utility.py 17.8 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
WenmuZhou's avatar
WenmuZhou committed
16
import os
WenmuZhou's avatar
WenmuZhou committed
17
import sys
LDOUBLEV's avatar
LDOUBLEV committed
18
19
import cv2
import numpy as np
LDOUBLEV's avatar
LDOUBLEV committed
20
21
import json
from PIL import Image, ImageDraw, ImageFont
22
import math
WenmuZhou's avatar
WenmuZhou committed
23
from paddle import inference
24
25
26
import time
from ppocr.utils.logging import get_logger
logger = get_logger()
LDOUBLEV's avatar
LDOUBLEV committed
27
28


29
30
def str2bool(v):
    return v.lower() in ("true", "t", "1")
LDOUBLEV's avatar
LDOUBLEV committed
31
32


33
inference_args_list = [
34
    # name     type      defalue
35
    # params for prediction engine
36
37
38
39
40
41
42
43
44
45
    ['use_gpu', str2bool, True],
    ['use_tensorrt', str2bool, False],
    ['use_fp16', str2bool, False],
    ['use_pdserving', str2bool, False],
    ['use_mp', str2bool, False],
    ['enable_mkldnn', str2bool, False],
    ['ir_optim', str2bool, True],
    ['total_process_num', int, 1],
    ['process_id', int, 0],
    ['gpu_mem', int, 500],
WenmuZhou's avatar
WenmuZhou committed
46
    ['cpu_threads', int, 10],
WenmuZhou's avatar
WenmuZhou committed
47
    # params for text detector
48
49
50
51
52
    ['image_dir', str, None],
    ['det_algorithm', str, 'DB'],
    ['det_model_dir', str, None],
    ['det_limit_side_len', float, 960],
    ['det_limit_type', str, 'max'],
WenmuZhou's avatar
WenmuZhou committed
53
    # DB parmas
54
55
56
57
58
59
    ['det_db_thresh', float, 0.3],
    ['det_db_box_thresh', float, 0.5],
    ['det_db_unclip_ratio', float, 1.6],
    ['max_batch_size', int, 10],
    ['use_dilation', str2bool, False],
    ['det_db_score_mode', str, 'fast'],
WenmuZhou's avatar
WenmuZhou committed
60
    # EAST parmas
61
62
63
    ['det_east_score_thresh', float, 0.8],
    ['det_east_cover_thresh', float, 0.1],
    ['det_east_nms_thresh', float, 0.2],
WenmuZhou's avatar
WenmuZhou committed
64
    # SAST parmas
65
66
67
    ['det_sast_score_thresh', float, 0.5],
    ['det_sast_nms_thresh', float, 0.2],
    ['det_sast_polygon', str2bool, False],
WenmuZhou's avatar
WenmuZhou committed
68
    # params for text recognizer
69
70
71
72
73
74
75
76
77
78
    ['rec_algorithm', str, 'CRNN'],
    ['rec_model_dir', str, None],
    ['rec_image_shape', str, '3, 32, 320'],
    ['rec_char_type', str, "ch"],
    ['rec_batch_num', int, 6],
    ['max_text_length', int, 25],
    ['rec_char_dict_path', str, './ppocr/utils/ppocr_keys_v1.txt'],
    ['use_space_char', str2bool, True],
    ['vis_font_path', str, './doc/fonts/simfang.ttf'],
    ['drop_score', float, 0.5],
Jethong's avatar
Jethong committed
79
    # params for e2e
80
81
82
83
    ['e2e_algorithm', str, 'PGNet'],
    ['e2e_model_dir', str, None],
    ['e2e_limit_side_len', float, 768],
    ['e2e_limit_type', str, 'max'],
Jethong's avatar
Jethong committed
84
    # PGNet parmas
85
86
87
88
89
    ['e2e_pgnet_score_thresh', float, 0.5],
    ['e2e_char_dict_path', str, './ppocr/utils/ic15_dict.txt'],
    ['e2e_pgnet_valid_set', str, 'totaltext'],
    ['e2e_pgnet_polygon', str2bool, True],
    ['e2e_pgnet_mode', str, 'fast'],
WenmuZhou's avatar
WenmuZhou committed
90
    # params for text classifier
91
92
93
94
95
96
    ['use_angle_cls', str2bool, False],
    ['cls_model_dir', str, None],
    ['cls_image_shape', str, '3, 48, 192'],
    ['label_list', list, ['0', '180']],
    ['cls_batch_num', int, 6],
    ['cls_thresh', float, 0.9],
97
]
WenmuZhou's avatar
WenmuZhou committed
98

