utility.py 23.1 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
WenmuZhou's avatar
WenmuZhou committed
16
import os
WenmuZhou's avatar
WenmuZhou committed
17
import sys
LDOUBLEV's avatar
LDOUBLEV committed
18
19
import cv2
import numpy as np
LDOUBLEV's avatar
LDOUBLEV committed
20
21
import json
from PIL import Image, ImageDraw, ImageFont
22
import math
WenmuZhou's avatar
WenmuZhou committed
23
from paddle import inference
LDOUBLEV's avatar
LDOUBLEV committed
24
25
import time
from ppocr.utils.logging import get_logger
WenmuZhou's avatar
WenmuZhou committed
26

LDOUBLEV's avatar
LDOUBLEV committed
27
logger = get_logger()
LDOUBLEV's avatar
LDOUBLEV committed
28
29


30
31
def str2bool(v):
    return v.lower() in ("true", "t", "1")
LDOUBLEV's avatar
LDOUBLEV committed
32
33


WenmuZhou's avatar
WenmuZhou committed
34
def init_args():
LDOUBLEV's avatar
LDOUBLEV committed
35
    parser = argparse.ArgumentParser()
WenmuZhou's avatar
WenmuZhou committed
36
    # params for prediction engine
LDOUBLEV's avatar
LDOUBLEV committed
37
38
39
    parser.add_argument("--use_gpu", type=str2bool, default=True)
    parser.add_argument("--ir_optim", type=str2bool, default=True)
    parser.add_argument("--use_tensorrt", type=str2bool, default=False)
LDOUBLEV's avatar
LDOUBLEV committed
40
    parser.add_argument("--precision", type=str, default="fp32")
41
    parser.add_argument("--gpu_mem", type=int, default=500)
LDOUBLEV's avatar
LDOUBLEV committed
42

WenmuZhou's avatar
WenmuZhou committed
43
    # params for text detector
LDOUBLEV's avatar
LDOUBLEV committed
44
45
46
    parser.add_argument("--image_dir", type=str)
    parser.add_argument("--det_algorithm", type=str, default='DB')
    parser.add_argument("--det_model_dir", type=str)
WenmuZhou's avatar
WenmuZhou committed
47
48
    parser.add_argument("--det_limit_side_len", type=float, default=960)
    parser.add_argument("--det_limit_type", type=str, default='max')
LDOUBLEV's avatar
LDOUBLEV committed
49

WenmuZhou's avatar
WenmuZhou committed
50
    # DB parmas
LDOUBLEV's avatar
LDOUBLEV committed
51
52
    parser.add_argument("--det_db_thresh", type=float, default=0.3)
    parser.add_argument("--det_db_box_thresh", type=float, default=0.5)
WenmuZhou's avatar
WenmuZhou committed
53
    parser.add_argument("--det_db_unclip_ratio", type=float, default=1.6)
LDOUBLEV's avatar
LDOUBLEV committed
54
    parser.add_argument("--max_batch_size", type=int, default=10)
LDOUBLEV's avatar
LDOUBLEV committed
55
    parser.add_argument("--use_dilation", type=bool, default=False)
littletomatodonkey's avatar
littletomatodonkey committed
56
    parser.add_argument("--det_db_score_mode", type=str, default="fast")
WenmuZhou's avatar
WenmuZhou committed
57
    # EAST parmas
LDOUBLEV's avatar
LDOUBLEV committed
58
59
60
61
    parser.add_argument("--det_east_score_thresh", type=float, default=0.8)
    parser.add_argument("--det_east_cover_thresh", type=float, default=0.1)
    parser.add_argument("--det_east_nms_thresh", type=float, default=0.2)

WenmuZhou's avatar
WenmuZhou committed
62
    # SAST parmas
licx's avatar
licx committed
63
64
    parser.add_argument("--det_sast_score_thresh", type=float, default=0.5)
    parser.add_argument("--det_sast_nms_thresh", type=float, default=0.2)
65
    parser.add_argument("--det_sast_polygon", type=bool, default=False)
licx's avatar
licx committed
66

