utility.py 11.3 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import os, sys
from ppocr.utils.utility import initial_logger
logger = initial_logger()
from paddle.fluid.core import PaddleTensor
from paddle.fluid.core import AnalysisConfig
from paddle.fluid.core import create_paddle_predictor
import cv2
import numpy as np
LDOUBLEV's avatar
LDOUBLEV committed
24
25
import json
from PIL import Image, ImageDraw, ImageFont
26
import math
LDOUBLEV's avatar
LDOUBLEV committed
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48


def parse_args():
    def str2bool(v):
        return v.lower() in ("true", "t", "1")

    parser = argparse.ArgumentParser()
    #params for prediction engine
    parser.add_argument("--use_gpu", type=str2bool, default=True)
    parser.add_argument("--ir_optim", type=str2bool, default=True)
    parser.add_argument("--use_tensorrt", type=str2bool, default=False)
    parser.add_argument("--gpu_mem", type=int, default=8000)

    #params for text detector
    parser.add_argument("--image_dir", type=str)
    parser.add_argument("--det_algorithm", type=str, default='DB')
    parser.add_argument("--det_model_dir", type=str)
    parser.add_argument("--det_max_side_len", type=float, default=960)

    #DB parmas
    parser.add_argument("--det_db_thresh", type=float, default=0.3)
    parser.add_argument("--det_db_box_thresh", type=float, default=0.5)
49
    parser.add_argument("--det_db_unclip_ratio", type=float, default=2.0)
LDOUBLEV's avatar
LDOUBLEV committed
50
51
52
53
54
55
56
57
58
59
60

    #EAST parmas
    parser.add_argument("--det_east_score_thresh", type=float, default=0.8)
    parser.add_argument("--det_east_cover_thresh", type=float, default=0.1)
    parser.add_argument("--det_east_nms_thresh", type=float, default=0.2)

    #params for text recognizer
    parser.add_argument("--rec_algorithm", type=str, default='CRNN')
    parser.add_argument("--rec_model_dir", type=str)
    parser.add_argument("--rec_image_shape", type=str, default="3, 32, 320")
    parser.add_argument("--rec_char_type", type=str, default='ch')
61
    parser.add_argument("--rec_batch_num", type=int, default=30)
LDOUBLEV's avatar
LDOUBLEV committed
62
63
64
65
    parser.add_argument(
        "--rec_char_dict_path",
        type=str,
        default="./ppocr/utils/ppocr_keys_v1.txt")
tink2123's avatar
tink2123 committed
66
    parser.add_argument("--use_space_char", type=bool, default=True)
LDOUBLEV's avatar
LDOUBLEV committed
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
    return parser.parse_args()


def create_predictor(args, mode):
    if mode == "det":
        model_dir = args.det_model_dir
    else:
        model_dir = args.rec_model_dir

    if model_dir is None:
        logger.info("not find {} model file path {}".format(mode, model_dir))
        sys.exit(0)
    model_file_path = model_dir + "/model"
    params_file_path = model_dir + "/params"
    if not os.path.exists(model_file_path):
        logger.info("not find model file path {}".format(model_file_path))
        sys.exit(0)
    if not os.path.exists(params_file_path):
        logger.info("not find params file path {}".format(params_file_path))
        sys.exit(0)

    config = AnalysisConfig(model_file_path, params_file_path)

    if args.use_gpu:
        config.enable_use_gpu(args.gpu_mem, 0)
    else:
        config.disable_gpu()

tink2123's avatar
tink2123 committed
95
    #config.enable_memory_optim()
LDOUBLEV's avatar
LDOUBLEV committed
96
    config.disable_glog_info()
LDOUBLEV's avatar
LDOUBLEV committed
97

LDOUBLEV's avatar
LDOUBLEV committed
98
    # use zero copy
99
    config.delete_pass("conv_transpose_eltwiseadd_bn_fuse_pass")
LDOUBLEV's avatar
LDOUBLEV committed
100
101
102
103
104
105
106
107
108
109
110
111
    config.switch_use_feed_fetch_ops(False)
    predictor = create_paddle_predictor(config)
    input_names = predictor.get_input_names()
    input_tensor = predictor.get_input_tensor(input_names[0])
    output_names = predictor.get_output_names()
    output_tensors = []
    for output_name in output_names:
        output_tensor = predictor.get_output_tensor(output_name)
        output_tensors.append(output_tensor)
    return predictor, input_tensor, output_tensors


LDOUBLEV's avatar
LDOUBLEV committed
112
def draw_text_det_res(dt_boxes, img_path):
LDOUBLEV's avatar
LDOUBLEV committed
113
114
115
116
    src_im = cv2.imread(img_path)
    for box in dt_boxes:
        box = np.array(box).astype(np.int32).reshape(-1, 2)
        cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
LDOUBLEV's avatar
LDOUBLEV committed
117
    return src_im
LDOUBLEV's avatar
LDOUBLEV committed
118
119