99

100
101
102
def parse_args():
    parser = argparse.ArgumentParser()
    for item in inference_args_list:
103
        parser.add_argument('--' + item[0], type=item[1], default=item[2])
LDOUBLEV's avatar
LDOUBLEV committed
104
105
106
    return parser.parse_args()


WenmuZhou's avatar
WenmuZhou committed
107
108
109
110
111
def create_predictor(args, mode, logger):
    if mode == "det":
        model_dir = args.det_model_dir
    elif mode == 'cls':
        model_dir = args.cls_model_dir
Jethong's avatar
Jethong committed
112
    elif mode == 'rec':
WenmuZhou's avatar
WenmuZhou committed
113
        model_dir = args.rec_model_dir
Jethong's avatar
Jethong committed
114
115
    else:
        model_dir = args.e2e_model_dir
WenmuZhou's avatar
WenmuZhou committed
116
117
118
119

    if model_dir is None:
        logger.info("not find {} model file path {}".format(mode, model_dir))
        sys.exit(0)
WenmuZhou's avatar
WenmuZhou committed
120
121
    model_file_path = model_dir + "/inference.pdmodel"
    params_file_path = model_dir + "/inference.pdiparams"
WenmuZhou's avatar
WenmuZhou committed
122
123
124
125
126
127
128
    if not os.path.exists(model_file_path):
        logger.info("not find model file path {}".format(model_file_path))
        sys.exit(0)
    if not os.path.exists(params_file_path):
        logger.info("not find params file path {}".format(params_file_path))
        sys.exit(0)

WenmuZhou's avatar
WenmuZhou committed
129
    config = inference.Config(model_file_path, params_file_path)
WenmuZhou's avatar
WenmuZhou committed
130
131
132

