predict_rec.py 16.7 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
LDOUBLEV's avatar
LDOUBLEV committed
14
15
import os
import sys
Topdu's avatar
Topdu committed
16
from PIL import Image
17
__dir__ = os.path.dirname(os.path.abspath(__file__))
LDOUBLEV's avatar
LDOUBLEV committed
18
sys.path.append(__dir__)
19
sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))
LDOUBLEV's avatar
LDOUBLEV committed
20

21
22
os.environ["FLAGS_allocator_strategy"] = 'auto_growth'

LDOUBLEV's avatar
LDOUBLEV committed
23
24
25
26
import cv2
import numpy as np
import math
import time
WenmuZhou's avatar
WenmuZhou committed
27
import traceback
tink2123's avatar
tink2123 committed
28
import paddle
29
30

import tools.infer.utility as utility
WenmuZhou's avatar
WenmuZhou committed
31
32
from ppocr.postprocess import build_post_process
from ppocr.utils.logging import get_logger
33
from ppocr.utils.utility import get_image_file_list, check_and_read_gif
LDOUBLEV's avatar
LDOUBLEV committed
34

WenmuZhou's avatar
WenmuZhou committed
35
36
logger = get_logger()

LDOUBLEV's avatar
LDOUBLEV committed
37
38
39

class TextRecognizer(object):
    def __init__(self, args):
40
        self.rec_image_shape = [int(v) for v in args.rec_image_shape.split(",")]
41
        self.rec_batch_num = args.rec_batch_num
tink2123's avatar
tink2123 committed
42
        self.rec_algorithm = args.rec_algorithm
WenmuZhou's avatar
WenmuZhou committed
43
44
        postprocess_params = {
            'name': 'CTCLabelDecode',
45
            "character_dict_path": args.rec_char_dict_path,
WenmuZhou's avatar
WenmuZhou committed
46
            "use_space_char": args.use_space_char
tink2123's avatar
tink2123 committed
47
        }
tink2123's avatar
tink2123 committed
48
49
50
        if self.rec_algorithm == "SRN":
            postprocess_params = {
                'name': 'SRNLabelDecode',
WenmuZhou's avatar
WenmuZhou committed
51
52
53
54
55
56
                "character_dict_path": args.rec_char_dict_path,
                "use_space_char": args.use_space_char
            }
        elif self.rec_algorithm == "RARE":
            postprocess_params = {
                'name': 'AttnLabelDecode',
tink2123's avatar
tink2123 committed
57
58
59
                "character_dict_path": args.rec_char_dict_path,
                "use_space_char": args.use_space_char
            }
Topdu's avatar
Topdu committed
60
61
62
63
64
65
        elif self.rec_algorithm == 'NRTR':
            postprocess_params = {
                'name': 'NRTRLabelDecode',
                "character_dict_path": args.rec_char_dict_path,
                "use_space_char": args.use_space_char
            }
Topdu's avatar
Topdu committed
66
67
68
69
70
71
        elif self.rec_algorithm == "SAR":
            postprocess_params = {
                'name': 'SARLabelDecode',
                "character_dict_path": args.rec_char_dict_path,
                "use_space_char": args.use_space_char
            }
WenmuZhou's avatar
WenmuZhou committed
72
        self.postprocess_op = build_post_process(postprocess_params)
LDOUBLEV's avatar
LDOUBLEV committed
73
        self.predictor, self.input_tensor, self.output_tensors, self.config = \
WenmuZhou's avatar
WenmuZhou committed
74
            utility.create_predictor(args, 'rec', logger)
tink2123's avatar
tink2123 committed
75
        self.benchmark = args.benchmark
tink2123's avatar
tink2123 committed
76
        self.use_onnx = args.use_onnx
tink2123's avatar
tink2123 committed
77
78
79
        if args.benchmark:
            import auto_log
            pid = os.getpid()
LDOUBLEV's avatar
LDOUBLEV committed
80
            gpu_id = utility.get_infer_gpuid()
tink2123's avatar
tink2123 committed
81
82
83
            self.autolog = auto_log.AutoLogger(
                model_name="rec",
                model_precision=args.precision,
tink2123's avatar
tink2123 committed
84
                batch_size=args.rec_batch_num,
tink2123's avatar
tink2123 committed
85
                data_shape="dynamic",
86
                save_path=None,  #args.save_log_path,
tink2123's avatar
tink2123 committed
87
88
89
                inference_config=self.config,
                pids=pid,
                process_name=None,
LDOUBLEV's avatar
LDOUBLEV committed
90
                gpu_ids=gpu_id if args.use_gpu else None,
tink2123's avatar
tink2123 committed
91
92
93
                time_keys=[
                    'preprocess_time', 'inference_time', 'postprocess_time'
                ],
tink2123's avatar
tink2123 committed
94
                warmup=0,
95
                logger=logger)
LDOUBLEV's avatar
LDOUBLEV committed
96

