predict_rec.py 12.8 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
LDOUBLEV's avatar
LDOUBLEV committed
14
15
import os
import sys
WenmuZhou's avatar
WenmuZhou committed
16

17
__dir__ = os.path.dirname(os.path.abspath(__file__))
LDOUBLEV's avatar
LDOUBLEV committed
18
sys.path.append(__dir__)
19
sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))
LDOUBLEV's avatar
LDOUBLEV committed
20

21
22
os.environ["FLAGS_allocator_strategy"] = 'auto_growth'

LDOUBLEV's avatar
LDOUBLEV committed
23
24
25
26
import cv2
import numpy as np
import math
import time
WenmuZhou's avatar
WenmuZhou committed
27
import traceback
tink2123's avatar
tink2123 committed
28
import paddle
29
30

import tools.infer.utility as utility
LDOUBLEV's avatar
LDOUBLEV committed
31
import tools.infer.benchmark_utils as benchmark_utils
WenmuZhou's avatar
WenmuZhou committed
32
33
from ppocr.postprocess import build_post_process
from ppocr.utils.logging import get_logger
34
from ppocr.utils.utility import get_image_file_list, check_and_read_gif
LDOUBLEV's avatar
LDOUBLEV committed
35

WenmuZhou's avatar
WenmuZhou committed
36
37
logger = get_logger()

LDOUBLEV's avatar
LDOUBLEV committed
38
39
40

class TextRecognizer(object):
    def __init__(self, args):
41
        self.rec_image_shape = [int(v) for v in args.rec_image_shape.split(",")]
dyning's avatar
dyning committed
42
        self.character_type = args.rec_char_type
43
        self.rec_batch_num = args.rec_batch_num
tink2123's avatar
tink2123 committed
44
        self.rec_algorithm = args.rec_algorithm
WenmuZhou's avatar
WenmuZhou committed
45
46
        postprocess_params = {
            'name': 'CTCLabelDecode',
tink2123's avatar
tink2123 committed
47
            "character_type": args.rec_char_type,
48
            "character_dict_path": args.rec_char_dict_path,
WenmuZhou's avatar
WenmuZhou committed
49
            "use_space_char": args.use_space_char
tink2123's avatar
tink2123 committed
50
        }
tink2123's avatar
tink2123 committed
51
52
53
        if self.rec_algorithm == "SRN":
            postprocess_params = {
                'name': 'SRNLabelDecode',
WenmuZhou's avatar
WenmuZhou committed
54
55
56
57
58
59
60
                "character_type": args.rec_char_type,
                "character_dict_path": args.rec_char_dict_path,
                "use_space_char": args.use_space_char
            }
        elif self.rec_algorithm == "RARE":
            postprocess_params = {
                'name': 'AttnLabelDecode',
tink2123's avatar
tink2123 committed
61
62
63
64
                "character_type": args.rec_char_type,
                "character_dict_path": args.rec_char_dict_path,
                "use_space_char": args.use_space_char
            }
WenmuZhou's avatar
WenmuZhou committed
65
        self.postprocess_op = build_post_process(postprocess_params)
LDOUBLEV's avatar
LDOUBLEV committed
66
        self.predictor, self.input_tensor, self.output_tensors, self.config = \
WenmuZhou's avatar
WenmuZhou committed
67
            utility.create_predictor(args, 'rec', logger)
LDOUBLEV's avatar
LDOUBLEV committed
68

LDOUBLEV's avatar
LDOUBLEV committed
69
70
        self.rec_times = utility.Timer()

