utility.py 22.4 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
WenmuZhou's avatar
WenmuZhou committed
16
import os
WenmuZhou's avatar
WenmuZhou committed
17
import sys
LDOUBLEV's avatar
LDOUBLEV committed
18
19
import cv2
import numpy as np
LDOUBLEV's avatar
LDOUBLEV committed
20
21
import json
from PIL import Image, ImageDraw, ImageFont
22
import math
WenmuZhou's avatar
WenmuZhou committed
23
from paddle import inference
LDOUBLEV's avatar
LDOUBLEV committed
24
25
import time
from ppocr.utils.logging import get_logger
WenmuZhou's avatar
WenmuZhou committed
26

LDOUBLEV's avatar
LDOUBLEV committed
27
logger = get_logger()
LDOUBLEV's avatar
LDOUBLEV committed
28
29


30
31
def str2bool(v):
    return v.lower() in ("true", "t", "1")
LDOUBLEV's avatar
LDOUBLEV committed
32
33


WenmuZhou's avatar
WenmuZhou committed
34
def init_args():
LDOUBLEV's avatar
LDOUBLEV committed
35
    parser = argparse.ArgumentParser()
WenmuZhou's avatar
WenmuZhou committed
36
    # params for prediction engine
LDOUBLEV's avatar
LDOUBLEV committed
37
38
39
    parser.add_argument("--use_gpu", type=str2bool, default=True)
    parser.add_argument("--ir_optim", type=str2bool, default=True)
    parser.add_argument("--use_tensorrt", type=str2bool, default=False)
LDOUBLEV's avatar
LDOUBLEV committed
40
    parser.add_argument("--min_subgraph_size", type=int, default=3)
LDOUBLEV's avatar
LDOUBLEV committed
41
    parser.add_argument("--precision", type=str, default="fp32")
42
    parser.add_argument("--gpu_mem", type=int, default=500)
LDOUBLEV's avatar
LDOUBLEV committed
43

WenmuZhou's avatar
WenmuZhou committed
44
    # params for text detector
LDOUBLEV's avatar
LDOUBLEV committed
45
46
47
    parser.add_argument("--image_dir", type=str)
    parser.add_argument("--det_algorithm", type=str, default='DB')
    parser.add_argument("--det_model_dir", type=str)
WenmuZhou's avatar
WenmuZhou committed
48
49
    parser.add_argument("--det_limit_side_len", type=float, default=960)
    parser.add_argument("--det_limit_type", type=str, default='max')
LDOUBLEV's avatar
LDOUBLEV committed
50

WenmuZhou's avatar
WenmuZhou committed
51
    # DB parmas
LDOUBLEV's avatar
LDOUBLEV committed
52
53
    parser.add_argument("--det_db_thresh", type=float, default=0.3)
    parser.add_argument("--det_db_box_thresh", type=float, default=0.5)
WenmuZhou's avatar
WenmuZhou committed
54
    parser.add_argument("--det_db_unclip_ratio", type=float, default=1.6)
LDOUBLEV's avatar
LDOUBLEV committed
55
    parser.add_argument("--max_batch_size", type=int, default=10)
LDOUBLEV's avatar
LDOUBLEV committed
56
    parser.add_argument("--use_dilation", type=bool, default=False)
littletomatodonkey's avatar
littletomatodonkey committed
57
    parser.add_argument("--det_db_score_mode", type=str, default="fast")
WenmuZhou's avatar
WenmuZhou committed
58
    # EAST parmas
LDOUBLEV's avatar
LDOUBLEV committed
59
60
61
62
    parser.add_argument("--det_east_score_thresh", type=float, default=0.8)
    parser.add_argument("--det_east_cover_thresh", type=float, default=0.1)
    parser.add_argument("--det_east_nms_thresh", type=float, default=0.2)

WenmuZhou's avatar
WenmuZhou committed
63
    # SAST parmas
licx's avatar
licx committed
64
65
    parser.add_argument("--det_sast_score_thresh", type=float, default=0.5)
    parser.add_argument("--det_sast_nms_thresh", type=float, default=0.2)
66
    parser.add_argument("--det_sast_polygon", type=bool, default=False)
licx's avatar
licx committed
67