LDOUBLEV's avatar
LDOUBLEV committed
120
121
def resize_img(img, input_size=600):
    """
LDOUBLEV's avatar
LDOUBLEV committed
122
    resize img and limit the longest side of the image to input_size
LDOUBLEV's avatar
LDOUBLEV committed
123
124
125
126
127
128
129
130
131
132
    """
    img = np.array(img)
    im_shape = img.shape
    im_size_max = np.max(im_shape[0:2])
    im_scale = float(input_size) / float(im_size_max)
    im = cv2.resize(img, None, None, fx=im_scale, fy=im_scale)
    return im


def draw_ocr(image, boxes, txts, scores, draw_txt=True, drop_score=0.5):
133
134
135
    """
    Visualize the results of OCR detection and recognition
    args:
LDOUBLEV's avatar
LDOUBLEV committed
136
        image(Image|array): RGB image
137
138
139
140
141
142
143
144
        boxes(list): boxes with shape(N, 4, 2)
        txts(list): the texts
        scores(list): txxs corresponding scores
        draw_txt(bool): whether draw text or not
        drop_score(float): only scores greater than drop_threshold will be visualized
    return(array):
        the visualized img
    """
LDOUBLEV's avatar
LDOUBLEV committed
145
146
    if scores is None:
        scores = [1] * len(boxes)
LDOUBLEV's avatar
LDOUBLEV committed
147
    for (box, score) in zip(boxes, scores):
LDOUBLEV's avatar
LDOUBLEV committed
148
        if score < drop_score or math.isnan(score):
LDOUBLEV's avatar
LDOUBLEV committed
149
            continue
LDOUBLEV's avatar
LDOUBLEV committed
150
        box = np.reshape(np.array(box), [-1, 1, 2]).astype(np.int64)
LDOUBLEV's avatar
LDOUBLEV committed
151
        image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2)
LDOUBLEV's avatar
LDOUBLEV committed
152
153

    if draw_txt:
LDOUBLEV's avatar
LDOUBLEV committed
154
        img = np.array(resize_img(image, input_size=600))
155
156
157
        txt_img = text_visual(
            txts, scores, img_h=img.shape[0], img_w=600, threshold=drop_score)
        img = np.concatenate([np.array(img), np.array(txt_img)], axis=1)
LDOUBLEV's avatar
LDOUBLEV committed
158
159
        return img
    return image
160
161


162
163
164
165
def draw_ocr_box_txt(image, boxes, txts):
    h, w = image.height, image.width
    img_left = image.copy()
    img_right = Image.new('RGB', (w, h), (255, 255, 255))
166
167

    import random
168
169
170
171
    # 每次使用相同的随机种子 ,可以保证两次颜色一致
    random.seed(0)
    draw_left = ImageDraw.Draw(img_left)
    draw_right = ImageDraw.Draw(img_right)
172
    for (box, txt) in zip(boxes, txts):
tink2123's avatar
tink2123 committed
173
174
        color = (random.randint(0, 255), random.randint(0, 255),
                 random.randint(0, 255))
175
        draw_left.polygon(box, fill=color)
tink2123's avatar
tink2123 committed
176
177
178
179
180
181
182
183
184
185
        draw_right.polygon(
            [
                box[0][0], box[0][1], box[1][0], box[1][1], box[2][0],
                box[2][1], box[3][0], box[3][1]
            ],
            outline=color)
        box_height = math.sqrt((box[0][0] - box[3][0])**2 + (box[0][1] - box[3][
            1])**2)
        box_width = math.sqrt((box[0][0] - box[1][0])**2 + (box[0][1] - box[1][
            1])**2)
186
187
        if box_height > 2 * box_width:
            font_size = max(int(box_width * 0.9), 10)
tink2123's avatar
tink2123 committed
188
189
            font = ImageFont.truetype(
                "./doc/simfang.ttf", font_size, encoding="utf-8")
190
191
192
            cur_y = box[0][1]
            for c in txt:
                char_size = font.getsize(c)
tink2123's avatar
tink2123 committed
193
194
                draw_right.text(
                    (box[0][0] + 3, cur_y), c, fill=(0, 0, 0), font=font)
195
196
197
                cur_y += char_size[1]
        else:
            font_size = max(int(box_height * 0.8), 10)
tink2123's avatar
tink2123 committed
198
199
200
201
            font = ImageFont.truetype(
                "./doc/simfang.ttf", font_size, encoding="utf-8")
            draw_right.text(
                [box[0][0], box[0][1]], txt, fill=(0, 0, 0), font=font)
202
203
204
205
    img_left = Image.blend(image, img_left, 0.5)
    img_show = Image.new('RGB', (w * 2, h), (255, 255, 255))
    img_show.paste(img_left, (0, 0, w, h))
    img_show.paste(img_right, (w, 0, w * 2, h))
206
207
208
    return np.array(img_show)