71
    def resize_norm_img(self, img, max_wh_ratio):
LDOUBLEV's avatar
LDOUBLEV committed
72
        imgC, imgH, imgW = self.rec_image_shape
73
        assert imgC == img.shape[2]
74
        if self.character_type == "ch":
tink2123's avatar
tink2123 committed
75
            imgW = int((32 * max_wh_ratio))
76
        h, w = img.shape[:2]
77
78
79
80
81
        ratio = w / float(h)
        if math.ceil(imgH * ratio) > imgW:
            resized_w = imgW
        else:
            resized_w = int(math.ceil(imgH * ratio))
tink2123's avatar
tink2123 committed
82
        resized_image = cv2.resize(img, (resized_w, imgH))
LDOUBLEV's avatar
LDOUBLEV committed
83
84
85
86
87
88
89
90
        resized_image = resized_image.astype('float32')
        resized_image = resized_image.transpose((2, 0, 1)) / 255
        resized_image -= 0.5
        resized_image /= 0.5
        padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
        padding_im[:, :, 0:resized_w] = resized_image
        return padding_im

tink2123's avatar
tink2123 committed
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
    def resize_norm_img_srn(self, img, image_shape):
        imgC, imgH, imgW = image_shape

        img_black = np.zeros((imgH, imgW))
        im_hei = img.shape[0]
        im_wid = img.shape[1]

        if im_wid <= im_hei * 1:
            img_new = cv2.resize(img, (imgH * 1, imgH))
        elif im_wid <= im_hei * 2:
            img_new = cv2.resize(img, (imgH * 2, imgH))
        elif im_wid <= im_hei * 3:
            img_new = cv2.resize(img, (imgH * 3, imgH))
        else:
            img_new = cv2.resize(img, (imgW, imgH))

        img_np = np.asarray(img_new)
        img_np = cv2.cvtColor(img_np, cv2.COLOR_BGR2GRAY)
        img_black[:, 0:img_np.shape[1]] = img_np
        img_black = img_black[:, :, np.newaxis]

        row, col, c = img_black.shape
        c = 1

        return np.reshape(img_black, (c, row, col)).astype(np.float32)

    def srn_other_inputs(self, image_shape, num_heads, max_text_length):

        imgC, imgH, imgW = image_shape
        feature_dim = int((imgH / 8) * (imgW / 8))

        encoder_word_pos = np.array(range(0, feature_dim)).reshape(
            (feature_dim, 1)).astype('int64')
        gsrm_word_pos = np.array(range(0, max_text_length)).reshape(
            (max_text_length, 1)).astype('int64')

        gsrm_attn_bias_data = np.ones((1, max_text_length, max_text_length))
        gsrm_slf_attn_bias1 = np.triu(gsrm_attn_bias_data, 1).reshape(
            [-1, 1, max_text_length, max_text_length])
        gsrm_slf_attn_bias1 = np.tile(
            gsrm_slf_attn_bias1,
            [1, num_heads, 1, 1]).astype('float32') * [-1e9]

        gsrm_slf_attn_bias2 = np.tril(gsrm_attn_bias_data, -1).reshape(
            [-1, 1, max_text_length, max_text_length])
        gsrm_slf_attn_bias2 = np.tile(
            gsrm_slf_attn_bias2,
            [1, num_heads, 1, 1]).astype('float32') * [-1e9]

        encoder_word_pos = encoder_word_pos[np.newaxis, :]
        gsrm_word_pos = gsrm_word_pos[np.newaxis, :]

        return [
            encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1,
            gsrm_slf_attn_bias2
        ]

    def process_image_srn(self, img, image_shape, num_heads, max_text_length):
        norm_img = self.resize_norm_img_srn(img, image_shape)
        norm_img = norm_img[np.newaxis, :]

        [encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1, gsrm_slf_attn_bias2] = \
            self.srn_other_inputs(image_shape, num_heads, max_text_length)

        gsrm_slf_attn_bias1 = gsrm_slf_attn_bias1.astype(np.float32)
        gsrm_slf_attn_bias2 = gsrm_slf_attn_bias2.astype(np.float32)
        encoder_word_pos = encoder_word_pos.astype(np.int64)
        gsrm_word_pos = gsrm_word_pos.astype(np.int64)

        return (norm_img, encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1,
                gsrm_slf_attn_bias2)