WenmuZhou's avatar
WenmuZhou committed
68
    # params for text recognizer
LDOUBLEV's avatar
LDOUBLEV committed
69
70
    parser.add_argument("--rec_algorithm", type=str, default='CRNN')
    parser.add_argument("--rec_model_dir", type=str)
tink2123's avatar
fix bug  
tink2123 committed
71
72
    parser.add_argument("--rec_image_shape", type=str, default="3, 32, 320")
    parser.add_argument("--rec_char_type", type=str, default='ch')
73
    parser.add_argument("--rec_batch_num", type=int, default=6)
tink2123's avatar
fix bug  
tink2123 committed
74
    parser.add_argument("--max_text_length", type=int, default=25)
LDOUBLEV's avatar
LDOUBLEV committed
75
76
77
78
    parser.add_argument(
        "--rec_char_dict_path",
        type=str,
        default="./ppocr/utils/ppocr_keys_v1.txt")
WenmuZhou's avatar
WenmuZhou committed
79
80
    parser.add_argument("--use_space_char", type=str2bool, default=True)
    parser.add_argument(
tink2123's avatar
tink2123 committed
81
        "--vis_font_path", type=str, default="./doc/fonts/simfang.ttf")
WenmuZhou's avatar
WenmuZhou committed
82
    parser.add_argument("--drop_score", type=float, default=0.5)
WenmuZhou's avatar
WenmuZhou committed
83

Jethong's avatar
Jethong committed
84
85
86
87
88
89
90
91
92
    # params for e2e
    parser.add_argument("--e2e_algorithm", type=str, default='PGNet')
    parser.add_argument("--e2e_model_dir", type=str)
    parser.add_argument("--e2e_limit_side_len", type=float, default=768)
    parser.add_argument("--e2e_limit_type", type=str, default='max')

    # PGNet parmas
    parser.add_argument("--e2e_pgnet_score_thresh", type=float, default=0.5)
    parser.add_argument(
Jethong's avatar
Jethong committed
93
        "--e2e_char_dict_path", type=str, default="./ppocr/utils/ic15_dict.txt")
Jethong's avatar
Jethong committed
94
    parser.add_argument("--e2e_pgnet_valid_set", type=str, default='totaltext')
Jethong's avatar
Jethong committed
95
    parser.add_argument("--e2e_pgnet_polygon", type=bool, default=True)
Jethong's avatar
Jethong committed
96
    parser.add_argument("--e2e_pgnet_mode", type=str, default='fast')
Jethong's avatar
Jethong committed
97

WenmuZhou's avatar
WenmuZhou committed
98
99
100
101
102
    # params for text classifier
    parser.add_argument("--use_angle_cls", type=str2bool, default=False)
    parser.add_argument("--cls_model_dir", type=str)
    parser.add_argument("--cls_image_shape", type=str, default="3, 48, 192")
    parser.add_argument("--label_list", type=list, default=['0', '180'])
103
    parser.add_argument("--cls_batch_num", type=int, default=6)
WenmuZhou's avatar
WenmuZhou committed
104
105
106
    parser.add_argument("--cls_thresh", type=float, default=0.9)

    parser.add_argument("--enable_mkldnn", type=str2bool, default=False)
LDOUBLEV's avatar
LDOUBLEV committed
107
    parser.add_argument("--cpu_threads", type=int, default=10)
WenmuZhou's avatar
WenmuZhou committed
108
109
    parser.add_argument("--use_pdserving", type=str2bool, default=False)

littletomatodonkey's avatar
littletomatodonkey committed
110
    parser.add_argument("--use_mp", type=str2bool, default=False)
111
112
    parser.add_argument("--total_process_num", type=int, default=1)
    parser.add_argument("--process_id", type=int, default=0)
113

LDOUBLEV's avatar
LDOUBLEV committed
114
115
    parser.add_argument("--benchmark", type=bool, default=False)
    parser.add_argument("--save_log_path", type=str, default="./log_output/")
Double_V's avatar
Double_V committed
116