97
    def resize_norm_img(self, img, max_wh_ratio):
LDOUBLEV's avatar
LDOUBLEV committed
98
        imgC, imgH, imgW = self.rec_image_shape
Topdu's avatar
Topdu committed
99
        if self.rec_algorithm == 'NRTR':
Topdu's avatar
Topdu committed
100
101
102
103
104
105
106
107
108
            img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
            # return padding_im
            image_pil = Image.fromarray(np.uint8(img))
            img = image_pil.resize([100, 32], Image.ANTIALIAS)
            img = np.array(img)
            norm_img = np.expand_dims(img, -1)
            norm_img = norm_img.transpose((2, 0, 1))
            return norm_img.astype(np.float32) / 128. - 1.

109
        assert imgC == img.shape[2]
tink2123's avatar
tink2123 committed
110
        imgW = int((32 * max_wh_ratio))
tink2123's avatar
tink2123 committed
111
112
        if self.use_onnx:
            imgW = 100
113
        h, w = img.shape[:2]
114
115
116
117
118
        ratio = w / float(h)
        if math.ceil(imgH * ratio) > imgW:
            resized_w = imgW
        else:
            resized_w = int(math.ceil(imgH * ratio))
tink2123's avatar
tink2123 committed
119
        resized_image = cv2.resize(img, (resized_w, imgH))
LDOUBLEV's avatar
LDOUBLEV committed
120
121
122
123
124
125
126
127
        resized_image = resized_image.astype('float32')
        resized_image = resized_image.transpose((2, 0, 1)) / 255
        resized_image -= 0.5
        resized_image /= 0.5
        padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
        padding_im[:, :, 0:resized_w] = resized_image
        return padding_im

tink2123's avatar
tink2123 committed
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
    def resize_norm_img_srn(self, img, image_shape):
        imgC, imgH, imgW = image_shape

        img_black = np.zeros((imgH, imgW))
        im_hei = img.shape[0]
        im_wid = img.shape[1]

        if im_wid <= im_hei * 1:
            img_new = cv2.resize(img, (imgH * 1, imgH))
        elif im_wid <= im_hei * 2:
            img_new = cv2.resize(img, (imgH * 2, imgH))
        elif im_wid <= im_hei * 3:
            img_new = cv2.resize(img, (imgH * 3, imgH))
        else:
            img_new = cv2.resize(img, (imgW, imgH))

        img_np = np.asarray(img_new)
        img_np = cv2.cvtColor(img_np, cv2.COLOR_BGR2GRAY)
        img_black[:, 0:img_np.shape[1]] = img_np
        img_black = img_black[:, :, np.newaxis]

        row, col, c = img_black.shape
        c = 1

        return np.reshape(img_black, (c, row, col)).astype(np.float32)

    def srn_other_inputs(self, image_shape, num_heads, max_text_length):

        imgC, imgH, imgW = image_shape
        feature_dim = int((imgH / 8) * (imgW / 8))

        encoder_word_pos = np.array(range(0, feature_dim)).reshape(
            (feature_dim, 1)).astype('int64')
        gsrm_word_pos = np.array(range(0, max_text_length)).reshape(
            (max_text_length, 1)).astype('int64')

        gsrm_attn_bias_data = np.ones((1, max_text_length, max_text_length))
        gsrm_slf_attn_bias1 = np.triu(gsrm_attn_bias_data, 1).reshape(
            [-1, 1, max_text_length, max_text_length])
        gsrm_slf_attn_bias1 = np.tile(
            gsrm_slf_attn_bias1,
            [1, num_heads, 1, 1]).astype('float32') * [-1e9]