LDOUBLEV's avatar
LDOUBLEV committed
163
164
    def __call__(self, img_list):
        img_num = len(img_list)
165
        # Calculate the aspect ratio of all text bars
166
167
168
        width_list = []
        for img in img_list:
            width_list.append(img.shape[1] / float(img.shape[0]))
zhangxin's avatar
zhangxin committed
169
        # Sorting can speed up the recognition process
170
        indices = np.argsort(np.array(width_list))
LDOUBLEV's avatar
LDOUBLEV committed
171
        self.rec_times.total_time.start()
172
        rec_res = [['', 0.0]] * img_num
173
        batch_num = self.rec_batch_num
LDOUBLEV's avatar
LDOUBLEV committed
174
175
176
        for beg_img_no in range(0, img_num, batch_num):
            end_img_no = min(img_num, beg_img_no + batch_num)
            norm_img_batch = []
177
            max_wh_ratio = 0
LDOUBLEV's avatar
LDOUBLEV committed
178
            self.rec_times.preprocess_time.start()
LDOUBLEV's avatar
LDOUBLEV committed
179
            for ino in range(beg_img_no, end_img_no):
180
                h, w = img_list[indices[ino]].shape[0:2]
181
182
183
                wh_ratio = w * 1.0 / h
                max_wh_ratio = max(max_wh_ratio, wh_ratio)
            for ino in range(beg_img_no, end_img_no):
tink2123's avatar
tink2123 committed
184
185
186
187
188
189
                if self.rec_algorithm != "SRN":
                    norm_img = self.resize_norm_img(img_list[indices[ino]],
                                                    max_wh_ratio)
                    norm_img = norm_img[np.newaxis, :]
                    norm_img_batch.append(norm_img)
                else:
LDOUBLEV's avatar
LDOUBLEV committed
190
191
                    norm_img = self.process_image_srn(
                        img_list[indices[ino]], self.rec_image_shape, 8, 25)
tink2123's avatar
tink2123 committed
192
193
194
195
196
197
198
199
200
                    encoder_word_pos_list = []
                    gsrm_word_pos_list = []
                    gsrm_slf_attn_bias1_list = []
                    gsrm_slf_attn_bias2_list = []
                    encoder_word_pos_list.append(norm_img[1])
                    gsrm_word_pos_list.append(norm_img[2])
                    gsrm_slf_attn_bias1_list.append(norm_img[3])
                    gsrm_slf_attn_bias2_list.append(norm_img[4])
                    norm_img_batch.append(norm_img[0])
LDOUBLEV's avatar
LDOUBLEV committed
201
202
            norm_img_batch = np.concatenate(norm_img_batch)
            norm_img_batch = norm_img_batch.copy()
tink2123's avatar
tink2123 committed
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218

            if self.rec_algorithm == "SRN":
                encoder_word_pos_list = np.concatenate(encoder_word_pos_list)
                gsrm_word_pos_list = np.concatenate(gsrm_word_pos_list)
                gsrm_slf_attn_bias1_list = np.concatenate(
                    gsrm_slf_attn_bias1_list)
                gsrm_slf_attn_bias2_list = np.concatenate(
                    gsrm_slf_attn_bias2_list)

                inputs = [
                    norm_img_batch,
                    encoder_word_pos_list,
                    gsrm_word_pos_list,
                    gsrm_slf_attn_bias1_list,
                    gsrm_slf_attn_bias2_list,
                ]
LDOUBLEV's avatar
LDOUBLEV committed
219
220
                self.rec_times.preprocess_time.end()
                self.rec_times.inference_time.start()
tink2123's avatar
tink2123 committed
221
222
223
224
225
226
                input_names = self.predictor.get_input_names()
                for i in range(len(input_names)):
                    input_tensor = self.predictor.get_input_handle(input_names[
                        i])
                    input_tensor.copy_from_cpu(inputs[i])
                self.predictor.run()
LDOUBLEV's avatar
LDOUBLEV committed
227
                self.rec_times.inference_time.end()
tink2123's avatar
tink2123 committed
228
229
230
231
232
233
                outputs = []
                for output_tensor in self.output_tensors:
                    output = output_tensor.copy_to_cpu()
                    outputs.append(output)
                preds = {"predict": outputs[2]}
            else:
LDOUBLEV's avatar
LDOUBLEV committed
234
235
                self.rec_times.preprocess_time.end()
                self.rec_times.inference_time.start()
tink2123's avatar
tink2123 committed
236
237
238
239
240
241
242
243
                self.input_tensor.copy_from_cpu(norm_img_batch)
                self.predictor.run()