WenmuZhou's avatar
WenmuZhou committed
67
    # params for text recognizer
LDOUBLEV's avatar
LDOUBLEV committed
68
69
    parser.add_argument("--rec_algorithm", type=str, default='CRNN')
    parser.add_argument("--rec_model_dir", type=str)
tink2123's avatar
fix bug  
tink2123 committed
70
71
    parser.add_argument("--rec_image_shape", type=str, default="3, 32, 320")
    parser.add_argument("--rec_char_type", type=str, default='ch')
72
    parser.add_argument("--rec_batch_num", type=int, default=6)
tink2123's avatar
fix bug  
tink2123 committed
73
    parser.add_argument("--max_text_length", type=int, default=25)
LDOUBLEV's avatar
LDOUBLEV committed
74
75
76
77
    parser.add_argument(
        "--rec_char_dict_path",
        type=str,
        default="./ppocr/utils/ppocr_keys_v1.txt")
WenmuZhou's avatar
WenmuZhou committed
78
79
    parser.add_argument("--use_space_char", type=str2bool, default=True)
    parser.add_argument(
tink2123's avatar
tink2123 committed
80
        "--vis_font_path", type=str, default="./doc/fonts/simfang.ttf")
WenmuZhou's avatar
WenmuZhou committed
81
    parser.add_argument("--drop_score", type=float, default=0.5)
WenmuZhou's avatar
WenmuZhou committed
82

Jethong's avatar
Jethong committed
83
84
85
86
87
88
89
90
91
    # params for e2e
    parser.add_argument("--e2e_algorithm", type=str, default='PGNet')
    parser.add_argument("--e2e_model_dir", type=str)
    parser.add_argument("--e2e_limit_side_len", type=float, default=768)
    parser.add_argument("--e2e_limit_type", type=str, default='max')

    # PGNet parmas
    parser.add_argument("--e2e_pgnet_score_thresh", type=float, default=0.5)
    parser.add_argument(
Jethong's avatar
Jethong committed
92
        "--e2e_char_dict_path", type=str, default="./ppocr/utils/ic15_dict.txt")
Jethong's avatar
Jethong committed
93
    parser.add_argument("--e2e_pgnet_valid_set", type=str, default='totaltext')
Jethong's avatar
Jethong committed
94
    parser.add_argument("--e2e_pgnet_polygon", type=bool, default=True)
Jethong's avatar
Jethong committed
95
    parser.add_argument("--e2e_pgnet_mode", type=str, default='fast')
Jethong's avatar
Jethong committed
96

WenmuZhou's avatar
WenmuZhou committed
97
98
99
100
101
    # params for text classifier
    parser.add_argument("--use_angle_cls", type=str2bool, default=False)
    parser.add_argument("--cls_model_dir", type=str)
    parser.add_argument("--cls_image_shape", type=str, default="3, 48, 192")
    parser.add_argument("--label_list", type=list, default=['0', '180'])
102
    parser.add_argument("--cls_batch_num", type=int, default=6)
WenmuZhou's avatar
WenmuZhou committed
103
104
105
    parser.add_argument("--cls_thresh", type=float, default=0.9)

    parser.add_argument("--enable_mkldnn", type=str2bool, default=False)
LDOUBLEV's avatar
LDOUBLEV committed
106
    parser.add_argument("--cpu_threads", type=int, default=10)
WenmuZhou's avatar
WenmuZhou committed
107
108
    parser.add_argument("--use_pdserving", type=str2bool, default=False)

littletomatodonkey's avatar
littletomatodonkey committed
109
    parser.add_argument("--use_mp", type=str2bool, default=False)
110
111
    parser.add_argument("--total_process_num", type=int, default=1)
    parser.add_argument("--process_id", type=int, default=0)
Double_V's avatar
Double_V committed
112
    
LDOUBLEV's avatar
LDOUBLEV committed
113
114
    parser.add_argument("--benchmark", type=bool, default=False)
    parser.add_argument("--save_log_path", type=str, default="./log_output/")
Double_V's avatar
Double_V committed
115

Double_V's avatar
Double_V committed
116

WenmuZhou's avatar
WenmuZhou committed
117
    return parser
WenmuZhou's avatar
WenmuZhou committed
118