WenmuZhou's avatar
WenmuZhou committed
117
    parser.add_argument("--show_log", type=str2bool, default=True)
Double_V's avatar
Double_V committed
118

WenmuZhou's avatar
WenmuZhou committed
119
    return parser
WenmuZhou's avatar
WenmuZhou committed
120

121

122
def parse_args():
WenmuZhou's avatar
WenmuZhou committed
123
    parser = init_args()
LDOUBLEV's avatar
LDOUBLEV committed
124
125
126
    return parser.parse_args()


LDOUBLEV's avatar
LDOUBLEV committed
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
class Times(object):
    def __init__(self):
        self.time = 0.
        self.st = 0.
        self.et = 0.

    def start(self):
        self.st = time.time()

    def end(self, accumulative=True):
        self.et = time.time()
        if accumulative:
            self.time += self.et - self.st
        else:
            self.time = self.et - self.st

    def reset(self):
        self.time = 0.
        self.st = 0.
        self.et = 0.

    def value(self):
        return round(self.time, 4)


class Timer(Times):
    def __init__(self):
        super(Timer, self).__init__()
        self.total_time = Times()
        self.preprocess_time = Times()
        self.inference_time = Times()
        self.postprocess_time = Times()
        self.img_num = 0

    def info(self, average=False):
        logger.info("----------------------- Perf info -----------------------")
        logger.info("total_time: {}, img_num: {}".format(self.total_time.value(
        ), self.img_num))
        preprocess_time = round(self.preprocess_time.value() / self.img_num,
                                4) if average else self.preprocess_time.value()
        postprocess_time = round(
            self.postprocess_time.value() / self.img_num,
            4) if average else self.postprocess_time.value()
        inference_time = round(self.inference_time.value() / self.img_num,
                               4) if average else self.inference_time.value()

        average_latency = self.total_time.value() / self.img_num
        logger.info("average_latency(ms): {:.2f}, QPS: {:2f}".format(
            average_latency * 1000, 1 / average_latency))
        logger.info(
            "preprocess_latency(ms): {:.2f}, inference_latency(ms): {:.2f}, postprocess_latency(ms): {:.2f}".
            format(preprocess_time * 1000, inference_time * 1000,
                   postprocess_time * 1000))

    def report(self, average=False):
        dic = {}
        dic['preprocess_time'] = round(
            self.preprocess_time.value() / self.img_num,
            4) if average else self.preprocess_time.value()
        dic['postprocess_time'] = round(
            self.postprocess_time.value() / self.img_num,
            4) if average else self.postprocess_time.value()
        dic['inference_time'] = round(
            self.inference_time.value() / self.img_num,
            4) if average else self.inference_time.value()
        dic['img_num'] = self.img_num
        dic['total_time'] = round(self.total_time.value(), 4)
        return dic


WenmuZhou's avatar
WenmuZhou committed
197
198
199
200
201
def create_predictor(args, mode, logger):
    if mode == "det":
        model_dir = args.det_model_dir
    elif mode == 'cls':
        model_dir = args.cls_model_dir
Jethong's avatar
Jethong committed
202
    elif mode == 'rec':
WenmuZhou's avatar
WenmuZhou committed
203
        model_dir = args.rec_model_dir
WenmuZhou's avatar
WenmuZhou committed
204
205
    elif mode == 'structure':
        model_dir = args.structure_model_dir
Jethong's avatar
Jethong committed
206
207
    else:
        model_dir = args.e2e_model_dir
WenmuZhou's avatar
WenmuZhou committed
208
209
210
211

    if model_dir is None:
        logger.info("not find {} model file path {}".format(mode, model_dir))
        sys.exit(0)
WenmuZhou's avatar
WenmuZhou committed
212
213
    model_file_path = model_dir + "/inference.pdmodel"
    params_file_path = model_dir + "/inference.pdiparams"
WenmuZhou's avatar
WenmuZhou committed
214
215
216
217
218
219
220
    if not os.path.exists(model_file_path):
        logger.info("not find model file path {}".format(model_file_path))
        sys.exit(0)
    if not os.path.exists(params_file_path):
        logger.info("not find params file path {}".format(params_file_path))
        sys.exit(0)