209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
def str_count(s):
    """
    Count the number of Chinese characters,
    a single English character and a single number
    equal to half the length of Chinese characters.

    args:
        s(string): the input of string
    return(int):
        the number of Chinese characters
    """
    import string
    count_zh = count_pu = 0
    s_len = len(s)
    en_dg_count = 0
    for c in s:
        if c in string.ascii_letters or c.isdigit() or c.isspace():
            en_dg_count += 1
        elif c.isalpha():
            count_zh += 1
        else:
            count_pu += 1
    return s_len - math.ceil(en_dg_count / 2)


def text_visual(texts, scores, img_h=400, img_w=600, threshold=0.):
    """
    create new blank img and draw txt on it
    args:
        texts(list): the text will be draw
        scores(list|None): corresponding score of each txt
        img_h(int): the height of blank img
        img_w(int): the width of blank img
    return(array):

    """
    if scores is not None:
        assert len(texts) == len(
            scores), "The number of txts and corresponding scores must match"

    def create_blank_img():
        blank_img = np.ones(shape=[img_h, img_w], dtype=np.int8) * 255
        blank_img[:, img_w - 1:] = 0
LDOUBLEV's avatar
LDOUBLEV committed
252
253
        blank_img = Image.fromarray(blank_img).convert("RGB")
        draw_txt = ImageDraw.Draw(blank_img)
254
        return blank_img, draw_txt
LDOUBLEV's avatar
LDOUBLEV committed
255

256
257
258
259
    blank_img, draw_txt = create_blank_img()

    font_size = 20
    txt_color = (0, 0, 0)
260
    font = ImageFont.truetype("./doc/simfang.ttf", font_size, encoding="utf-8")
261
262
263

    gap = font_size + 5
    txt_img_list = []
LDOUBLEV's avatar
LDOUBLEV committed
264
    count, index = 1, 0
265
266
    for idx, txt in enumerate(texts):
        index += 1
LDOUBLEV's avatar
LDOUBLEV committed
267
        if scores[idx] < threshold or math.isnan(scores[idx]):
268
269
270
271
272
273
274
275
276
277
278
            index -= 1
            continue
        first_line = True
        while str_count(txt) >= img_w // font_size - 4:
            tmp = txt
            txt = tmp[:img_w // font_size - 4]
            if first_line:
                new_txt = str(index) + ': ' + txt
                first_line = False
            else:
                new_txt = '    ' + txt
LDOUBLEV's avatar
LDOUBLEV committed
279
            draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
280
281
282
283
284
            txt = tmp[img_w // font_size - 4:]
            if count >= img_h // gap - 1:
                txt_img_list.append(np.array(blank_img))
                blank_img, draw_txt = create_blank_img()
                count = 0
LDOUBLEV's avatar
LDOUBLEV committed
285
            count += 1
286
287
288
        if first_line:
            new_txt = str(index) + ': ' + txt + '   ' + '%.3f' % (scores[idx])
        else:
LDOUBLEV's avatar
LDOUBLEV committed
289
            new_txt = "  " + txt + "  " + '%.3f' % (scores[idx])
LDOUBLEV's avatar
LDOUBLEV committed
290
        draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
291
        # whether add new blank img or not
LDOUBLEV's avatar
LDOUBLEV committed
292
        if count >= img_h // gap - 1 and idx + 1 < len(texts):
293
294
295
            txt_img_list.append(np.array(blank_img))
            blank_img, draw_txt = create_blank_img()
            count = 0
LDOUBLEV's avatar
LDOUBLEV committed
296
        count += 1
297
298
299
300
301
302
    txt_img_list.append(np.array(blank_img))
    if len(txt_img_list) == 1:
        blank_img = np.array(txt_img_list[0])
    else:
        blank_img = np.concatenate(txt_img_list, axis=1)
    return np.array(blank_img)
LDOUBLEV's avatar
LDOUBLEV committed
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323


if __name__ == '__main__':
    test_img = "./doc/test_v2"
    predict_txt = "./doc/predict.txt"
    f = open(predict_txt, 'r')
    data = f.readlines()
    img_path, anno = data[0].strip().split('\t')
    img_name = os.path.basename(img_path)
    img_path = os.path.join(test_img, img_name)
    image = Image.open(img_path)

    data = json.loads(anno)
    boxes, txts, scores = [], [], []
    for dic in data:
        boxes.append(dic['points'])
        txts.append(dic['transcription'])
        scores.append(round(dic['scores'], 3))

    new_img = draw_ocr(image, boxes, txts, scores, draw_txt=True)

MissPenguin's avatar
MissPenguin committed
324
    cv2.imwrite(img_name, new_img)