119

120
def parse_args():
WenmuZhou's avatar
WenmuZhou committed
121
    parser = init_args()
LDOUBLEV's avatar
LDOUBLEV committed
122
123
124
    return parser.parse_args()


LDOUBLEV's avatar
LDOUBLEV committed
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
class Times(object):
    def __init__(self):
        self.time = 0.
        self.st = 0.
        self.et = 0.

    def start(self):
        self.st = time.time()

    def end(self, accumulative=True):
        self.et = time.time()
        if accumulative:
            self.time += self.et - self.st
        else:
            self.time = self.et - self.st

    def reset(self):
        self.time = 0.
        self.st = 0.
        self.et = 0.

    def value(self):
        return round(self.time, 4)


class Timer(Times):
    def __init__(self):
        super(Timer, self).__init__()
        self.total_time = Times()
        self.preprocess_time = Times()
        self.inference_time = Times()
        self.postprocess_time = Times()
        self.img_num = 0

    def info(self, average=False):
        logger.info("----------------------- Perf info -----------------------")
        logger.info("total_time: {}, img_num: {}".format(self.total_time.value(
        ), self.img_num))
        preprocess_time = round(self.preprocess_time.value() / self.img_num,
                                4) if average else self.preprocess_time.value()
        postprocess_time = round(
            self.postprocess_time.value() / self.img_num,
            4) if average else self.postprocess_time.value()
        inference_time = round(self.inference_time.value() / self.img_num,
                               4) if average else self.inference_time.value()

        average_latency = self.total_time.value() / self.img_num
        logger.info("average_latency(ms): {:.2f}, QPS: {:2f}".format(
            average_latency * 1000, 1 / average_latency))
        logger.info(
            "preprocess_latency(ms): {:.2f}, inference_latency(ms): {:.2f}, postprocess_latency(ms): {:.2f}".
            format(preprocess_time * 1000, inference_time * 1000,
                   postprocess_time * 1000))

    def report(self, average=False):
        dic = {}
        dic['preprocess_time'] = round(
            self.preprocess_time.value() / self.img_num,
            4) if average else self.preprocess_time.value()
        dic['postprocess_time'] = round(
            self.postprocess_time.value() / self.img_num,
            4) if average else self.postprocess_time.value()
        dic['inference_time'] = round(
            self.inference_time.value() / self.img_num,
            4) if average else self.inference_time.value()
        dic['img_num'] = self.img_num
        dic['total_time'] = round(self.total_time.value(), 4)
        return dic


WenmuZhou's avatar
WenmuZhou committed
195
196
197
198
199
def create_predictor(args, mode, logger):
    if mode == "det":
        model_dir = args.det_model_dir
    elif mode == 'cls':
        model_dir = args.cls_model_dir
Jethong's avatar
Jethong committed
200
    elif mode == 'rec':
WenmuZhou's avatar
WenmuZhou committed
201
        model_dir = args.rec_model_dir
Jethong's avatar
Jethong committed
202
203
    else:
        model_dir = args.e2e_model_dir
WenmuZhou's avatar
WenmuZhou committed
204
205
206
207

    if model_dir is None:
        logger.info("not find {} model file path {}".format(mode, model_dir))
        sys.exit(0)
WenmuZhou's avatar
WenmuZhou committed
208
209
    model_file_path = model_dir + "/inference.pdmodel"
    params_file_path = model_dir + "/inference.pdiparams"
WenmuZhou's avatar
WenmuZhou committed
210
211
212
213
214
215
216
    if not os.path.exists(model_file_path):
        logger.info("not find model file path {}".format(model_file_path))
        sys.exit(0)
    if not os.path.exists(params_file_path):
        logger.info("not find params file path {}".format(params_file_path))
        sys.exit(0)

WenmuZhou's avatar
WenmuZhou committed
217
    config = inference.Config(model_file_path, params_file_path)
WenmuZhou's avatar
WenmuZhou committed
218