    if args.use_gpu:
        config.enable_use_gpu(args.gpu_mem, 0)
LDOUBLEV's avatar
LDOUBLEV committed
133
134
        if args.use_tensorrt:
            config.enable_tensorrt_engine(
LDOUBLEV's avatar
LDOUBLEV committed
135
136
                precision_mode=inference.PrecisionType.Float32,
                max_batch_size=args.max_batch_size,
WenmuZhou's avatar
WenmuZhou committed
137
                min_subgraph_size=3)  # skip the minmum trt subgraph
LDOUBLEV's avatar
LDOUBLEV committed
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
        if mode == "det" and "mobile" in model_file_path:
            min_input_shape = {
                "x": [1, 3, 50, 50],
                "conv2d_92.tmp_0": [1, 96, 20, 20],
                "conv2d_91.tmp_0": [1, 96, 10, 10],
                "nearest_interp_v2_1.tmp_0": [1, 96, 10, 10],
                "nearest_interp_v2_2.tmp_0": [1, 96, 20, 20],
                "nearest_interp_v2_3.tmp_0": [1, 24, 20, 20],
                "nearest_interp_v2_4.tmp_0": [1, 24, 20, 20],
                "nearest_interp_v2_5.tmp_0": [1, 24, 20, 20],
                "elementwise_add_7": [1, 56, 2, 2],
                "nearest_interp_v2_0.tmp_0": [1, 96, 2, 2]
            }
            max_input_shape = {
                "x": [1, 3, 2000, 2000],
                "conv2d_92.tmp_0": [1, 96, 400, 400],
                "conv2d_91.tmp_0": [1, 96, 200, 200],
                "nearest_interp_v2_1.tmp_0": [1, 96, 200, 200],
                "nearest_interp_v2_2.tmp_0": [1, 96, 400, 400],
                "nearest_interp_v2_3.tmp_0": [1, 24, 400, 400],
                "nearest_interp_v2_4.tmp_0": [1, 24, 400, 400],
                "nearest_interp_v2_5.tmp_0": [1, 24, 400, 400],
                "elementwise_add_7": [1, 56, 400, 400],
                "nearest_interp_v2_0.tmp_0": [1, 96, 400, 400]
            }
            opt_input_shape = {
                "x": [1, 3, 640, 640],
                "conv2d_92.tmp_0": [1, 96, 160, 160],
                "conv2d_91.tmp_0": [1, 96, 80, 80],
                "nearest_interp_v2_1.tmp_0": [1, 96, 80, 80],
                "nearest_interp_v2_2.tmp_0": [1, 96, 160, 160],
                "nearest_interp_v2_3.tmp_0": [1, 24, 160, 160],
                "nearest_interp_v2_4.tmp_0": [1, 24, 160, 160],
                "nearest_interp_v2_5.tmp_0": [1, 24, 160, 160],
                "elementwise_add_7": [1, 56, 40, 40],
                "nearest_interp_v2_0.tmp_0": [1, 96, 40, 40]
            }
        if mode == "det" and "server" in model_file_path:
            min_input_shape = {
                "x": [1, 3, 50, 50],
                "conv2d_59.tmp_0": [1, 96, 20, 20],
                "nearest_interp_v2_2.tmp_0": [1, 96, 20, 20],
                "nearest_interp_v2_3.tmp_0": [1, 24, 20, 20],
                "nearest_interp_v2_4.tmp_0": [1, 24, 20, 20],
                "nearest_interp_v2_5.tmp_0": [1, 24, 20, 20]
            }
            max_input_shape = {
                "x": [1, 3, 2000, 2000],
                "conv2d_59.tmp_0": [1, 96, 400, 400],
                "nearest_interp_v2_2.tmp_0": [1, 96, 400, 400],
                "nearest_interp_v2_3.tmp_0": [1, 24, 400, 400],
                "nearest_interp_v2_4.tmp_0": [1, 24, 400, 400],
                "nearest_interp_v2_5.tmp_0": [1, 24, 400, 400]
            }
            opt_input_shape = {
                "x": [1, 3, 640, 640],
                "conv2d_59.tmp_0": [1, 96, 160, 160],
                "nearest_interp_v2_2.tmp_0": [1, 96, 160, 160],
                "nearest_interp_v2_3.tmp_0": [1, 24, 160, 160],
                "nearest_interp_v2_4.tmp_0": [1, 24, 160, 160],
                "nearest_interp_v2_5.tmp_0": [1, 24, 160, 160]
            }
        elif mode == "rec":
            min_input_shape = {"x": [args.rec_batch_num, 3, 32, 10]}
            max_input_shape = {"x": [args.rec_batch_num, 3, 32, 2000]}
            opt_input_shape = {"x": [args.rec_batch_num, 3, 32, 320]}
        elif mode == "cls":
            min_input_shape = {"x": [args.rec_batch_num, 3, 48, 10]}
            max_input_shape = {"x": [args.rec_batch_num, 3, 48, 2000]}
            opt_input_shape = {"x": [args.rec_batch_num, 3, 48, 320]}
LDOUBLEV's avatar
LDOUBLEV committed
208
209
210
211
        else:
            min_input_shape = {"x": [1, 3, 10, 10]}
            max_input_shape = {"x": [1, 3, 1000, 1000]}
            opt_input_shape = {"x": [1, 3, 500, 500]}
LDOUBLEV's avatar
LDOUBLEV committed
212
213
214
        config.set_trt_dynamic_shape_info(min_input_shape, max_input_shape,
                                          opt_input_shape)

WenmuZhou's avatar
WenmuZhou committed
215
216
    else:
        config.disable_gpu()
217
218
219
        if hasattr(args, "cpu_threads"):
            config.set_cpu_math_library_num_threads(args.cpu_threads)
        else:
WenmuZhou's avatar
WenmuZhou committed
220
221
            config.set_cpu_math_library_num_threads(
                10)  # default cpu threads as 10
WenmuZhou's avatar
WenmuZhou committed
222
223
224
225
226
        if args.enable_mkldnn:
            # cache 10 different shapes for mkldnn to avoid memory leak
            config.set_mkldnn_cache_capacity(10)
            config.enable_mkldnn()

LDOUBLEV's avatar
LDOUBLEV committed
227
228
    # enable memory optim
    config.enable_memory_optim()
WenmuZhou's avatar
WenmuZhou committed
229
230
    config.disable_glog_info()