        gsrm_slf_attn_bias2 = np.tril(gsrm_attn_bias_data, -1).reshape(
            [-1, 1, max_text_length, max_text_length])
        gsrm_slf_attn_bias2 = np.tile(
            gsrm_slf_attn_bias2,
            [1, num_heads, 1, 1]).astype('float32') * [-1e9]

        encoder_word_pos = encoder_word_pos[np.newaxis, :]
        gsrm_word_pos = gsrm_word_pos[np.newaxis, :]

        return [
            encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1,
            gsrm_slf_attn_bias2
        ]

    def process_image_srn(self, img, image_shape, num_heads, max_text_length):
        norm_img = self.resize_norm_img_srn(img, image_shape)
        norm_img = norm_img[np.newaxis, :]

        [encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1, gsrm_slf_attn_bias2] = \
            self.srn_other_inputs(image_shape, num_heads, max_text_length)

        gsrm_slf_attn_bias1 = gsrm_slf_attn_bias1.astype(np.float32)
        gsrm_slf_attn_bias2 = gsrm_slf_attn_bias2.astype(np.float32)
        encoder_word_pos = encoder_word_pos.astype(np.int64)
        gsrm_word_pos = gsrm_word_pos.astype(np.int64)

        return (norm_img, encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1,
                gsrm_slf_attn_bias2)

Topdu's avatar
Topdu committed
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
    def resize_norm_img_sar(self, img, image_shape,
                            width_downsample_ratio=0.25):
        imgC, imgH, imgW_min, imgW_max = image_shape
        h = img.shape[0]
        w = img.shape[1]
        valid_ratio = 1.0
        # make sure new_width is an integral multiple of width_divisor.
        width_divisor = int(1 / width_downsample_ratio)
        # resize
        ratio = w / float(h)
        resize_w = math.ceil(imgH * ratio)
        if resize_w % width_divisor != 0:
            resize_w = round(resize_w / width_divisor) * width_divisor
        if imgW_min is not None:
            resize_w = max(imgW_min, resize_w)
        if imgW_max is not None:
            valid_ratio = min(1.0, 1.0 * resize_w / imgW_max)
            resize_w = min(imgW_max, resize_w)
        resized_image = cv2.resize(img, (resize_w, imgH))
        resized_image = resized_image.astype('float32')
        # norm 
        if image_shape[0] == 1:
            resized_image = resized_image / 255
            resized_image = resized_image[np.newaxis, :]
        else:
            resized_image = resized_image.transpose((2, 0, 1)) / 255
        resized_image -= 0.5
        resized_image /= 0.5
        resize_shape = resized_image.shape
        padding_im = -1.0 * np.ones((imgC, imgH, imgW_max), dtype=np.float32)
        padding_im[:, :, 0:resize_w] = resized_image
        pad_shape = padding_im.shape

