utility.py 22.6 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
WenmuZhou's avatar
WenmuZhou committed
16
import os
WenmuZhou's avatar
WenmuZhou committed
17
import sys
LDOUBLEV's avatar
LDOUBLEV committed
18
19
import cv2
import numpy as np
LDOUBLEV's avatar
LDOUBLEV committed
20
21
import json
from PIL import Image, ImageDraw, ImageFont
22
import math
WenmuZhou's avatar
WenmuZhou committed
23
from paddle import inference
LDOUBLEV's avatar
LDOUBLEV committed
24
25
import time
from ppocr.utils.logging import get_logger
WenmuZhou's avatar
WenmuZhou committed
26

LDOUBLEV's avatar
LDOUBLEV committed
27

28
29
def str2bool(v):
    return v.lower() in ("true", "t", "1")
LDOUBLEV's avatar
LDOUBLEV committed
30
31


WenmuZhou's avatar
WenmuZhou committed
32
def init_args():
LDOUBLEV's avatar
LDOUBLEV committed
33
    parser = argparse.ArgumentParser()
WenmuZhou's avatar
WenmuZhou committed
34
    # params for prediction engine
LDOUBLEV's avatar
LDOUBLEV committed
35
36
37
    parser.add_argument("--use_gpu", type=str2bool, default=True)
    parser.add_argument("--ir_optim", type=str2bool, default=True)
    parser.add_argument("--use_tensorrt", type=str2bool, default=False)
LDOUBLEV's avatar
LDOUBLEV committed
38
    parser.add_argument("--min_subgraph_size", type=int, default=15)
LDOUBLEV's avatar
LDOUBLEV committed
39
    parser.add_argument("--precision", type=str, default="fp32")
40
    parser.add_argument("--gpu_mem", type=int, default=500)
LDOUBLEV's avatar
LDOUBLEV committed
41

WenmuZhou's avatar
WenmuZhou committed
42
    # params for text detector
LDOUBLEV's avatar
LDOUBLEV committed
43
44
45
    parser.add_argument("--image_dir", type=str)
    parser.add_argument("--det_algorithm", type=str, default='DB')
    parser.add_argument("--det_model_dir", type=str)
WenmuZhou's avatar
WenmuZhou committed
46
47
    parser.add_argument("--det_limit_side_len", type=float, default=960)
    parser.add_argument("--det_limit_type", type=str, default='max')
LDOUBLEV's avatar
LDOUBLEV committed
48

WenmuZhou's avatar
WenmuZhou committed
49
    # DB parmas
LDOUBLEV's avatar
LDOUBLEV committed
50
    parser.add_argument("--det_db_thresh", type=float, default=0.3)
LDOUBLEV's avatar
LDOUBLEV committed
51
52
    parser.add_argument("--det_db_box_thresh", type=float, default=0.6)
    parser.add_argument("--det_db_unclip_ratio", type=float, default=1.5)
LDOUBLEV's avatar
LDOUBLEV committed
53
    parser.add_argument("--max_batch_size", type=int, default=10)
littletomatodonkey's avatar
littletomatodonkey committed
54
    parser.add_argument("--use_dilation", type=str2bool, default=False)
littletomatodonkey's avatar
littletomatodonkey committed
55
    parser.add_argument("--det_db_score_mode", type=str, default="fast")
WenmuZhou's avatar
WenmuZhou committed
56
    # EAST parmas
LDOUBLEV's avatar
LDOUBLEV committed
57
58
59
60
    parser.add_argument("--det_east_score_thresh", type=float, default=0.8)
    parser.add_argument("--det_east_cover_thresh", type=float, default=0.1)
    parser.add_argument("--det_east_nms_thresh", type=float, default=0.2)

WenmuZhou's avatar
WenmuZhou committed
61
    # SAST parmas
licx's avatar
licx committed
62
63
    parser.add_argument("--det_sast_score_thresh", type=float, default=0.5)
    parser.add_argument("--det_sast_nms_thresh", type=float, default=0.2)
littletomatodonkey's avatar
littletomatodonkey committed
64
    parser.add_argument("--det_sast_polygon", type=str2bool, default=False)
licx's avatar
licx committed
65

