"src/vscode:/vscode.git/clone" did not exist on "77ba9cb14c69375584cc838af5e93e94355f90de"
predict_rec.py 7.32 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
LDOUBLEV's avatar
LDOUBLEV committed
14
15
import os
import sys
16
__dir__ = os.path.dirname(os.path.abspath(__file__))
LDOUBLEV's avatar
LDOUBLEV committed
17
sys.path.append(__dir__)
18
sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))
LDOUBLEV's avatar
LDOUBLEV committed
19

LDOUBLEV's avatar
LDOUBLEV committed
20
import tools.infer.utility as utility
LDOUBLEV's avatar
LDOUBLEV committed
21
22
from ppocr.utils.utility import initial_logger
logger = initial_logger()
dyning's avatar
dyning committed
23
from ppocr.utils.utility import get_image_file_list
LDOUBLEV's avatar
LDOUBLEV committed
24
25
26
27
28
29
30
31
32
33
34
35
import cv2
import copy
import numpy as np
import math
import time
from ppocr.utils.character import CharacterOps


class TextRecognizer(object):
    def __init__(self, args):
        self.predictor, self.input_tensor, self.output_tensors =\
            utility.create_predictor(args, mode="rec")
36
        self.rec_image_shape = [int(v) for v in args.rec_image_shape.split(",")]
dyning's avatar
dyning committed
37
        self.character_type = args.rec_char_type
38
        self.rec_batch_num = args.rec_batch_num
tink2123's avatar
tink2123 committed
39
        self.rec_algorithm = args.rec_algorithm
tink2123's avatar
tink2123 committed
40
41
42
43
        char_ops_params = {
            "character_type": args.rec_char_type,
            "character_dict_path": args.rec_char_dict_path
        }
tink2123's avatar
tink2123 committed
44
45
        if self.rec_algorithm != "RARE":
            char_ops_params['loss_type'] = 'ctc'
tink2123's avatar
tink2123 committed
46
            self.loss_type = 'ctc'
tink2123's avatar
tink2123 committed
47
48
        else:
            char_ops_params['loss_type'] = 'attention'
tink2123's avatar
tink2123 committed
49
            self.loss_type = 'attention'
LDOUBLEV's avatar
LDOUBLEV committed
50
51
        self.char_ops = CharacterOps(char_ops_params)

52
    def resize_norm_img(self, img, max_wh_ratio):
LDOUBLEV's avatar
LDOUBLEV committed
53
        imgC, imgH, imgW = self.rec_image_shape
54
        assert imgC == img.shape[2]
55
56
        if self.character_type == "ch":
            imgW = int(math.ceil(32 * max_wh_ratio))
57
        h, w = img.shape[:2]
58
59
60
61
62
        ratio = w / float(h)
        if math.ceil(imgH * ratio) > imgW:
            resized_w = imgW
        else:
            resized_w = int(math.ceil(imgH * ratio))
tink2123's avatar
tink2123 committed
63
        resized_image = cv2.resize(img, (resized_w, imgH))
LDOUBLEV's avatar
LDOUBLEV committed
64
65
66
67
68
69
70
71
72
73
        resized_image = resized_image.astype('float32')
        resized_image = resized_image.transpose((2, 0, 1)) / 255
        resized_image -= 0.5
        resized_image /= 0.5
        padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
        padding_im[:, :, 0:resized_w] = resized_image
        return padding_im

    def __call__(self, img_list):
        img_num = len(img_list)
74
        # Calculate the aspect ratio of all text bars
75
76
77
        width_list = []
        for img in img_list:
            width_list.append(img.shape[1] / float(img.shape[0]))
zhangxin's avatar
zhangxin committed
78
        # Sorting can speed up the recognition process
79
80
81
82
        indices = np.argsort(np.array(width_list))

        # rec_res = []
        rec_res = [['', 0.0]] * img_num
83
        batch_num = self.rec_batch_num
LDOUBLEV's avatar
LDOUBLEV committed
84
85
86
87
        predict_time = 0
        for beg_img_no in range(0, img_num, batch_num):
            end_img_no = min(img_num, beg_img_no + batch_num)
            norm_img_batch = []
88
            max_wh_ratio = 0
LDOUBLEV's avatar
LDOUBLEV committed
89
            for ino in range(beg_img_no, end_img_no):
90
91
                # h, w = img_list[ino].shape[0:2]
                h, w = img_list[indices[ino]].shape[0:2]
92
93
94
                wh_ratio = w * 1.0 / h
                max_wh_ratio = max(max_wh_ratio, wh_ratio)
            for ino in range(beg_img_no, end_img_no):
95
                # norm_img = self.resize_norm_img(img_list[ino], max_wh_ratio)
tink2123's avatar
tink2123 committed
96
97
                norm_img = self.resize_norm_img(img_list[indices[ino]],
                                                max_wh_ratio)
LDOUBLEV's avatar
LDOUBLEV committed
98
99
100
101
102
103
104
                norm_img = norm_img[np.newaxis, :]
                norm_img_batch.append(norm_img)
            norm_img_batch = np.concatenate(norm_img_batch)
            norm_img_batch = norm_img_batch.copy()
            starttime = time.time()
            self.input_tensor.copy_from_cpu(norm_img_batch)
            self.predictor.zero_copy_run()
tink2123's avatar
tink2123 committed
105