WenmuZhou's avatar
WenmuZhou committed
231
232
    config.delete_pass("conv_transpose_eltwiseadd_bn_fuse_pass")
    config.switch_use_feed_fetch_ops(False)
WenmuZhou's avatar
WenmuZhou committed
233

WenmuZhou's avatar
WenmuZhou committed
234
235
    # create predictor
    predictor = inference.create_predictor(config)
WenmuZhou's avatar
WenmuZhou committed
236
237
    input_names = predictor.get_input_names()
    for name in input_names:
WenmuZhou's avatar
WenmuZhou committed
238
        input_tensor = predictor.get_input_handle(name)
WenmuZhou's avatar
WenmuZhou committed
239
240
241
    output_names = predictor.get_output_names()
    output_tensors = []
    for output_name in output_names:
WenmuZhou's avatar
WenmuZhou committed
242
        output_tensor = predictor.get_output_handle(output_name)
WenmuZhou's avatar
WenmuZhou committed
243
244
245
246
        output_tensors.append(output_tensor)
    return predictor, input_tensor, output_tensors


Jethong's avatar
Jethong committed
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
def draw_e2e_res(dt_boxes, strs, img_path):
    src_im = cv2.imread(img_path)
    for box, str in zip(dt_boxes, strs):
        box = box.astype(np.int32).reshape((-1, 1, 2))
        cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
        cv2.putText(
            src_im,
            str,
            org=(int(box[0, 0, 0]), int(box[0, 0, 1])),
            fontFace=cv2.FONT_HERSHEY_COMPLEX,
            fontScale=0.7,
            color=(0, 255, 0),
            thickness=1)
    return src_im


LDOUBLEV's avatar
LDOUBLEV committed
263
def draw_text_det_res(dt_boxes, img_path):
LDOUBLEV's avatar
LDOUBLEV committed
264
265
266
267
    src_im = cv2.imread(img_path)
    for box in dt_boxes:
        box = np.array(box).astype(np.int32).reshape(-1, 2)
        cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
LDOUBLEV's avatar
LDOUBLEV committed
268
    return src_im
LDOUBLEV's avatar
LDOUBLEV committed
269
270


LDOUBLEV's avatar
LDOUBLEV committed
271
272
def resize_img(img, input_size=600):
    """
LDOUBLEV's avatar
LDOUBLEV committed
273
    resize img and limit the longest side of the image to input_size
LDOUBLEV's avatar
LDOUBLEV committed
274
275
276
277
278
    """
    img = np.array(img)
    im_shape = img.shape
    im_size_max = np.max(im_shape[0:2])
    im_scale = float(input_size) / float(im_size_max)
WenmuZhou's avatar
WenmuZhou committed
279
280
    img = cv2.resize(img, None, None, fx=im_scale, fy=im_scale)
    return img
LDOUBLEV's avatar
LDOUBLEV committed
281
282


WenmuZhou's avatar
WenmuZhou committed
283
284
285
286
287
def draw_ocr(image,
             boxes,
             txts=None,
             scores=None,
             drop_score=0.5,
LDOUBLEV's avatar
LDOUBLEV committed
288
             font_path="./doc/fonts/simfang.ttf"):
289
290
291
    """
    Visualize the results of OCR detection and recognition
    args:
LDOUBLEV's avatar
LDOUBLEV committed
292
        image(Image|array): RGB image
293
294
295
296
        boxes(list): boxes with shape(N, 4, 2)
        txts(list): the texts
        scores(list): txxs corresponding scores
        drop_score(float): only scores greater than drop_threshold will be visualized
WenmuZhou's avatar
WenmuZhou committed
297
        font_path: the path of font which is used to draw text
298
299
300
    return(array):
        the visualized img
    """
LDOUBLEV's avatar
LDOUBLEV committed
301
302
    if scores is None:
        scores = [1] * len(boxes)
WenmuZhou's avatar
WenmuZhou committed
303
304
305
306
    box_num = len(boxes)
    for i in range(box_num):
        if scores is not None and (scores[i] < drop_score or
                                   math.isnan(scores[i])):
LDOUBLEV's avatar
LDOUBLEV committed
307
            continue
WenmuZhou's avatar
WenmuZhou committed
308
        box = np.reshape(np.array(boxes[i]), [-1, 1, 2]).astype(np.int64)
LDOUBLEV's avatar
LDOUBLEV committed
309
        image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2)
WenmuZhou's avatar
WenmuZhou committed
310
    if txts is not None:
LDOUBLEV's avatar
LDOUBLEV committed
311
        img = np.array(resize_img(image, input_size=600))
312
        txt_img = text_visual(
WenmuZhou's avatar
WenmuZhou committed
313
314
315
316
317
318
            txts,
            scores,
            img_h=img.shape[0],
            img_w=600,
            threshold=drop_score,
            font_path=font_path)
319
        img = np.concatenate([np.array(img), np.array(txt_img)], axis=1)
LDOUBLEV's avatar
LDOUBLEV committed
320
321
        return img
    return image
322
323