WenmuZhou's avatar
WenmuZhou committed
66
67
68
69
    # PSE parmas
    parser.add_argument("--det_pse_thresh", type=float, default=0)
    parser.add_argument("--det_pse_box_thresh", type=float, default=0.85)
    parser.add_argument("--det_pse_min_area", type=float, default=16)
WenmuZhou's avatar
WenmuZhou committed
70
    parser.add_argument("--det_pse_box_type", type=str, default='box')
WenmuZhou's avatar
WenmuZhou committed
71
72
    parser.add_argument("--det_pse_scale", type=int, default=1)

WenmuZhou's avatar
WenmuZhou committed
73
    # params for text recognizer
LDOUBLEV's avatar
LDOUBLEV committed
74
75
    parser.add_argument("--rec_algorithm", type=str, default='CRNN')
    parser.add_argument("--rec_model_dir", type=str)
tink2123's avatar
fix bug  
tink2123 committed
76
    parser.add_argument("--rec_image_shape", type=str, default="3, 32, 320")
77
    parser.add_argument("--rec_batch_num", type=int, default=6)
tink2123's avatar
fix bug  
tink2123 committed
78
    parser.add_argument("--max_text_length", type=int, default=25)
LDOUBLEV's avatar
LDOUBLEV committed
79
80
81
82
    parser.add_argument(
        "--rec_char_dict_path",
        type=str,
        default="./ppocr/utils/ppocr_keys_v1.txt")
WenmuZhou's avatar
WenmuZhou committed
83
84
    parser.add_argument("--use_space_char", type=str2bool, default=True)
    parser.add_argument(
tink2123's avatar
tink2123 committed
85
        "--vis_font_path", type=str, default="./doc/fonts/simfang.ttf")
WenmuZhou's avatar
WenmuZhou committed
86
    parser.add_argument("--drop_score", type=float, default=0.5)
WenmuZhou's avatar
WenmuZhou committed
87

Jethong's avatar
Jethong committed
88
89
90
91
92
93
94
95
96
    # params for e2e
    parser.add_argument("--e2e_algorithm", type=str, default='PGNet')
    parser.add_argument("--e2e_model_dir", type=str)
    parser.add_argument("--e2e_limit_side_len", type=float, default=768)
    parser.add_argument("--e2e_limit_type", type=str, default='max')

    # PGNet parmas
    parser.add_argument("--e2e_pgnet_score_thresh", type=float, default=0.5)
    parser.add_argument(
Jethong's avatar
Jethong committed
97
        "--e2e_char_dict_path", type=str, default="./ppocr/utils/ic15_dict.txt")
Jethong's avatar
Jethong committed
98
    parser.add_argument("--e2e_pgnet_valid_set", type=str, default='totaltext')
littletomatodonkey's avatar
littletomatodonkey committed
99
    parser.add_argument("--e2e_pgnet_polygon", type=str2bool, default=True)
Jethong's avatar
Jethong committed
100
    parser.add_argument("--e2e_pgnet_mode", type=str, default='fast')
Jethong's avatar
Jethong committed
101

WenmuZhou's avatar
WenmuZhou committed
102
103
104
105
106
    # params for text classifier
    parser.add_argument("--use_angle_cls", type=str2bool, default=False)
    parser.add_argument("--cls_model_dir", type=str)
    parser.add_argument("--cls_image_shape", type=str, default="3, 48, 192")
    parser.add_argument("--label_list", type=list, default=['0', '180'])
107
    parser.add_argument("--cls_batch_num", type=int, default=6)
WenmuZhou's avatar
WenmuZhou committed
108
109
110
    parser.add_argument("--cls_thresh", type=float, default=0.9)

    parser.add_argument("--enable_mkldnn", type=str2bool, default=False)
LDOUBLEV's avatar
LDOUBLEV committed
111
    parser.add_argument("--cpu_threads", type=int, default=10)
WenmuZhou's avatar
WenmuZhou committed
112
    parser.add_argument("--use_pdserving", type=str2bool, default=False)
LDOUBLEV's avatar
LDOUBLEV committed
113
    parser.add_argument("--warmup", type=str2bool, default=True)
WenmuZhou's avatar
WenmuZhou committed
114