LDOUBLEV's avatar
LDOUBLEV committed
219
220
221
222
223
224
225
226
227
228
    if hasattr(args, 'precision'):
        if args.precision == "fp16" and args.use_tensorrt:
            precision = inference.PrecisionType.Half
        elif args.precision == "int8":
            precision = inference.PrecisionType.Int8
        else:
            precision = inference.PrecisionType.Float32
    else:
        precision = inference.PrecisionType.Float32

WenmuZhou's avatar
WenmuZhou committed
229
230
    if args.use_gpu:
        config.enable_use_gpu(args.gpu_mem, 0)
LDOUBLEV's avatar
LDOUBLEV committed
231
232
        if args.use_tensorrt:
            config.enable_tensorrt_engine(
LDOUBLEV's avatar
LDOUBLEV committed
233
234
                precision_mode=inference.PrecisionType.Float32,
                max_batch_size=args.max_batch_size,
WenmuZhou's avatar
WenmuZhou committed
235
                min_subgraph_size=3)  # skip the minmum trt subgraph
LDOUBLEV's avatar
LDOUBLEV committed
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
        if mode == "det" and "mobile" in model_file_path:
            min_input_shape = {
                "x": [1, 3, 50, 50],
                "conv2d_92.tmp_0": [1, 96, 20, 20],
                "conv2d_91.tmp_0": [1, 96, 10, 10],
                "nearest_interp_v2_1.tmp_0": [1, 96, 10, 10],
                "nearest_interp_v2_2.tmp_0": [1, 96, 20, 20],
                "nearest_interp_v2_3.tmp_0": [1, 24, 20, 20],
                "nearest_interp_v2_4.tmp_0": [1, 24, 20, 20],
                "nearest_interp_v2_5.tmp_0": [1, 24, 20, 20],
                "elementwise_add_7": [1, 56, 2, 2],
                "nearest_interp_v2_0.tmp_0": [1, 96, 2, 2]
            }
            max_input_shape = {
                "x": [1, 3, 2000, 2000],
                "conv2d_92.tmp_0": [1, 96, 400, 400],
                "conv2d_91.tmp_0": [1, 96, 200, 200],
                "nearest_interp_v2_1.tmp_0": [1, 96, 200, 200],
                "nearest_interp_v2_2.tmp_0": [1, 96, 400, 400],
                "nearest_interp_v2_3.tmp_0": [1, 24, 400, 400],
                "nearest_interp_v2_4.tmp_0": [1, 24, 400, 400],
                "nearest_interp_v2_5.tmp_0": [1, 24, 400, 400],
                "elementwise_add_7": [1, 56, 400, 400],
                "nearest_interp_v2_0.tmp_0": [1, 96, 400, 400]
            }
            opt_input_shape = {
                "x": [1, 3, 640, 640],
                "conv2d_92.tmp_0": [1, 96, 160, 160],
                "conv2d_91.tmp_0": [1, 96, 80, 80],
                "nearest_interp_v2_1.tmp_0": [1, 96, 80, 80],
                "nearest_interp_v2_2.tmp_0": [1, 96, 160, 160],
                "nearest_interp_v2_3.tmp_0": [1, 24, 160, 160],
                "nearest_interp_v2_4.tmp_0": [1, 24, 160, 160],
                "nearest_interp_v2_5.tmp_0": [1, 24, 160, 160],
                "elementwise_add_7": [1, 56, 40, 40],
                "nearest_interp_v2_0.tmp_0": [1, 96, 40, 40]
            }
        if mode == "det" and "server" in model_file_path:
            min_input_shape = {
                "x": [1, 3, 50, 50],
                "conv2d_59.tmp_0": [1, 96, 20, 20],
                "nearest_interp_v2_2.tmp_0": [1, 96, 20, 20],
                "nearest_interp_v2_3.tmp_0": [1, 24, 20, 20],
                "nearest_interp_v2_4.tmp_0": [1, 24, 20, 20],
                "nearest_interp_v2_5.tmp_0": [1, 24, 20, 20]
            }
            max_input_shape = {
                "x": [1, 3, 2000, 2000],
                "conv2d_59.tmp_0": [1, 96, 400, 400],
                "nearest_interp_v2_2.tmp_0": [1, 96, 400, 400],
                "nearest_interp_v2_3.tmp_0": [1, 24, 400, 400],
                "nearest_interp_v2_4.tmp_0": [1, 24, 400, 400],
                "nearest_interp_v2_5.tmp_0": [1, 24, 400, 400]
            }
            opt_input_shape = {
                "x": [1, 3, 640, 640],
                "conv2d_59.tmp_0": [1, 96, 160, 160],
                "nearest_interp_v2_2.tmp_0": [1, 96, 160, 160],
                "nearest_interp_v2_3.tmp_0": [1, 24, 160, 160],
                "nearest_interp_v2_4.tmp_0": [1, 24, 160, 160],
                "nearest_interp_v2_5.tmp_0": [1, 24, 160, 160]
            }
        elif mode == "rec":
            min_input_shape = {"x": [args.rec_batch_num, 3, 32, 10]}
            max_input_shape = {"x": [args.rec_batch_num, 3, 32, 2000]}
            opt_input_shape = {"x": [args.rec_batch_num, 3, 32, 320]}
        elif mode == "cls":
            min_input_shape = {"x": [args.rec_batch_num, 3, 48, 10]}
            max_input_shape = {"x": [args.rec_batch_num, 3, 48, 2000]}
            opt_input_shape = {"x": [args.rec_batch_num, 3, 48, 320]}
LDOUBLEV's avatar
LDOUBLEV committed
306
307
308
309
        else:
            min_input_shape = {"x": [1, 3, 10, 10]}
            max_input_shape = {"x": [1, 3, 1000, 1000]}
            opt_input_shape = {"x": [1, 3, 500, 500]}
LDOUBLEV's avatar
LDOUBLEV committed
310
311
312
        config.set_trt_dynamic_shape_info(min_input_shape, max_input_shape,
                                          opt_input_shape)

