger.info("not find {} model file path {}".format(mode, model_dir))
        sys.exit(0)
    model_file_path = model_dir + "/model"
    params_file_path = model_dir + "/params"
    if not os.path.exists(model_file_path):
        logger.info("not find model file path {}".format(model_file_path))
        sys.exit(0)
    if not os.path.exists(params_file_path):
        logger.info("not find params file path {}".format(params_file_path))
        sys.exit(0)

    config = AnalysisConfig(model_file_path, params_file_path)

    if args.use_gpu:
        config.enable_use_gpu(args.gpu_mem, 0)
    else:
        config.disable_gpu()

    config.disable_glog_info()
LDOUBLEV's avatar
LDOUBLEV committed
94

LDOUBLEV's avatar
LDOUBLEV committed
95
    # use zero copy
96
    config.delete_pass("conv_transpose_eltwiseadd_bn_fuse_pass")
LDOUBLEV's avatar
LDOUBLEV committed
97
98
99
100
101
102
103
104
105
106
107
108
    config.switch_use_feed_fetch_ops(False)
    predictor = create_paddle_predictor(config)
    input_names = predictor.get_input_names()
    input_tensor = predictor.get_input_tensor(input_names[0])
    output_names = predictor.get_output_names()
    output_tensors = []
    for output_name in output_names:
        output_tensor = predictor.get_output_tensor(output_name)
        output_tensors.append(output_tensor)
    return predictor, input_tensor, output_tensors


LDOUBLEV's avatar
LDOUBLEV committed
109
def draw_text_det_res(dt_boxes, img_path, return_img=True):
LDOUBLEV's avatar
LDOUBLEV committed
110
111
112
113
    src_im = cv2.imread(img_path)
    for box in dt_boxes:
        box = np.array(box).astype(np.int32).reshape(-1, 2)
        cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
LDOUBLEV's avatar
LDOUBLEV committed
114
    return src_im
LDOUBLEV's avatar
LDOUBLEV committed
115
116


LDOUBLEV's avatar
LDOUBLEV committed
117
118
119
120
121
122
123
124
125
126
127
128
129
def resize_img(img, input_size=600):
    """
    """
    img = np.array(img)
    im_shape = img.shape
    im_size_min = np.min(im_shape[0:2])
    im_size_max = np.max(im_shape[0:2])
    im_scale = float(input_size) / float(im_size_max)
    im = cv2.resize(img, None, None, fx=im_scale, fy=im_scale)
    return im


def draw_ocr(image, boxes, txts, scores, draw_txt=True, drop_score=0.5):
LDOUBLEV's avatar
LDOUBLEV committed
130
131
132
133
    from PIL import Image, ImageDraw, ImageFont

    img = image.copy()
    draw = ImageDraw.Draw(img)
LDOUBLEV's avatar
LDOUBLEV committed
134
135
    if scores is None:
        scores = [1] * len(boxes)
LDOUBLEV's avatar
LDOUBLEV committed
136
137
138
    for (box, score) in zip(boxes, scores):
        if score < drop_score:
            continue
LDOUBLEV's avatar
LDOUBLEV committed
139
140
141
142
        draw.line([(box[0][0], box[0][1]), (box[1][0], box[1][1])], fill='red')
        draw.line([(box[1][0], box[1][1]), (box[2][0], box[2][1])], fill='red')
        draw.line([(box[2][0], box[2][1]), (box[3][0], box[3][1])], fill='red')
        draw.line([(box[3][0], box[3][1]), (box[0][0], box[0][1])], fill='red')
LDOUBLEV's avatar
LDOUBLEV committed
143
144
145
146
147
148
149
150
151
152
153
154
        draw.line(
            [(box[0][0] - 1, box[0][1] + 1), (box[1][0] - 1, box[1][1] + 1)],
            fill='red')
        draw.line(
            [(box[1][0] - 1, box[1][1] + 1), (box[2][0] - 1, box[2][1] + 1)],
            fill='red')
        draw.line(
            [(box[2][0] - 1, box[2][1] + 1), (box[3][0] - 1, box[3][1] + 1)],
            fill='red')
        draw.line(
            [(box[3][0] - 1, box[3][1] + 1), (box[0][0] - 1, box[0][1] + 1)],
            fill='red')
LDOUBLEV's avatar
LDOUBLEV committed
155
156
157

    if draw_txt:
        txt_color = (0, 0, 0)
LDOUBLEV's avatar
LDOUBLEV committed
158
159
160
        img = np.array(resize_img(img))
        _h = img.shape[0]
        blank_img = np.ones(shape=[_h, 600], dtype=np.int8) * 255
LDOUBLEV's avatar
LDOUBLEV committed
161
162
163
        blank_img = Image.fromarray(blank_img).convert("RGB")
        draw_txt = ImageDraw.Draw(blank_img)

LDOUBLEV's avatar
LDOUBLEV committed
164
165
166
167
168
169
170
171
172
173
174
        font_size = 20
        gap = 20
        title = "index           text           score"
        font = ImageFont.truetype(
            "./doc/simfang.ttf", font_size, encoding="utf-8")

        draw_txt.text((20, 0), title, txt_color, font=font)
        count = 0
        for idx, txt in enumerate(txts):
            if scores[idx] < drop_score:
                continue
LDOUBLEV's avatar
LDOUBLEV committed
175
            font = ImageFont.truetype(
LDOUBLEV's avatar
LDOUBLEV committed
176
                "./doc/simfang.ttf", font_size, encoding="utf-8")
177
            new_txt = str(idx) + ':  ' + txt + '    ' + '%.3f' % (scores[idx])
LDOUBLEV's avatar
LDOUBLEV committed
178
179
180
            draw_txt.text(
                (20, gap * (count + 1)), new_txt, txt_color, font=font)
            count += 1
LDOUBLEV's avatar
LDOUBLEV committed
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
        img = np.concatenate([np.array(img), np.array(blank_img)], axis=1)
    return img


if __name__ == '__main__':
    test_img = "./doc/test_v2"
    predict_txt = "./doc/predict.txt"
    f = open(predict_txt, 'r')
    data = f.readlines()
    img_path, anno = data[0].strip().split('\t')
    img_name = os.path.basename(img_path)
    img_path = os.path.join(test_img, img_name)
    image = Image.open(img_path)

    data = json.loads(anno)
    boxes, txts, scores = [], [], []
    for dic in data:
        boxes.append(dic['points'])
        txts.append(dic['transcription'])
        scores.append(round(dic['scores'], 3))

    new_img = draw_ocr(image, boxes, txts, scores, draw_txt=True)

    cv2.imwrite(img_name, new_img)