WenmuZhou's avatar
WenmuZhou committed
221
    config = inference.Config(model_file_path, params_file_path)
WenmuZhou's avatar
WenmuZhou committed
222

LDOUBLEV's avatar
LDOUBLEV committed
223
224
225
226
227
228
229
230
231
232
    if hasattr(args, 'precision'):
        if args.precision == "fp16" and args.use_tensorrt:
            precision = inference.PrecisionType.Half
        elif args.precision == "int8":
            precision = inference.PrecisionType.Int8
        else:
            precision = inference.PrecisionType.Float32
    else:
        precision = inference.PrecisionType.Float32

WenmuZhou's avatar
WenmuZhou committed
233
234
    if args.use_gpu:
        config.enable_use_gpu(args.gpu_mem, 0)
LDOUBLEV's avatar
LDOUBLEV committed
235
236
        if args.use_tensorrt:
            config.enable_tensorrt_engine(
LDOUBLEV's avatar
LDOUBLEV committed
237
238
                precision_mode=inference.PrecisionType.Float32,
                max_batch_size=args.max_batch_size,
LDOUBLEV's avatar
LDOUBLEV committed
239
240
                min_subgraph_size=args.
                min_subgraph_size)  # skip the minmum trt subgraph
LDOUBLEV's avatar
LDOUBLEV committed
241
        if mode == "det":
LDOUBLEV's avatar
LDOUBLEV committed
242
243
244
245
            min_input_shape = {
                "x": [1, 3, 50, 50],
                "conv2d_92.tmp_0": [1, 96, 20, 20],
                "conv2d_91.tmp_0": [1, 96, 10, 10],
LDOUBLEV's avatar
LDOUBLEV committed
246
                "conv2d_59.tmp_0": [1, 96, 20, 20],
LDOUBLEV's avatar
LDOUBLEV committed
247
248
249
250
251
252
253
254
255
256
257
258
                "nearest_interp_v2_1.tmp_0": [1, 96, 10, 10],
                "nearest_interp_v2_2.tmp_0": [1, 96, 20, 20],
                "nearest_interp_v2_3.tmp_0": [1, 24, 20, 20],
                "nearest_interp_v2_4.tmp_0": [1, 24, 20, 20],
                "nearest_interp_v2_5.tmp_0": [1, 24, 20, 20],
                "elementwise_add_7": [1, 56, 2, 2],
                "nearest_interp_v2_0.tmp_0": [1, 96, 2, 2]
            }
            max_input_shape = {
                "x": [1, 3, 2000, 2000],
                "conv2d_92.tmp_0": [1, 96, 400, 400],
                "conv2d_91.tmp_0": [1, 96, 200, 200],
LDOUBLEV's avatar
LDOUBLEV committed
259
                "conv2d_59.tmp_0": [1, 96, 400, 400],
LDOUBLEV's avatar
LDOUBLEV committed
260
261
262
263
264
265
266
267
268
269
270
271
                "nearest_interp_v2_1.tmp_0": [1, 96, 200, 200],
                "nearest_interp_v2_2.tmp_0": [1, 96, 400, 400],
                "nearest_interp_v2_3.tmp_0": [1, 24, 400, 400],
                "nearest_interp_v2_4.tmp_0": [1, 24, 400, 400],
                "nearest_interp_v2_5.tmp_0": [1, 24, 400, 400],
                "elementwise_add_7": [1, 56, 400, 400],
                "nearest_interp_v2_0.tmp_0": [1, 96, 400, 400]
            }
            opt_input_shape = {
                "x": [1, 3, 640, 640],
                "conv2d_92.tmp_0": [1, 96, 160, 160],
                "conv2d_91.tmp_0": [1, 96, 80, 80],
LDOUBLEV's avatar
LDOUBLEV committed
272
                "conv2d_59.tmp_0": [1, 96, 160, 160],
LDOUBLEV's avatar
LDOUBLEV committed
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
                "nearest_interp_v2_1.tmp_0": [1, 96, 80, 80],
                "nearest_interp_v2_2.tmp_0": [1, 96, 160, 160],
                "nearest_interp_v2_3.tmp_0": [1, 24, 160, 160],
                "nearest_interp_v2_4.tmp_0": [1, 24, 160, 160],
                "nearest_interp_v2_5.tmp_0": [1, 24, 160, 160],
                "elementwise_add_7": [1, 56, 40, 40],
                "nearest_interp_v2_0.tmp_0": [1, 96, 40, 40]
            }
        elif mode == "rec":
            min_input_shape = {"x": [args.rec_batch_num, 3, 32, 10]}
            max_input_shape = {"x": [args.rec_batch_num, 3, 32, 2000]}
            opt_input_shape = {"x": [args.rec_batch_num, 3, 32, 320]}
        elif mode == "cls":
            min_input_shape = {"x": [args.rec_batch_num, 3, 48, 10]}
            max_input_shape = {"x": [args.rec_batch_num, 3, 48, 2000]}
            opt_input_shape = {"x": [args.rec_batch_num, 3, 48, 320]}
LDOUBLEV's avatar
LDOUBLEV committed
289
290
291
292
        else:
            min_input_shape = {"x": [1, 3, 10, 10]}
            max_input_shape = {"x": [1, 3, 1000, 1000]}
            opt_input_shape = {"x": [1, 3, 500, 500]}
LDOUBLEV's avatar
LDOUBLEV committed
293
294
295
        config.set_trt_dynamic_shape_info(min_input_shape, max_input_shape,
                                          opt_input_shape)