WenmuZhou's avatar
WenmuZhou committed
313
314
    else:
        config.disable_gpu()
LDOUBLEV's avatar
LDOUBLEV committed
315
316
317
        if hasattr(args, "cpu_threads"):
            config.set_cpu_math_library_num_threads(args.cpu_threads)
        else:
WenmuZhou's avatar
WenmuZhou committed
318
            # default cpu threads as 10
LDOUBLEV's avatar
LDOUBLEV committed
319
            config.set_cpu_math_library_num_threads(10)
WenmuZhou's avatar
WenmuZhou committed
320
321
322
323
324
        if args.enable_mkldnn:
            # cache 10 different shapes for mkldnn to avoid memory leak
            config.set_mkldnn_cache_capacity(10)
            config.enable_mkldnn()

LDOUBLEV's avatar
LDOUBLEV committed
325
326
    # enable memory optim
    config.enable_memory_optim()
WenmuZhou's avatar
WenmuZhou committed
327
328
    config.disable_glog_info()

WenmuZhou's avatar
WenmuZhou committed
329
330
    config.delete_pass("conv_transpose_eltwiseadd_bn_fuse_pass")
    config.switch_use_feed_fetch_ops(False)
331

WenmuZhou's avatar
WenmuZhou committed
332
333
    # create predictor
    predictor = inference.create_predictor(config)
WenmuZhou's avatar
WenmuZhou committed
334
335
    input_names = predictor.get_input_names()
    for name in input_names:
WenmuZhou's avatar
WenmuZhou committed
336
        input_tensor = predictor.get_input_handle(name)
WenmuZhou's avatar
WenmuZhou committed
337
338
339
    output_names = predictor.get_output_names()
    output_tensors = []
    for output_name in output_names:
WenmuZhou's avatar
WenmuZhou committed
340
        output_tensor = predictor.get_output_handle(output_name)
WenmuZhou's avatar
WenmuZhou committed
341
        output_tensors.append(output_tensor)
LDOUBLEV's avatar
LDOUBLEV committed
342
    return predictor, input_tensor, output_tensors, config
WenmuZhou's avatar
WenmuZhou committed
343
344