                outputs = []
                for output_tensor in self.output_tensors:
                    output = output_tensor.copy_to_cpu()
                    outputs.append(output)
                preds = outputs[0]
LDOUBLEV's avatar
LDOUBLEV committed
244
245
            self.rec_times.inference_time.end()
            self.rec_times.postprocess_time.start()
WenmuZhou's avatar
WenmuZhou committed
246
247
248
            rec_result = self.postprocess_op(preds)
            for rno in range(len(rec_result)):
                rec_res[indices[beg_img_no + rno]] = rec_result[rno]
LDOUBLEV's avatar
LDOUBLEV committed
249
250
251
252
            self.rec_times.postprocess_time.end()
            self.rec_times.img_num += int(norm_img_batch.shape[0])
        self.rec_times.total_time.end()
        return rec_res, self.rec_times.total_time.value()
LDOUBLEV's avatar
LDOUBLEV committed
253
254


255
def main(args):
dyning's avatar
dyning committed
256
    image_file_list = get_image_file_list(args.image_dir)
LDOUBLEV's avatar
LDOUBLEV committed
257
258
259
    text_recognizer = TextRecognizer(args)
    valid_image_file_list = []
    img_list = []
LDOUBLEV's avatar
LDOUBLEV committed
260
261
262
263
264
265
266
267
268
    cpu_mem, gpu_mem, gpu_util = 0, 0, 0
    count = 0

    # warmup 10 times
    fake_img = np.random.uniform(-1, 1, [1, 32, 320, 3]).astype(np.float32)
    for i in range(10):
        dt_boxes, _ = text_recognizer(fake_img)

    for image_file in image_file_list:
LDOUBLEV's avatar
LDOUBLEV committed
269
270
271
        img, flag = check_and_read_gif(image_file)
        if not flag:
            img = cv2.imread(image_file)
LDOUBLEV's avatar
LDOUBLEV committed
272
273
274
275
276
        if img is None:
            logger.info("error in loading image:{}".format(image_file))
            continue
        valid_image_file_list.append(image_file)
        img_list.append(img)
LDOUBLEV's avatar
LDOUBLEV committed
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
    try:
        rec_res, _ = text_recognizer(img_list)
        if args.benchmark:
            cm, gm, gu = utility.get_current_memory_mb(0)
            cpu_mem += cm
            gpu_mem += gm
            gpu_util += gu
            count += 1

    except Exception as E:
        logger.info(traceback.format_exc())
        logger.info(E)
        exit()
    for ino in range(len(img_list)):
        logger.info("Predicts of {}:{}".format(valid_image_file_list[ino],
                                               rec_res[ino]))
    if args.benchmark:
        mems = {
            'cpu_rss_mb': cpu_mem / count,
            'gpu_rss_mb': gpu_mem / count,
            'gpu_util': gpu_util * 100 / count
        }
    else:
        mems = None
    logger.info("The predict time about recognizer module is as follows: ")
    rec_time_dict = text_recognizer.rec_times.report(average=True)
    rec_model_name = args.rec_model_dir

    if args.benchmark:
        # construct log information
        model_info = {
            'model_name': args.rec_model_dir.split('/')[-1],
            'precision': args.precision
        }
        data_info = {
            'batch_size': args.rec_batch_num,
            'shape': 'dynamic_shape',
            'data_num': rec_time_dict['img_num']
        }
        perf_info = {
            'preprocess_time_s': rec_time_dict['preprocess_time'],
            'inference_time_s': rec_time_dict['inference_time'],
            'postprocess_time_s': rec_time_dict['postprocess_time'],
            'total_time_s': rec_time_dict['total_time']
        }
        benchmark_log = benchmark_utils.PaddleInferBenchmark(
            text_recognizer.config, model_info, data_info, perf_info, mems)
        benchmark_log("Rec")
325
326
327
328


if __name__ == "__main__":
    main(utility.parse_args())