tink2123's avatar
tink2123 committed
106
            if self.loss_type == "ctc":
tink2123's avatar
tink2123 committed
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
                rec_idx_batch = self.output_tensors[0].copy_to_cpu()
                rec_idx_lod = self.output_tensors[0].lod()[0]
                predict_batch = self.output_tensors[1].copy_to_cpu()
                predict_lod = self.output_tensors[1].lod()[0]
                elapse = time.time() - starttime
                predict_time += elapse
                for rno in range(len(rec_idx_lod) - 1):
                    beg = rec_idx_lod[rno]
                    end = rec_idx_lod[rno + 1]
                    rec_idx_tmp = rec_idx_batch[beg:end, 0]
                    preds_text = self.char_ops.decode(rec_idx_tmp)
                    beg = predict_lod[rno]
                    end = predict_lod[rno + 1]
                    probs = predict_batch[beg:end, :]
                    ind = np.argmax(probs, axis=1)
                    blank = probs.shape[1]
                    valid_ind = np.where(ind != (blank - 1))[0]
                    score = np.mean(probs[valid_ind, ind[valid_ind]])
125
126
                    # rec_res.append([preds_text, score])
                    rec_res[indices[beg_img_no + rno]] = [preds_text, score]
tink2123's avatar
tink2123 committed
127
128
129
            else:
                rec_idx_batch = self.output_tensors[0].copy_to_cpu()
                predict_batch = self.output_tensors[1].copy_to_cpu()
tink2123's avatar
tink2123 committed
130
131
                elapse = time.time() - starttime
                predict_time += elapse
tink2123's avatar
tink2123 committed
132
133
134
135
136
137
138
139
140
                for rno in range(len(rec_idx_batch)):
                    end_pos = np.where(rec_idx_batch[rno, :] == 1)[0]
                    if len(end_pos) <= 1:
                        preds = rec_idx_batch[rno, 1:]
                        score = np.mean(predict_batch[rno, 1:])
                    else:
                        preds = rec_idx_batch[rno, 1:end_pos[1]]
                        score = np.mean(predict_batch[rno, 1:end_pos[1]])
                    preds_text = self.char_ops.decode(preds)
141
142
                    # rec_res.append([preds_text, score])
                    rec_res[indices[beg_img_no + rno]] = [preds_text, score]
tink2123's avatar
tink2123 committed
143

LDOUBLEV's avatar
LDOUBLEV committed
144
145
146
        return rec_res, predict_time


147
def main(args):
dyning's avatar
dyning committed
148
    image_file_list = get_image_file_list(args.image_dir)
LDOUBLEV's avatar
LDOUBLEV committed
149
150
151
152
    text_recognizer = TextRecognizer(args)
    valid_image_file_list = []
    img_list = []
    for image_file in image_file_list:
153
        img = cv2.imread(image_file, cv2.IMREAD_COLOR)
LDOUBLEV's avatar
LDOUBLEV committed
154
155
156
157
158
        if img is None:
            logger.info("error in loading image:{}".format(image_file))
            continue
        valid_image_file_list.append(image_file)
        img_list.append(img)
tink2123's avatar
tink2123 committed
159
160
    try:
        rec_res, predict_time = text_recognizer(img_list)
tink2123's avatar
tink2123 committed
161
162
    except Exception as e:
        print(e)
tink2123's avatar
tink2123 committed
163
        logger.info(
tink2123's avatar
tink2123 committed
164
165
166
167
            "ERROR!!!! \n"
            "Please read the FAQ:https://github.com/PaddlePaddle/PaddleOCR#faq \n"
            "If your model has tps module:  "
            "TPS does not support variable shape.\n"
tink2123's avatar
tink2123 committed
168
            "Please set --rec_image_shape='3,32,100' and --rec_char_type='en' ")
tink2123's avatar
tink2123 committed
169
        exit()
LDOUBLEV's avatar
LDOUBLEV committed
170
171
172
173
    for ino in range(len(img_list)):
        print("Predicts of %s:%s" % (valid_image_file_list[ino], rec_res[ino]))
    print("Total predict time for %d images:%.3f" %
          (len(img_list), predict_time))
174
175
176
177


if __name__ == "__main__":
    main(utility.parse_args())