WenmuZhou's avatar
WenmuZhou committed
296
297
    else:
        config.disable_gpu()
LDOUBLEV's avatar
LDOUBLEV committed
298
299
300
        if hasattr(args, "cpu_threads"):
            config.set_cpu_math_library_num_threads(args.cpu_threads)
        else:
WenmuZhou's avatar
WenmuZhou committed
301
            # default cpu threads as 10
LDOUBLEV's avatar
LDOUBLEV committed
302
            config.set_cpu_math_library_num_threads(10)
WenmuZhou's avatar
WenmuZhou committed
303
304
305
306
307
        if args.enable_mkldnn:
            # cache 10 different shapes for mkldnn to avoid memory leak
            config.set_mkldnn_cache_capacity(10)
            config.enable_mkldnn()

LDOUBLEV's avatar
LDOUBLEV committed
308
309
    # enable memory optim
    config.enable_memory_optim()
WenmuZhou's avatar
WenmuZhou committed
310
311
    config.disable_glog_info()

WenmuZhou's avatar
WenmuZhou committed
312
313
    config.delete_pass("conv_transpose_eltwiseadd_bn_fuse_pass")
    config.switch_use_feed_fetch_ops(False)
WenmuZhou's avatar
WenmuZhou committed
314
315
    config.switch_ir_optim(True)
    if mode == 'structure':
WenmuZhou's avatar
WenmuZhou committed
316
        config.switch_ir_optim(False)
WenmuZhou's avatar
WenmuZhou committed
317
318
    # create predictor
    predictor = inference.create_predictor(config)
WenmuZhou's avatar
WenmuZhou committed
319
320
    input_names = predictor.get_input_names()
    for name in input_names:
WenmuZhou's avatar
WenmuZhou committed
321
        input_tensor = predictor.get_input_handle(name)
WenmuZhou's avatar
WenmuZhou committed
322
323
324
    output_names = predictor.get_output_names()
    output_tensors = []
    for output_name in output_names:
WenmuZhou's avatar
WenmuZhou committed
325
        output_tensor = predictor.get_output_handle(output_name)
WenmuZhou's avatar
WenmuZhou committed
326
        output_tensors.append(output_tensor)
LDOUBLEV's avatar
LDOUBLEV committed
327
    return predictor, input_tensor, output_tensors, config
WenmuZhou's avatar
WenmuZhou committed
328
329


Jethong's avatar
Jethong committed
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
def draw_e2e_res(dt_boxes, strs, img_path):
    src_im = cv2.imread(img_path)
    for box, str in zip(dt_boxes, strs):
        box = box.astype(np.int32).reshape((-1, 1, 2))
        cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
        cv2.putText(
            src_im,
            str,
            org=(int(box[0, 0, 0]), int(box[0, 0, 1])),
            fontFace=cv2.FONT_HERSHEY_COMPLEX,
            fontScale=0.7,
            color=(0, 255, 0),
            thickness=1)
    return src_im


