utility.py 9.36 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import os, sys
from ppocr.utils.utility import initial_logger
logger = initial_logger()
from paddle.fluid.core import PaddleTensor
from paddle.fluid.core import AnalysisConfig
from paddle.fluid.core import create_paddle_predictor
import cv2
import numpy as np
LDOUBLEV's avatar
LDOUBLEV committed
24
25
import json
from PIL import Image, ImageDraw, ImageFont
26
import math
LDOUBLEV's avatar
LDOUBLEV committed
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48


def parse_args():
    def str2bool(v):
        return v.lower() in ("true", "t", "1")

    parser = argparse.ArgumentParser()
    #params for prediction engine
    parser.add_argument("--use_gpu", type=str2bool, default=True)
    parser.add_argument("--ir_optim", type=str2bool, default=True)
    parser.add_argument("--use_tensorrt", type=str2bool, default=False)
    parser.add_argument("--gpu_mem", type=int, default=8000)

    #params for text detector
    parser.add_argument("--image_dir", type=str)
    parser.add_argument("--det_algorithm", type=str, default='DB')
    parser.add_argument("--det_model_dir", type=str)
    parser.add_argument("--det_max_side_len", type=float, default=960)

    #DB parmas
    parser.add_argument("--det_db_thresh", type=float, default=0.3)
    parser.add_argument("--det_db_box_thresh", type=float, default=0.5)
49
    parser.add_argument("--det_db_unclip_ratio", type=float, default=2.0)
LDOUBLEV's avatar
LDOUBLEV committed
50
51
52
53
54
55
56
57
58
59
60

    #EAST parmas
    parser.add_argument("--det_east_score_thresh", type=float, default=0.8)
    parser.add_argument("--det_east_cover_thresh", type=float, default=0.1)
    parser.add_argument("--det_east_nms_thresh", type=float, default=0.2)

    #params for text recognizer
    parser.add_argument("--rec_algorithm", type=str, default='CRNN')
    parser.add_argument("--rec_model_dir", type=str)
    parser.add_argument("--rec_image_shape", type=str, default="3, 32, 320")
    parser.add_argument("--rec_char_type", type=str, default='ch')
61
    parser.add_argument("--rec_batch_num", type=int, default=30)
LDOUBLEV's avatar
LDOUBLEV committed
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
    parser.add_argument(
        "--rec_char_dict_path",
        type=str,
        default="./ppocr/utils/ppocr_keys_v1.txt")
    return parser.parse_args()


def create_predictor(args, mode):
    if mode == "det":
        model_dir = args.det_model_dir
    else:
        model_dir = args.rec_model_dir

    if model_dir is None:
        logger.info("not find {} model file path {}".format(mode, model_dir))
        sys.exit(0)
    model_file_path = model_dir + "/model"
    params_file_path = model_dir + "/params"
    if not os.path.exists(model_file_path):
        logger.info("not find model file path {}".format(model_file_path))
        sys.exit(0)
    if not os.path.exists(params_file_path):
        logger.info("not find params file path {}".format(params_file_path))
        sys.exit(0)

    config = AnalysisConfig(model_file_path, params_file_path)

    if args.use_gpu:
        config.enable_use_gpu(args.gpu_mem, 0)
    else:
        config.disable_gpu()

    config.disable_glog_info()
LDOUBLEV's avatar
LDOUBLEV committed
95

LDOUBLEV's avatar
LDOUBLEV committed
96
    # use zero copy
97
    config.delete_pass("conv_transpose_eltwiseadd_bn_fuse_pass")
LDOUBLEV's avatar
LDOUBLEV committed
98
99
100
101
102
103
104
105
106
107
108
109
    config.switch_use_feed_fetch_ops(False)
    predictor = create_paddle_predictor(config)
    input_names = predictor.get_input_names()
    input_tensor = predictor.get_input_tensor(input_names[0])
    output_names = predictor.get_output_names()
    output_tensors = []
    for output_name in output_names:
        output_tensor = predictor.get_output_tensor(output_name)
        output_tensors.append(output_tensor)
    return predictor, input_tensor, output_tensors


LDOUBLEV's avatar
LDOUBLEV committed
110
def draw_text_det_res(dt_boxes, img_path):
LDOUBLEV's avatar
LDOUBLEV committed
111
112
113
114
    src_im = cv2.imread(img_path)
    for box in dt_boxes:
        box = np.array(box).astype(np.int32).reshape(-1, 2)
        cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
LDOUBLEV's avatar
LDOUBLEV committed
115
    return src_im
LDOUBLEV's avatar
LDOUBLEV committed
116
117


LDOUBLEV's avatar
LDOUBLEV committed
118
119
def resize_img(img, input_size=600):
    """
LDOUBLEV's avatar
LDOUBLEV committed
120
    resize img and limit the longest side of the image to input_size
LDOUBLEV's avatar
LDOUBLEV committed
121
122
123
124
125
126
127
128
129
130
    """
    img = np.array(img)
    im_shape = img.shape
    im_size_max = np.max(im_shape[0:2])
    im_scale = float(input_size) / float(im_size_max)
    im = cv2.resize(img, None, None, fx=im_scale, fy=im_scale)
    return im