Jethong's avatar
Jethong committed
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
def draw_e2e_res(dt_boxes, strs, img_path):
    src_im = cv2.imread(img_path)
    for box, str in zip(dt_boxes, strs):
        box = box.astype(np.int32).reshape((-1, 1, 2))
        cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
        cv2.putText(
            src_im,
            str,
            org=(int(box[0, 0, 0]), int(box[0, 0, 1])),
            fontFace=cv2.FONT_HERSHEY_COMPLEX,
            fontScale=0.7,
            color=(0, 255, 0),
            thickness=1)
    return src_im


LDOUBLEV's avatar
LDOUBLEV committed
361
def draw_text_det_res(dt_boxes, img_path):
LDOUBLEV's avatar
LDOUBLEV committed
362
363
364
365
    src_im = cv2.imread(img_path)
    for box in dt_boxes:
        box = np.array(box).astype(np.int32).reshape(-1, 2)
        cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
LDOUBLEV's avatar
LDOUBLEV committed
366
    return src_im
LDOUBLEV's avatar
LDOUBLEV committed
367
368


LDOUBLEV's avatar
LDOUBLEV committed
369
370
def resize_img(img, input_size=600):
    """
LDOUBLEV's avatar
LDOUBLEV committed
371
    resize img and limit the longest side of the image to input_size
LDOUBLEV's avatar
LDOUBLEV committed
372
373
374
375
376
    """
    img = np.array(img)
    im_shape = img.shape
    im_size_max = np.max(im_shape[0:2])
    im_scale = float(input_size) / float(im_size_max)
WenmuZhou's avatar
WenmuZhou committed
377
378
    img = cv2.resize(img, None, None, fx=im_scale, fy=im_scale)
    return img
LDOUBLEV's avatar
LDOUBLEV committed
379
380


WenmuZhou's avatar
WenmuZhou committed
381
382
383
384
385
def draw_ocr(image,
             boxes,
             txts=None,
             scores=None,
             drop_score=0.5,
LDOUBLEV's avatar
LDOUBLEV committed
386
             font_path="./doc/fonts/simfang.ttf"):
387
388
389
    """
    Visualize the results of OCR detection and recognition
    args:
LDOUBLEV's avatar
LDOUBLEV committed
390
        image(Image|array): RGB image
391
392
393
394
        boxes(list): boxes with shape(N, 4, 2)
        txts(list): the texts
        scores(list): txxs corresponding scores
        drop_score(float): only scores greater than drop_threshold will be visualized
WenmuZhou's avatar
WenmuZhou committed
395
        font_path: the path of font which is used to draw text
396
397
398
    return(array):
        the visualized img
    """
LDOUBLEV's avatar
LDOUBLEV committed
399
400
    if scores is None:
        scores = [1] * len(boxes)
WenmuZhou's avatar
WenmuZhou committed
401
402
403
404
    box_num = len(boxes)
    for i in range(box_num):
        if scores is not None and (scores[i] < drop_score or
                                   math.isnan(scores[i])):
LDOUBLEV's avatar
LDOUBLEV committed
405
            continue
WenmuZhou's avatar
WenmuZhou committed
406
        box = np.reshape(np.array(boxes[i]), [-1, 1, 2]).astype(np.int64)
LDOUBLEV's avatar
LDOUBLEV committed
407
        image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2)
WenmuZhou's avatar
WenmuZhou committed
408
    if txts is not None:
LDOUBLEV's avatar
LDOUBLEV committed
409
        img = np.array(resize_img(image, input_size=600))
410
        txt_img = text_visual(
WenmuZhou's avatar
WenmuZhou committed
411
412
413
414
415
416
            txts,
            scores,
            img_h=img.shape[0],
            img_w=600,
            threshold=drop_score,
            font_path=font_path)
417
        img = np.concatenate([np.array(img), np.array(txt_img)], axis=1)
LDOUBLEV's avatar
LDOUBLEV committed
418
419
        return img
    return image
420
421