LDOUBLEV's avatar
LDOUBLEV committed
346
def draw_text_det_res(dt_boxes, img_path):
LDOUBLEV's avatar
LDOUBLEV committed
347
348
349
350
    src_im = cv2.imread(img_path)
    for box in dt_boxes:
        box = np.array(box).astype(np.int32).reshape(-1, 2)
        cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
LDOUBLEV's avatar
LDOUBLEV committed
351
    return src_im
LDOUBLEV's avatar
LDOUBLEV committed
352
353


LDOUBLEV's avatar
LDOUBLEV committed
354
355
def resize_img(img, input_size=600):
    """
LDOUBLEV's avatar
LDOUBLEV committed
356
    resize img and limit the longest side of the image to input_size
LDOUBLEV's avatar
LDOUBLEV committed
357
358
359
360
361
    """
    img = np.array(img)
    im_shape = img.shape
    im_size_max = np.max(im_shape[0:2])
    im_scale = float(input_size) / float(im_size_max)
WenmuZhou's avatar
WenmuZhou committed
362
363
    img = cv2.resize(img, None, None, fx=im_scale, fy=im_scale)
    return img
LDOUBLEV's avatar
LDOUBLEV committed
364
365


WenmuZhou's avatar
WenmuZhou committed
366
367
368
369
370
def draw_ocr(image,
             boxes,
             txts=None,
             scores=None,
             drop_score=0.5,
LDOUBLEV's avatar
LDOUBLEV committed
371
             font_path="./doc/fonts/simfang.ttf"):
372
373
374
    """
    Visualize the results of OCR detection and recognition
    args:
LDOUBLEV's avatar
LDOUBLEV committed
375
        image(Image|array): RGB image
376
377
378
379
        boxes(list): boxes with shape(N, 4, 2)
        txts(list): the texts
        scores(list): txxs corresponding scores
        drop_score(float): only scores greater than drop_threshold will be visualized
WenmuZhou's avatar
WenmuZhou committed
380
        font_path: the path of font which is used to draw text
381
382
383
    return(array):
        the visualized img
    """
LDOUBLEV's avatar
LDOUBLEV committed
384
385
    if scores is None:
        scores = [1] * len(boxes)
WenmuZhou's avatar
WenmuZhou committed
386
387
388
389
    box_num = len(boxes)
    for i in range(box_num):
        if scores is not None and (scores[i] < drop_score or
                                   math.isnan(scores[i])):
LDOUBLEV's avatar
LDOUBLEV committed
390
            continue
WenmuZhou's avatar
WenmuZhou committed
391
        box = np.reshape(np.array(boxes[i]), [-1, 1, 2]).astype(np.int64)
LDOUBLEV's avatar
LDOUBLEV committed
392
        image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2)
WenmuZhou's avatar
WenmuZhou committed
393
    if txts is not None:
LDOUBLEV's avatar
LDOUBLEV committed
394
        img = np.array(resize_img(image, input_size=600))
395
        txt_img = text_visual(
WenmuZhou's avatar
WenmuZhou committed
396
397
398
399
400
401
            txts,
            scores,
            img_h=img.shape[0],
            img_w=600,
            threshold=drop_score,
            font_path=font_path)
402
        img = np.concatenate([np.array(img), np.array(txt_img)], axis=1)
LDOUBLEV's avatar
LDOUBLEV committed
403
404
        return img
    return image
405
406