def draw_ocr(image, boxes, txts, scores, draw_txt=True, drop_score=0.5):
131
132
133
    """
    Visualize the results of OCR detection and recognition
    args:
LDOUBLEV's avatar
LDOUBLEV committed
134
        image(Image|array): RGB image
135
136
137
138
139
140
141
142
        boxes(list): boxes with shape(N, 4, 2)
        txts(list): the texts
        scores(list): txxs corresponding scores
        draw_txt(bool): whether draw text or not
        drop_score(float): only scores greater than drop_threshold will be visualized
    return(array):
        the visualized img
    """
LDOUBLEV's avatar
LDOUBLEV committed
143
144
    if scores is None:
        scores = [1] * len(boxes)
LDOUBLEV's avatar
LDOUBLEV committed
145
    for (box, score) in zip(boxes, scores):
LDOUBLEV's avatar
LDOUBLEV committed
146
        if score < drop_score or math.isnan(score):
LDOUBLEV's avatar
LDOUBLEV committed
147
            continue
LDOUBLEV's avatar
LDOUBLEV committed
148
        box = np.reshape(np.array(box), [-1, 1, 2]).astype(np.int64)
LDOUBLEV's avatar
LDOUBLEV committed
149
        image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2)
LDOUBLEV's avatar
LDOUBLEV committed
150
151

    if draw_txt:
LDOUBLEV's avatar
LDOUBLEV committed
152
        img = np.array(resize_img(image, input_size=600))
153
154
155
        txt_img = text_visual(
            txts, scores, img_h=img.shape[0], img_w=600, threshold=drop_score)
        img = np.concatenate([np.array(img), np.array(txt_img)], axis=1)
LDOUBLEV's avatar
LDOUBLEV committed
156
157
        return img
    return image
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202


def str_count(s):
    """
    Count the number of Chinese characters,
    a single English character and a single number
    equal to half the length of Chinese characters.

    args:
        s(string): the input of string
    return(int):
        the number of Chinese characters
    """
    import string
    count_zh = count_pu = 0
    s_len = len(s)
    en_dg_count = 0
    for c in s:
        if c in string.ascii_letters or c.isdigit() or c.isspace():
            en_dg_count += 1
        elif c.isalpha():
            count_zh += 1
        else:
            count_pu += 1
    return s_len - math.ceil(en_dg_count / 2)


def text_visual(texts, scores, img_h=400, img_w=600, threshold=0.):
    """
    create new blank img and draw txt on it
    args:
        texts(list): the text will be draw
        scores(list|None): corresponding score of each txt
        img_h(int): the height of blank img
        img_w(int): the width of blank img
    return(array):

    """
    if scores is not None:
        assert len(texts) == len(
            scores), "The number of txts and corresponding scores must match"

    def create_blank_img():
        blank_img = np.ones(shape=[img_h, img_w], dtype=np.int8) * 255
        blank_img[:, img_w - 1:] = 0
LDOUBLEV's avatar
LDOUBLEV committed
203
204
        blank_img = Image.fromarray(blank_img).convert("RGB")
        draw_txt = ImageDraw.Draw(blank_img)
205
        return blank_img, draw_txt
LDOUBLEV's avatar
LDOUBLEV committed
206

207
208
209
210
    blank_img, draw_txt = create_blank_img()

    font_size = 20
    txt_color = (0, 0, 0)
211
    font = ImageFont.truetype("./doc/simfang.ttf", font_size, encoding="utf-8")
212
213
214

    gap = font_size + 5
    txt_img_list = []
LDOUBLEV's avatar
LDOUBLEV committed
215
    count, index = 1, 0
216
217
    for idx, txt in enumerate(texts):
        index += 1
LDOUBLEV's avatar
LDOUBLEV committed
218
        if scores[idx] < threshold or math.isnan(scores[idx]):
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
            index -= 1
            continue
        first_line = True
        while str_count(txt) >= img_w // font_size - 4:
            tmp = txt
            txt = tmp[:img_w // font_size - 4]
            if first_line:
                new_txt = str(index) + ': ' + txt
                first_line = False
            else:
                new_txt = '    ' + txt
            draw_txt.text((0, gap * (count + 1)), new_txt, txt_color, font=font)
            txt = tmp[img_w // font_size - 4:]
            if count >= img_h // gap - 1:
                txt_img_list.append(np.array(blank_img))
                blank_img, draw_txt = create_blank_img()
                count = 0
LDOUBLEV's avatar
LDOUBLEV committed
236
            count += 1
237
238
239
        if first_line:
            new_txt = str(index) + ': ' + txt + '   ' + '%.3f' % (scores[idx])
        else:
LDOUBLEV's avatar
LDOUBLEV committed
240
            new_txt = "  " + txt + "  " + '%.3f' % (scores[idx])
LDOUBLEV's avatar
LDOUBLEV committed
241
        draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
242
        # whether add new blank img or not
LDOUBLEV's avatar
LDOUBLEV committed
243
        if count >= img_h // gap - 1 and idx + 1 < len(texts):
244
245
246
            txt_img_list.append(np.array(blank_img))
            blank_img, draw_txt = create_blank_img()
            count = 0
LDOUBLEV's avatar
LDOUBLEV committed
247
        count += 1
248
249
250
251
252
253
    txt_img_list.append(np.array(blank_img))
    if len(txt_img_list) == 1:
        blank_img = np.array(txt_img_list[0])
    else:
        blank_img = np.concatenate(txt_img_list, axis=1)
    return np.array(blank_img)
LDOUBLEV's avatar
LDOUBLEV committed
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274


if __name__ == '__main__':
    test_img = "./doc/test_v2"
    predict_txt = "./doc/predict.txt"
    f = open(predict_txt, 'r')
    data = f.readlines()
    img_path, anno = data[0].strip().split('\t')
    img_name = os.path.basename(img_path)
    img_path = os.path.join(test_img, img_name)
    image = Image.open(img_path)

    data = json.loads(anno)
    boxes, txts, scores = [], [], []
    for dic in data:
        boxes.append(dic['points'])
        txts.append(dic['transcription'])
        scores.append(round(dic['scores'], 3))

    new_img = draw_ocr(image, boxes, txts, scores, draw_txt=True)

LDOUBLEV's avatar
LDOUBLEV committed
275
    cv2.imwrite(img_name, new_img)