WenmuZhou's avatar
WenmuZhou committed
422
423
424
425
426
427
def draw_ocr_box_txt(image,
                     boxes,
                     txts,
                     scores=None,
                     drop_score=0.5,
                     font_path="./doc/simfang.ttf"):
428
429
430
    h, w = image.height, image.width
    img_left = image.copy()
    img_right = Image.new('RGB', (w, h), (255, 255, 255))
431
432

    import random
LDOUBLEV's avatar
LDOUBLEV committed
433

434
435
436
    random.seed(0)
    draw_left = ImageDraw.Draw(img_left)
    draw_right = ImageDraw.Draw(img_right)
WenmuZhou's avatar
WenmuZhou committed
437
438
439
    for idx, (box, txt) in enumerate(zip(boxes, txts)):
        if scores is not None and scores[idx] < drop_score:
            continue
tink2123's avatar
tink2123 committed
440
441
        color = (random.randint(0, 255), random.randint(0, 255),
                 random.randint(0, 255))
442
        draw_left.polygon(box, fill=color)
tink2123's avatar
tink2123 committed
443
444
445
446
447
448
449
450
451
452
        draw_right.polygon(
            [
                box[0][0], box[0][1], box[1][0], box[1][1], box[2][0],
                box[2][1], box[3][0], box[3][1]
            ],
            outline=color)
        box_height = math.sqrt((box[0][0] - box[3][0])**2 + (box[0][1] - box[3][
            1])**2)
        box_width = math.sqrt((box[0][0] - box[1][0])**2 + (box[0][1] - box[1][
            1])**2)
453
454
        if box_height > 2 * box_width:
            font_size = max(int(box_width * 0.9), 10)
WenmuZhou's avatar
WenmuZhou committed
455
            font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
456
457
458
            cur_y = box[0][1]
            for c in txt:
                char_size = font.getsize(c)
tink2123's avatar
tink2123 committed
459
460
                draw_right.text(
                    (box[0][0] + 3, cur_y), c, fill=(0, 0, 0), font=font)
461
462
463
                cur_y += char_size[1]
        else:
            font_size = max(int(box_height * 0.8), 10)
WenmuZhou's avatar
WenmuZhou committed
464
            font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
tink2123's avatar
tink2123 committed
465
466
            draw_right.text(
                [box[0][0], box[0][1]], txt, fill=(0, 0, 0), font=font)
467
468
469
470
    img_left = Image.blend(image, img_left, 0.5)
    img_show = Image.new('RGB', (w * 2, h), (255, 255, 255))
    img_show.paste(img_left, (0, 0, w, h))
    img_show.paste(img_right, (w, 0, w * 2, h))
471
472
473
    return np.array(img_show)


474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
def str_count(s):
    """
    Count the number of Chinese characters,
    a single English character and a single number
    equal to half the length of Chinese characters.
    args:
        s(string): the input of string
    return(int):
        the number of Chinese characters
    """
    import string
    count_zh = count_pu = 0
    s_len = len(s)
    en_dg_count = 0
    for c in s:
        if c in string.ascii_letters or c.isdigit() or c.isspace():
            en_dg_count += 1
        elif c.isalpha():
            count_zh += 1
        else:
            count_pu += 1
    return s_len - math.ceil(en_dg_count / 2)


WenmuZhou's avatar
WenmuZhou committed
498
499
500
501
502
503
def text_visual(texts,
                scores,
                img_h=400,
                img_w=600,
                threshold=0.,
                font_path="./doc/simfang.ttf"):
504
505
506
507
508
509
510
    """
    create new blank img and draw txt on it
    args:
        texts(list): the text will be draw
        scores(list|None): corresponding score of each txt
        img_h(int): the height of blank img
        img_w(int): the width of blank img
WenmuZhou's avatar
WenmuZhou committed
511
        font_path: the path of font which is used to draw text
512
513
514
515
516
517
518
519
520
    return(array):
    """
    if scores is not None:
        assert len(texts) == len(
            scores), "The number of txts and corresponding scores must match"

    def create_blank_img():
        blank_img = np.ones(shape=[img_h, img_w], dtype=np.int8) * 255
        blank_img[:, img_w - 1:] = 0
LDOUBLEV's avatar
LDOUBLEV committed
521
522
        blank_img = Image.fromarray(blank_img).convert("RGB")
        draw_txt = ImageDraw.Draw(blank_img)
523
        return blank_img, draw_txt
LDOUBLEV's avatar
LDOUBLEV committed
524