WenmuZhou's avatar
WenmuZhou committed
407
408
409
410
411
412
def draw_ocr_box_txt(image,
                     boxes,
                     txts,
                     scores=None,
                     drop_score=0.5,
                     font_path="./doc/simfang.ttf"):
413
414
415
    h, w = image.height, image.width
    img_left = image.copy()
    img_right = Image.new('RGB', (w, h), (255, 255, 255))
416
417

    import random
LDOUBLEV's avatar
LDOUBLEV committed
418

419
420
421
    random.seed(0)
    draw_left = ImageDraw.Draw(img_left)
    draw_right = ImageDraw.Draw(img_right)
WenmuZhou's avatar
WenmuZhou committed
422
423
424
    for idx, (box, txt) in enumerate(zip(boxes, txts)):
        if scores is not None and scores[idx] < drop_score:
            continue
tink2123's avatar
tink2123 committed
425
426
        color = (random.randint(0, 255), random.randint(0, 255),
                 random.randint(0, 255))
427
        draw_left.polygon(box, fill=color)
tink2123's avatar
tink2123 committed
428
429
430
431
432
433
434
435
436
437
        draw_right.polygon(
            [
                box[0][0], box[0][1], box[1][0], box[1][1], box[2][0],
                box[2][1], box[3][0], box[3][1]
            ],
            outline=color)
        box_height = math.sqrt((box[0][0] - box[3][0])**2 + (box[0][1] - box[3][
            1])**2)
        box_width = math.sqrt((box[0][0] - box[1][0])**2 + (box[0][1] - box[1][
            1])**2)
438
439
        if box_height > 2 * box_width:
            font_size = max(int(box_width * 0.9), 10)
WenmuZhou's avatar
WenmuZhou committed
440
            font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
441
442
443
            cur_y = box[0][1]
            for c in txt:
                char_size = font.getsize(c)
tink2123's avatar
tink2123 committed
444
445
                draw_right.text(
                    (box[0][0] + 3, cur_y), c, fill=(0, 0, 0), font=font)
446
447
448
                cur_y += char_size[1]
        else:
            font_size = max(int(box_height * 0.8), 10)
WenmuZhou's avatar
WenmuZhou committed
449
            font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
tink2123's avatar
tink2123 committed
450
451
            draw_right.text(
                [box[0][0], box[0][1]], txt, fill=(0, 0, 0), font=font)
452
453
454
455
    img_left = Image.blend(image, img_left, 0.5)
    img_show = Image.new('RGB', (w * 2, h), (255, 255, 255))
    img_show.paste(img_left, (0, 0, w, h))
    img_show.paste(img_right, (w, 0, w * 2, h))
456
457
458
    return np.array(img_show)


459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
def str_count(s):
    """
    Count the number of Chinese characters,
    a single English character and a single number
    equal to half the length of Chinese characters.
    args:
        s(string): the input of string
    return(int):
        the number of Chinese characters
    """
    import string
    count_zh = count_pu = 0
    s_len = len(s)
    en_dg_count = 0
    for c in s:
        if c in string.ascii_letters or c.isdigit() or c.isspace():
            en_dg_count += 1
        elif c.isalpha():
            count_zh += 1
        else:
            count_pu += 1
    return s_len - math.ceil(en_dg_count / 2)


WenmuZhou's avatar
WenmuZhou committed
483
484
485
486
487
488
def text_visual(texts,
                scores,
                img_h=400,
                img_w=600,
                threshold=0.,
                font_path="./doc/simfang.ttf"):
489
490
491
492
493
494
495
    """
    create new blank img and draw txt on it
    args:
        texts(list): the text will be draw
        scores(list|None): corresponding score of each txt
        img_h(int): the height of blank img
        img_w(int): the width of blank img
WenmuZhou's avatar
WenmuZhou committed
496
        font_path: the path of font which is used to draw text
497
498
499
500
501
502
503
504
505
    return(array):
    """
    if scores is not None:
        assert len(texts) == len(
            scores), "The number of txts and corresponding scores must match"

    def create_blank_img():
        blank_img = np.ones(shape=[img_h, img_w], dtype=np.int8) * 255
        blank_img[:, img_w - 1:] = 0
LDOUBLEV's avatar
LDOUBLEV committed
506
507
        blank_img = Image.fromarray(blank_img).convert("RGB")
        draw_txt = ImageDraw.Draw(blank_img)
508
        return blank_img, draw_txt
LDOUBLEV's avatar
LDOUBLEV committed
509