WenmuZhou's avatar
WenmuZhou committed
324
325
326
327
328
329
def draw_ocr_box_txt(image,
                     boxes,
                     txts,
                     scores=None,
                     drop_score=0.5,
                     font_path="./doc/simfang.ttf"):
330
331
332
    h, w = image.height, image.width
    img_left = image.copy()
    img_right = Image.new('RGB', (w, h), (255, 255, 255))
333
334

    import random
LDOUBLEV's avatar
LDOUBLEV committed
335

336
337
338
    random.seed(0)
    draw_left = ImageDraw.Draw(img_left)
    draw_right = ImageDraw.Draw(img_right)
WenmuZhou's avatar
WenmuZhou committed
339
340
341
    for idx, (box, txt) in enumerate(zip(boxes, txts)):
        if scores is not None and scores[idx] < drop_score:
            continue
tink2123's avatar
tink2123 committed
342
343
        color = (random.randint(0, 255), random.randint(0, 255),
                 random.randint(0, 255))
344
        draw_left.polygon(box, fill=color)
tink2123's avatar
tink2123 committed
345
346
347
348
349
350
351
352
353
354
        draw_right.polygon(
            [
                box[0][0], box[0][1], box[1][0], box[1][1], box[2][0],
                box[2][1], box[3][0], box[3][1]
            ],
            outline=color)
        box_height = math.sqrt((box[0][0] - box[3][0])**2 + (box[0][1] - box[3][
            1])**2)
        box_width = math.sqrt((box[0][0] - box[1][0])**2 + (box[0][1] - box[1][
            1])**2)
355
356
        if box_height > 2 * box_width:
            font_size = max(int(box_width * 0.9), 10)
WenmuZhou's avatar
WenmuZhou committed
357
            font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
358
359
360
            cur_y = box[0][1]
            for c in txt:
                char_size = font.getsize(c)
tink2123's avatar
tink2123 committed
361
362
                draw_right.text(
                    (box[0][0] + 3, cur_y), c, fill=(0, 0, 0), font=font)
363
364
365
                cur_y += char_size[1]
        else:
            font_size = max(int(box_height * 0.8), 10)
WenmuZhou's avatar
WenmuZhou committed
366
            font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
tink2123's avatar
tink2123 committed
367
368
            draw_right.text(
                [box[0][0], box[0][1]], txt, fill=(0, 0, 0), font=font)
369
370
371
372
    img_left = Image.blend(image, img_left, 0.5)
    img_show = Image.new('RGB', (w * 2, h), (255, 255, 255))
    img_show.paste(img_left, (0, 0, w, h))
    img_show.paste(img_right, (w, 0, w * 2, h))
373
374
375
    return np.array(img_show)


376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
def str_count(s):
    """
    Count the number of Chinese characters,
    a single English character and a single number
    equal to half the length of Chinese characters.
    args:
        s(string): the input of string
    return(int):
        the number of Chinese characters
    """
    import string
    count_zh = count_pu = 0
    s_len = len(s)
    en_dg_count = 0
    for c in s:
        if c in string.ascii_letters or c.isdigit() or c.isspace():
            en_dg_count += 1
        elif c.isalpha():
            count_zh += 1
        else:
            count_pu += 1
    return s_len - math.ceil(en_dg_count / 2)