525
526
527
528
    blank_img, draw_txt = create_blank_img()

    font_size = 20
    txt_color = (0, 0, 0)
WenmuZhou's avatar
WenmuZhou committed
529
    font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
530
531
532

    gap = font_size + 5
    txt_img_list = []
LDOUBLEV's avatar
LDOUBLEV committed
533
    count, index = 1, 0
534
535
    for idx, txt in enumerate(texts):
        index += 1
LDOUBLEV's avatar
LDOUBLEV committed
536
        if scores[idx] < threshold or math.isnan(scores[idx]):
537
538
539
540
541
542
543
544
545
546
547
            index -= 1
            continue
        first_line = True
        while str_count(txt) >= img_w // font_size - 4:
            tmp = txt
            txt = tmp[:img_w // font_size - 4]
            if first_line:
                new_txt = str(index) + ': ' + txt
                first_line = False
            else:
                new_txt = '    ' + txt
LDOUBLEV's avatar
LDOUBLEV committed
548
            draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
549
550
551
552
553
            txt = tmp[img_w // font_size - 4:]
            if count >= img_h // gap - 1:
                txt_img_list.append(np.array(blank_img))
                blank_img, draw_txt = create_blank_img()
                count = 0
LDOUBLEV's avatar
LDOUBLEV committed
554
            count += 1
555
556
557
        if first_line:
            new_txt = str(index) + ': ' + txt + '   ' + '%.3f' % (scores[idx])
        else:
LDOUBLEV's avatar
LDOUBLEV committed
558
            new_txt = "  " + txt + "  " + '%.3f' % (scores[idx])
LDOUBLEV's avatar
LDOUBLEV committed
559
        draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
560
        # whether add new blank img or not
LDOUBLEV's avatar
LDOUBLEV committed
561
        if count >= img_h // gap - 1 and idx + 1 < len(texts):
562
563
564
            txt_img_list.append(np.array(blank_img))
            blank_img, draw_txt = create_blank_img()
            count = 0
LDOUBLEV's avatar
LDOUBLEV committed
565
        count += 1
566
567
568
569
570
571
    txt_img_list.append(np.array(blank_img))
    if len(txt_img_list) == 1:
        blank_img = np.array(txt_img_list[0])
    else:
        blank_img = np.concatenate(txt_img_list, axis=1)
    return np.array(blank_img)
LDOUBLEV's avatar
LDOUBLEV committed
572
573


dyning's avatar
dyning committed
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
def base64_to_cv2(b64str):
    import base64
    data = base64.b64decode(b64str.encode('utf8'))
    data = np.fromstring(data, np.uint8)
    data = cv2.imdecode(data, cv2.IMREAD_COLOR)
    return data


def draw_boxes(image, boxes, scores=None, drop_score=0.5):
    if scores is None:
        scores = [1] * len(boxes)
    for (box, score) in zip(boxes, scores):
        if score < drop_score:
            continue
        box = np.reshape(np.array(box), [-1, 1, 2]).astype(np.int64)
        image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2)
    return image


LDOUBLEV's avatar
LDOUBLEV committed
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
def get_current_memory_mb(gpu_id=None):
    """
    It is used to Obtain the memory usage of the CPU and GPU during the running of the program.
    And this function Current program is time-consuming.
    """
    import pynvml
    import psutil
    import GPUtil
    pid = os.getpid()
    p = psutil.Process(pid)
    info = p.memory_full_info()
    cpu_mem = info.uss / 1024. / 1024.
    gpu_mem = 0
    gpu_percent = 0
    if gpu_id is not None:
        GPUs = GPUtil.getGPUs()
        gpu_load = GPUs[gpu_id].load
        gpu_percent = gpu_load
        pynvml.nvmlInit()
        handle = pynvml.nvmlDeviceGetHandleByIndex(0)
        meminfo = pynvml.nvmlDeviceGetMemoryInfo(handle)
        gpu_mem = meminfo.used / 1024. / 1024.
    return round(cpu_mem, 4), round(gpu_mem, 4), round(gpu_percent, 4)


LDOUBLEV's avatar
LDOUBLEV committed
618
if __name__ == '__main__':
LDOUBLEV's avatar
LDOUBLEV committed
619
    pass