LDOUBLEV's avatar
LDOUBLEV committed
115
    # multi-process
littletomatodonkey's avatar
littletomatodonkey committed
116
    parser.add_argument("--use_mp", type=str2bool, default=False)
117
118
    parser.add_argument("--total_process_num", type=int, default=1)
    parser.add_argument("--process_id", type=int, default=0)
WenmuZhou's avatar
WenmuZhou committed
119

littletomatodonkey's avatar
littletomatodonkey committed
120
    parser.add_argument("--benchmark", type=str2bool, default=False)
LDOUBLEV's avatar
LDOUBLEV committed
121
    parser.add_argument("--save_log_path", type=str, default="./log_output/")
Double_V's avatar
Double_V committed
122

WenmuZhou's avatar
WenmuZhou committed
123
    parser.add_argument("--show_log", type=str2bool, default=True)
WenmuZhou's avatar
WenmuZhou committed
124
    return parser
WenmuZhou's avatar
WenmuZhou committed
125

126

127
def parse_args():
WenmuZhou's avatar
WenmuZhou committed
128
    parser = init_args()
LDOUBLEV's avatar
LDOUBLEV committed
129
130
131
    return parser.parse_args()


WenmuZhou's avatar
WenmuZhou committed
132
133
134
135
136
def create_predictor(args, mode, logger):
    if mode == "det":
        model_dir = args.det_model_dir
    elif mode == 'cls':
        model_dir = args.cls_model_dir
Jethong's avatar
Jethong committed
137
    elif mode == 'rec':
WenmuZhou's avatar
WenmuZhou committed
138
        model_dir = args.rec_model_dir
WenmuZhou's avatar
WenmuZhou committed
139
140
    elif mode == 'table':
        model_dir = args.table_model_dir
Jethong's avatar
Jethong committed
141
142
    else:
        model_dir = args.e2e_model_dir
WenmuZhou's avatar
WenmuZhou committed
143
144
145
146

    if model_dir is None:
        logger.info("not find {} model file path {}".format(mode, model_dir))
        sys.exit(0)
WenmuZhou's avatar
WenmuZhou committed
147
148
    model_file_path = model_dir + "/inference.pdmodel"
    params_file_path = model_dir + "/inference.pdiparams"
WenmuZhou's avatar
WenmuZhou committed
149
    if not os.path.exists(model_file_path):
LDOUBLEV's avatar
LDOUBLEV committed
150
        raise ValueError("not find model file path {}".format(model_file_path))
WenmuZhou's avatar
WenmuZhou committed
151
    if not os.path.exists(params_file_path):
LDOUBLEV's avatar
LDOUBLEV committed
152
153
        raise ValueError("not find params file path {}".format(
            params_file_path))
WenmuZhou's avatar
WenmuZhou committed
154

WenmuZhou's avatar
WenmuZhou committed
155
    config = inference.Config(model_file_path, params_file_path)
WenmuZhou's avatar
WenmuZhou committed
156

LDOUBLEV's avatar
LDOUBLEV committed
157
158
159
160
161
162
163
164
165
166
    if hasattr(args, 'precision'):
        if args.precision == "fp16" and args.use_tensorrt:
            precision = inference.PrecisionType.Half
        elif args.precision == "int8":
            precision = inference.PrecisionType.Int8
        else:
            precision = inference.PrecisionType.Float32
    else:
        precision = inference.PrecisionType.Float32