        return padding_im, resize_shape, pad_shape, valid_ratio

LDOUBLEV's avatar
LDOUBLEV committed
235
236
    def __call__(self, img_list):
        img_num = len(img_list)
237
        # Calculate the aspect ratio of all text bars
238
239
240
        width_list = []
        for img in img_list:
            width_list.append(img.shape[1] / float(img.shape[0]))
zhangxin's avatar
zhangxin committed
241
        # Sorting can speed up the recognition process
242
243
        indices = np.argsort(np.array(width_list))
        rec_res = [['', 0.0]] * img_num
244
        batch_num = self.rec_batch_num
LDOUBLEV's avatar
LDOUBLEV committed
245
        st = time.time()
tink2123's avatar
tink2123 committed
246
247
        if self.benchmark:
            self.autolog.times.start()
LDOUBLEV's avatar
LDOUBLEV committed
248
249
250
        for beg_img_no in range(0, img_num, batch_num):
            end_img_no = min(img_num, beg_img_no + batch_num)
            norm_img_batch = []
251
            max_wh_ratio = 0
LDOUBLEV's avatar
LDOUBLEV committed
252
            for ino in range(beg_img_no, end_img_no):
253
                h, w = img_list[indices[ino]].shape[0:2]
254
255
256
                wh_ratio = w * 1.0 / h
                max_wh_ratio = max(max_wh_ratio, wh_ratio)
            for ino in range(beg_img_no, end_img_no):
Topdu's avatar
Topdu committed
257
                if self.rec_algorithm != "SRN" and self.rec_algorithm != "SAR":
tink2123's avatar
tink2123 committed
258
259
260
261
                    norm_img = self.resize_norm_img(img_list[indices[ino]],
                                                    max_wh_ratio)
                    norm_img = norm_img[np.newaxis, :]
                    norm_img_batch.append(norm_img)
Topdu's avatar
Topdu committed
262
263
264
265
266
267
268
269
                elif self.rec_algorithm == "SAR":
                    norm_img, _, _, valid_ratio = self.resize_norm_img_sar(
                        img_list[indices[ino]], self.rec_image_shape)
                    norm_img = norm_img[np.newaxis, :]
                    valid_ratio = np.expand_dims(valid_ratio, axis=0)
                    valid_ratios = []
                    valid_ratios.append(valid_ratio)
                    norm_img_batch.append(norm_img)
tink2123's avatar
tink2123 committed
270
                else:
LDOUBLEV's avatar
LDOUBLEV committed
271
272
                    norm_img = self.process_image_srn(
                        img_list[indices[ino]], self.rec_image_shape, 8, 25)
tink2123's avatar
tink2123 committed
273
274
275
276
277
278
279
280
281
                    encoder_word_pos_list = []
                    gsrm_word_pos_list = []
                    gsrm_slf_attn_bias1_list = []
                    gsrm_slf_attn_bias2_list = []
                    encoder_word_pos_list.append(norm_img[1])
                    gsrm_word_pos_list.append(norm_img[2])
                    gsrm_slf_attn_bias1_list.append(norm_img[3])
                    gsrm_slf_attn_bias2_list.append(norm_img[4])
                    norm_img_batch.append(norm_img[0])
LDOUBLEV's avatar
LDOUBLEV committed
282
283
            norm_img_batch = np.concatenate(norm_img_batch)
            norm_img_batch = norm_img_batch.copy()
tink2123's avatar
tink2123 committed
284
285
            if self.benchmark:
                self.autolog.times.stamp()
tink2123's avatar
tink2123 committed
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301

            if self.rec_algorithm == "SRN":
                encoder_word_pos_list = np.concatenate(encoder_word_pos_list)
                gsrm_word_pos_list = np.concatenate(gsrm_word_pos_list)
                gsrm_slf_attn_bias1_list = np.concatenate(
                    gsrm_slf_attn_bias1_list)
                gsrm_slf_attn_bias2_list = np.concatenate(
                    gsrm_slf_attn_bias2_list)