WenmuZhou's avatar
WenmuZhou committed
400
401
402
403
404
405
def text_visual(texts,
                scores,
                img_h=400,
                img_w=600,
                threshold=0.,
                font_path="./doc/simfang.ttf"):
406
407
408
409
410
411
412
    """
    create new blank img and draw txt on it
    args:
        texts(list): the text will be draw
        scores(list|None): corresponding score of each txt
        img_h(int): the height of blank img
        img_w(int): the width of blank img
WenmuZhou's avatar
WenmuZhou committed
413
        font_path: the path of font which is used to draw text
414
415
416
417
418
419
420
421
422
    return(array):
    """
    if scores is not None:
        assert len(texts) == len(
            scores), "The number of txts and corresponding scores must match"

    def create_blank_img():
        blank_img = np.ones(shape=[img_h, img_w], dtype=np.int8) * 255
        blank_img[:, img_w - 1:] = 0
LDOUBLEV's avatar
LDOUBLEV committed
423
424
        blank_img = Image.fromarray(blank_img).convert("RGB")
        draw_txt = ImageDraw.Draw(blank_img)
425
        return blank_img, draw_txt
LDOUBLEV's avatar
LDOUBLEV committed
426

427
428
429
430
    blank_img, draw_txt = create_blank_img()

    font_size = 20
    txt_color = (0, 0, 0)
WenmuZhou's avatar
WenmuZhou committed
431
    font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
432
433
434

    gap = font_size + 5
    txt_img_list = []
LDOUBLEV's avatar
LDOUBLEV committed
435
    count, index = 1, 0
436
437
    for idx, txt in enumerate(texts):
        index += 1
LDOUBLEV's avatar
LDOUBLEV committed
438
        if scores[idx] < threshold or math.isnan(scores[idx]):
439
440
441
442
443
444
445
446
447
448
449
            index -= 1
            continue
        first_line = True
        while str_count(txt) >= img_w // font_size - 4:
            tmp = txt
            txt = tmp[:img_w // font_size - 4]
            if first_line:
                new_txt = str(index) + ': ' + txt
                first_line = False
            else:
                new_txt = '    ' + txt
LDOUBLEV's avatar
LDOUBLEV committed
450
            draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
451
452
453
454
455
            txt = tmp[img_w // font_size - 4:]
            if count >= img_h // gap - 1:
                txt_img_list.append(np.array(blank_img))
                blank_img, draw_txt = create_blank_img()
                count = 0
LDOUBLEV's avatar
LDOUBLEV committed
456
            count += 1
457
458
459
        if first_line:
            new_txt = str(index) + ': ' + txt + '   ' + '%.3f' % (scores[idx])
        else:
LDOUBLEV's avatar
LDOUBLEV committed
460
            new_txt = "  " + txt + "  " + '%.3f' % (scores[idx])
LDOUBLEV's avatar
LDOUBLEV committed
461
        draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
462
        # whether add new blank img or not
LDOUBLEV's avatar
LDOUBLEV committed
463
        if count >= img_h // gap - 1 and idx + 1 < len(texts):
464
465
466
            txt_img_list.append(np.array(blank_img))
            blank_img, draw_txt = create_blank_img()
            count = 0
LDOUBLEV's avatar
LDOUBLEV committed
467
        count += 1
468
469
470
471
472
473
    txt_img_list.append(np.array(blank_img))
    if len(txt_img_list) == 1:
        blank_img = np.array(txt_img_list[0])
    else:
        blank_img = np.concatenate(txt_img_list, axis=1)
    return np.array(blank_img)
LDOUBLEV's avatar
LDOUBLEV committed
474
475


dyning's avatar
dyning committed
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
def base64_to_cv2(b64str):
    import base64
    data = base64.b64decode(b64str.encode('utf8'))
    data = np.fromstring(data, np.uint8)
    data = cv2.imdecode(data, cv2.IMREAD_COLOR)
    return data


def draw_boxes(image, boxes, scores=None, drop_score=0.5):
    if scores is None:
        scores = [1] * len(boxes)
    for (box, score) in zip(boxes, scores):
        if score < drop_score:
            continue
        box = np.reshape(np.array(box), [-1, 1, 2]).astype(np.int64)
        image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2)
    return image


LDOUBLEV's avatar
LDOUBLEV committed
495
if __name__ == '__main__':
LDOUBLEV's avatar
LDOUBLEV committed
496
    pass