WenmuZhou's avatar
WenmuZhou committed
167
    if args.use_gpu:
168
169
170
171
172
        gpu_id = get_infer_gpuid()
        if gpu_id is None:
            raise ValueError(
                "Not found GPU in current device. Please check your device or set args.use_gpu as False"
            )
WenmuZhou's avatar
WenmuZhou committed
173
        config.enable_use_gpu(args.gpu_mem, 0)
LDOUBLEV's avatar
LDOUBLEV committed
174
175
        if args.use_tensorrt:
            config.enable_tensorrt_engine(
LDOUBLEV's avatar
LDOUBLEV committed
176
                workspace_size=1 << 30,
Double_V's avatar
Double_V committed
177
                precision_mode=precision,
LDOUBLEV's avatar
LDOUBLEV committed
178
                max_batch_size=args.max_batch_size,
LDOUBLEV's avatar
LDOUBLEV committed
179
180
                min_subgraph_size=args.min_subgraph_size)
            # skip the minmum trt subgraph
LDOUBLEV's avatar
LDOUBLEV committed
181
        if mode == "det":
LDOUBLEV's avatar
LDOUBLEV committed
182
183
            min_input_shape = {
                "x": [1, 3, 50, 50],
fengshuai03's avatar
fengshuai03 committed
184
185
                "conv2d_92.tmp_0": [1, 120, 20, 20],
                "conv2d_91.tmp_0": [1, 24, 10, 10],
LDOUBLEV's avatar
LDOUBLEV committed
186
                "conv2d_59.tmp_0": [1, 96, 20, 20],
fengshuai03's avatar
fengshuai03 committed
187
188
189
190
191
192
                "nearest_interp_v2_1.tmp_0": [1, 256, 10, 10],
                "nearest_interp_v2_2.tmp_0": [1, 256, 20, 20],
                "conv2d_124.tmp_0": [1, 256, 20, 20],
                "nearest_interp_v2_3.tmp_0": [1, 64, 20, 20],
                "nearest_interp_v2_4.tmp_0": [1, 64, 20, 20],
                "nearest_interp_v2_5.tmp_0": [1, 64, 20, 20],
LDOUBLEV's avatar
LDOUBLEV committed
193
                "elementwise_add_7": [1, 56, 2, 2],
fengshuai03's avatar
fengshuai03 committed
194
                "nearest_interp_v2_0.tmp_0": [1, 256, 2, 2]
LDOUBLEV's avatar
LDOUBLEV committed
195
196
197
            }
            max_input_shape = {
                "x": [1, 3, 2000, 2000],
fengshuai03's avatar
fengshuai03 committed
198
199
                "conv2d_92.tmp_0": [1, 120, 400, 400],
                "conv2d_91.tmp_0": [1, 24, 200, 200],
LDOUBLEV's avatar
LDOUBLEV committed
200
                "conv2d_59.tmp_0": [1, 96, 400, 400],
fengshuai03's avatar
fengshuai03 committed
201
                "nearest_interp_v2_1.tmp_0": [1, 256, 200, 200],
LDOUBLEV's avatar
LDOUBLEV committed
202
                "conv2d_124.tmp_0": [1, 256, 400, 400],
fengshuai03's avatar
fengshuai03 committed
203
204
205
206
                "nearest_interp_v2_2.tmp_0": [1, 256, 400, 400],
                "nearest_interp_v2_3.tmp_0": [1, 64, 400, 400],
                "nearest_interp_v2_4.tmp_0": [1, 64, 400, 400],
                "nearest_interp_v2_5.tmp_0": [1, 64, 400, 400],
LDOUBLEV's avatar
LDOUBLEV committed
207
                "elementwise_add_7": [1, 56, 400, 400],
fengshuai03's avatar
fengshuai03 committed
208
                "nearest_interp_v2_0.tmp_0": [1, 256, 400, 400]
LDOUBLEV's avatar
LDOUBLEV committed
209
210
211
            }
            opt_input_shape = {
                "x": [1, 3, 640, 640],
fengshuai03's avatar
fengshuai03 committed
212
213
                "conv2d_92.tmp_0": [1, 120, 160, 160],
                "conv2d_91.tmp_0": [1, 24, 80, 80],
LDOUBLEV's avatar