                inputs = [
                    norm_img_batch,
                    encoder_word_pos_list,
                    gsrm_word_pos_list,
                    gsrm_slf_attn_bias1_list,
                    gsrm_slf_attn_bias2_list,
                ]
tink2123's avatar
tink2123 committed
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
                if self.use_onnx:
                    input_dict = {}
                    input_dict[self.input_tensor.name] = norm_img_batch
                    outputs = self.predictor.run(self.output_tensors,
                                                 input_dict)
                    preds = {"predict": outputs[2]}
                else:
                    input_names = self.predictor.get_input_names()
                    for i in range(len(input_names)):
                        input_tensor = self.predictor.get_input_handle(
                            input_names[i])
                        input_tensor.copy_from_cpu(inputs[i])
                    self.predictor.run()
                    outputs = []
                    for output_tensor in self.output_tensors:
                        output = output_tensor.copy_to_cpu()
                        outputs.append(output)
                    if self.benchmark:
                        self.autolog.times.stamp()
                    preds = {"predict": outputs[2]}
Topdu's avatar
Topdu committed
322
323
324
325
326
327
            elif self.rec_algorithm == "SAR":
                valid_ratios = np.concatenate(valid_ratios)
                inputs = [
                    norm_img_batch,
                    valid_ratios,
                ]
tink2123's avatar
tink2123 committed
328
329
330
331
332
333
                if self.use_onnx:
                    input_dict = {}
                    input_dict[self.input_tensor.name] = norm_img_batch
                    outputs = self.predictor.run(self.output_tensors,
                                                 input_dict)
                    preds = outputs[0]
Topdu's avatar
Topdu committed
334
                else:
tink2123's avatar
tink2123 committed
335
336
337
338
339
340
341
342
343
344
345
346
                    input_names = self.predictor.get_input_names()
                    for i in range(len(input_names)):
                        input_tensor = self.predictor.get_input_handle(
                            input_names[i])
                        input_tensor.copy_from_cpu(inputs[i])
                    self.predictor.run()
                    outputs = []
                    for output_tensor in self.output_tensors:
                        output = output_tensor.copy_to_cpu()
                        outputs.append(output)
                    if self.benchmark:
                        self.autolog.times.stamp()
Topdu's avatar
Topdu committed
347
                    preds = outputs[0]
tink2123's avatar
tink2123 committed
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
            else:
                if self.use_onnx:
                    input_dict = {}
                    input_dict[self.input_tensor.name] = norm_img_batch
                    outputs = self.predictor.run(self.output_tensors,
                                                 input_dict)
                    preds = outputs[0]
                else:
                    self.input_tensor.copy_from_cpu(norm_img_batch)
                    self.predictor.run()
                    outputs = []
                    for output_tensor in self.output_tensors:
                        output = output_tensor.copy_to_cpu()
                        outputs.append(output)
                    if self.benchmark:
                        self.autolog.times.stamp()
                    if len(outputs) != 1:
                        preds = outputs
                    else:
                        preds = outputs[0]
WenmuZhou's avatar
WenmuZhou committed
368
369
370
            rec_result = self.postprocess_op(preds)
            for rno in range(len(rec_result)):
                rec_res[indices[beg_img_no + rno]] = rec_result[rno]
tink2123's avatar
tink2123 committed
371
372
            if self.benchmark:
                self.autolog.times.end(stamp=True)
LDOUBLEV's avatar
LDOUBLEV committed
373
        return rec_res, time.time() - st
LDOUBLEV's avatar
LDOUBLEV committed
374
375


376
def main(args):
dyning's avatar
dyning committed
377
    image_file_list = get_image_file_list(args.image_dir)
LDOUBLEV's avatar
LDOUBLEV committed
378
379
380
    text_recognizer = TextRecognizer(args)
    valid_image_file_list = []
    img_list = []
LDOUBLEV's avatar
LDOUBLEV committed
381

382
    # warmup 2 times
LDOUBLEV's avatar
LDOUBLEV committed
383
384
    if args.warmup:
        img = np.random.uniform(0, 255, [32, 320, 3]).astype(np.uint8)
385
        for i in range(2):
LDOUBLEV's avatar
LDOUBLEV committed
386
            res = text_recognizer([img] * int(args.rec_batch_num))
LDOUBLEV's avatar
LDOUBLEV committed
387

LDOUBLEV's avatar
LDOUBLEV committed
388
    for image_file in image_file_list:
LDOUBLEV's avatar
LDOUBLEV committed
389
390
391
        img, flag = check_and_read_gif(image_file)
        if not flag:
            img = cv2.imread(image_file)
LDOUBLEV's avatar
LDOUBLEV committed
392
393
394
395
396
        if img is None:
            logger.info("error in loading image:{}".format(image_file))
            continue
        valid_image_file_list.append(image_file)
        img_list.append(img)
LDOUBLEV's avatar
LDOUBLEV committed
397
398
399
400
401
402
403
404
405
406
    try:
        rec_res, _ = text_recognizer(img_list)

    except Exception as E:
        logger.info(traceback.format_exc())
        logger.info(E)
        exit()
    for ino in range(len(img_list)):
        logger.info("Predicts of {}:{}".format(valid_image_file_list[ino],
                                               rec_res[ino]))
tink2123's avatar
tink2123 committed
407
408
    if args.benchmark:
        text_recognizer.autolog.report()
409
410
411
412


if __name__ == "__main__":
    main(utility.parse_args())