510
511
512
513
    blank_img, draw_txt = create_blank_img()

    font_size = 20
    txt_color = (0, 0, 0)
WenmuZhou's avatar
WenmuZhou committed
514
    font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
515
516
517

    gap = font_size + 5
    txt_img_list = []
LDOUBLEV's avatar
LDOUBLEV committed
518
    count, index = 1, 0
519
520
    for idx, txt in enumerate(texts):
        index += 1
LDOUBLEV's avatar
LDOUBLEV committed
521
        if scores[idx] < threshold or math.isnan(scores[idx]):
522
523
524
525
526
527
528
529
530
531
532
            index -= 1
            continue
        first_line = True
        while str_count(txt) >= img_w // font_size - 4:
            tmp = txt
            txt = tmp[:img_w // font_size - 4]
            if first_line:
                new_txt = str(index) + ': ' + txt
                first_line = False
            else:
                new_txt = '    ' + txt
LDOUBLEV's avatar
LDOUBLEV committed
533
            draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
534
535
536
537
538
            txt = tmp[img_w // font_size - 4:]
            if count >= img_h // gap - 1:
                txt_img_list.append(np.array(blank_img))
                blank_img, draw_txt = create_blank_img()
                count = 0
LDOUBLEV's avatar
LDOUBLEV committed
539
            count += 1
540
541
542
        if first_line:
            new_txt = str(index) + ': ' + txt + '   ' + '%.3f' % (scores[idx])
        else:
LDOUBLEV's avatar
LDOUBLEV committed
543
            new_txt = "  " + txt + "  " + '%.3f' % (scores[idx])
LDOUBLEV's avatar
LDOUBLEV committed
544
        draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
545
        # whether add new blank img or not
LDOUBLEV's avatar
LDOUBLEV committed
546
        if count >= img_h // gap - 1 and idx + 1 < len(texts):
547
548
549
            txt_img_list.append(np.array(blank_img))
            blank_img, draw_txt = create_blank_img()
            count = 0
LDOUBLEV's avatar
LDOUBLEV committed
550
        count += 1
551
552
553
554
555
556
    txt_img_list.append(np.array(blank_img))
    if len(txt_img_list) == 1:
        blank_img = np.array(txt_img_list[0])
    else:
        blank_img = np.concatenate(txt_img_list, axis=1)
    return np.array(blank_img)
LDOUBLEV's avatar
LDOUBLEV committed
557
558


dyning's avatar
dyning committed
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
def base64_to_cv2(b64str):
    import base64
    data = base64.b64decode(b64str.encode('utf8'))
    data = np.fromstring(data, np.uint8)
    data = cv2.imdecode(data, cv2.IMREAD_COLOR)
    return data


def draw_boxes(image, boxes, scores=None, drop_score=0.5):
    if scores is None:
        scores = [1] * len(boxes)
    for (box, score) in zip(boxes, scores):
        if score < drop_score:
            continue
        box = np.reshape(np.array(box), [-1, 1, 2]).astype(np.int64)
        image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2)
    return image


LDOUBLEV's avatar
LDOUBLEV committed
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
def get_current_memory_mb(gpu_id=None):
    """
    It is used to Obtain the memory usage of the CPU and GPU during the running of the program.
    And this function Current program is time-consuming.
    """
    import pynvml
    import psutil
    import GPUtil
    pid = os.getpid()
    p = psutil.Process(pid)
    info = p.memory_full_info()
    cpu_mem = info.uss / 1024. / 1024.
    gpu_mem = 0
    gpu_percent = 0
    if gpu_id is not None:
        GPUs = GPUtil.getGPUs()
        gpu_load = GPUs[gpu_id].load
        gpu_percent = gpu_load
        pynvml.nvmlInit()
        handle = pynvml.nvmlDeviceGetHandleByIndex(0)
        meminfo = pynvml.nvmlDeviceGetMemoryInfo(handle)
        gpu_mem = meminfo.used / 1024. / 1024.
    return round(cpu_mem, 4), round(gpu_mem, 4), round(gpu_percent, 4)


LDOUBLEV's avatar
LDOUBLEV committed
603
if __name__ == '__main__':
LDOUBLEV's avatar
LDOUBLEV committed
604
    pass