LDOUBLEV committed
214
                "conv2d_59.tmp_0": [1, 96, 160, 160],
fengshuai03's avatar
fengshuai03 committed
215
216
                "nearest_interp_v2_1.tmp_0": [1, 256, 80, 80],
                "nearest_interp_v2_2.tmp_0": [1, 256, 160, 160],
LDOUBLEV's avatar
LDOUBLEV committed
217
                "conv2d_124.tmp_0": [1, 256, 160, 160],
fengshuai03's avatar
fengshuai03 committed
218
219
220
                "nearest_interp_v2_3.tmp_0": [1, 64, 160, 160],
                "nearest_interp_v2_4.tmp_0": [1, 64, 160, 160],
                "nearest_interp_v2_5.tmp_0": [1, 64, 160, 160],
LDOUBLEV's avatar
LDOUBLEV committed
221
                "elementwise_add_7": [1, 56, 40, 40],
fengshuai03's avatar
fengshuai03 committed
222
                "nearest_interp_v2_0.tmp_0": [1, 256, 40, 40]
LDOUBLEV's avatar
LDOUBLEV committed
223
            }
fengshuai03's avatar
fengshuai03 committed
224
            min_pact_shape = {
littletomatodonkey's avatar
littletomatodonkey committed
225
226
227
228
                "nearest_interp_v2_26.tmp_0": [1, 256, 20, 20],
                "nearest_interp_v2_27.tmp_0": [1, 64, 20, 20],
                "nearest_interp_v2_28.tmp_0": [1, 64, 20, 20],
                "nearest_interp_v2_29.tmp_0": [1, 64, 20, 20]
fengshuai03's avatar
fengshuai03 committed
229
230
            }
            max_pact_shape = {
littletomatodonkey's avatar
littletomatodonkey committed
231
232
233
234
                "nearest_interp_v2_26.tmp_0": [1, 256, 400, 400],
                "nearest_interp_v2_27.tmp_0": [1, 64, 400, 400],
                "nearest_interp_v2_28.tmp_0": [1, 64, 400, 400],
                "nearest_interp_v2_29.tmp_0": [1, 64, 400, 400]
fengshuai03's avatar
fengshuai03 committed
235
236
            }
            opt_pact_shape = {
littletomatodonkey's avatar
littletomatodonkey committed
237
238
239
240
                "nearest_interp_v2_26.tmp_0": [1, 256, 160, 160],
                "nearest_interp_v2_27.tmp_0": [1, 64, 160, 160],
                "nearest_interp_v2_28.tmp_0": [1, 64, 160, 160],
                "nearest_interp_v2_29.tmp_0": [1, 64, 160, 160]
fengshuai03's avatar
fengshuai03 committed
241
242
243
244
            }
            min_input_shape.update(min_pact_shape)
            max_input_shape.update(max_pact_shape)
            opt_input_shape.update(opt_pact_shape)
LDOUBLEV's avatar
LDOUBLEV committed
245
        elif mode == "rec":
LDOUBLEV's avatar
LDOUBLEV committed
246
            min_input_shape = {"x": [1, 3, 32, 10]}
LDOUBLEV's avatar
LDOUBLEV committed
247
248
249
            max_input_shape = {"x": [args.rec_batch_num, 3, 32, 2000]}
            opt_input_shape = {"x": [args.rec_batch_num, 3, 32, 320]}
        elif mode == "cls":
LDOUBLEV's avatar
LDOUBLEV committed
250
            min_input_shape = {"x": [1, 3, 48, 10]}
LDOUBLEV's avatar
LDOUBLEV committed
251
252
            max_input_shape = {"x": [args.rec_batch_num, 3, 48, 2000]}
            opt_input_shape = {"x": [args.rec_batch_num, 3, 48, 320]}
LDOUBLEV's avatar
LDOUBLEV committed
253
254
255
256
        else:
            min_input_shape = {"x": [1, 3, 10, 10]}
            max_input_shape = {"x": [1, 3, 1000, 1000]}
            opt_input_shape = {"x": [1, 3, 500, 500]}
LDOUBLEV's avatar
LDOUBLEV committed
257
258
259
        config.set_trt_dynamic_shape_info(min_input_shape, max_input_shape,
                                          opt_input_shape)

WenmuZhou's avatar
WenmuZhou committed
260
261
    else:
        config.disable_gpu()
LDOUBLEV's avatar
LDOUBLEV committed
262
263
264
        if hasattr(args, "cpu_threads"):
            config.set_cpu_math_library_num_threads(args.cpu_threads)
        else:
WenmuZhou's avatar
WenmuZhou committed
265
            # default cpu threads as 10
LDOUBLEV's avatar
LDOUBLEV committed
266
            config.set_cpu_math_library_num_threads(10)
WenmuZhou's avatar
WenmuZhou committed
267
268
269
270
        if args.enable_mkldnn:
            # cache 10 different shapes for mkldnn to avoid memory leak
            config.set_mkldnn_cache_capacity(10)
            config.enable_mkldnn()
LDOUBLEV's avatar
LDOUBLEV committed
271
272
            if args.precision == "fp16":
                config.enable_mkldnn_bfloat16()
LDOUBLEV's avatar
LDOUBLEV committed
273
274
    # enable memory optim
    config.enable_memory_optim()
LDOUBLEV's avatar
LDOUBLEV committed
275
    config.disable_glog_info()
WenmuZhou's avatar
WenmuZhou committed
276

WenmuZhou's avatar
WenmuZhou committed
277
    config.delete_pass("conv_transpose_eltwiseadd_bn_fuse_pass")
WenmuZhou's avatar
WenmuZhou committed
278
    if mode == 'table':
WenmuZhou's avatar
WenmuZhou committed
279
        config.delete_pass("fc_fuse_pass")  # not supported for table
WenmuZhou's avatar
WenmuZhou committed
280
    config.switch_use_feed_fetch_ops(False)
WenmuZhou's avatar
WenmuZhou committed
281
    config.switch_ir_optim(True)
282

WenmuZhou's avatar
WenmuZhou committed
283
284
    # create predictor
    predictor = inference.create_predictor(config)
WenmuZhou's avatar
WenmuZhou committed
285
286
    input_names = predictor.get_input_names()
    for name in input_names:
WenmuZhou's avatar
WenmuZhou committed
287
        input_tensor = predictor.get_input_handle(name)
WenmuZhou's avatar
WenmuZhou committed
288
289
290
    output_names = predictor.get_output_names()
    output_tensors = []
    for output_name in output_names:
WenmuZhou's avatar
WenmuZhou committed
291
        output_tensor = predictor.get_output_handle(output_name)
WenmuZhou's avatar
WenmuZhou committed
292
        output_tensors.append(output_tensor)
LDOUBLEV's avatar
LDOUBLEV committed
293
    return predictor, input_tensor, output_tensors, config
WenmuZhou's avatar
WenmuZhou committed
294
295


LDOUBLEV's avatar
LDOUBLEV committed
296
297
def get_infer_gpuid():
    cmd = "nvidia-smi"
LDOUBLEV's avatar
LDOUBLEV committed
298
299
300
301
    try:
        res = os.popen(cmd).readlines()
    except:
        res = None
LDOUBLEV's avatar
LDOUBLEV committed
302
303
304
305
306
307
308
309
310
311
312
    if len(res) == 0:
        return None
    cmd = "env | grep CUDA_VISIBLE_DEVICES"
    env_cuda = os.popen(cmd).readlines()
    if len(env_cuda) == 0:
        return 0
    else:
        gpu_id = env_cuda[0].strip().split("=")[1]
        return int(gpu_id[0])


Jethong's avatar
Jethong committed
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
def draw_e2e_res(dt_boxes, strs, img_path):
    src_im = cv2.imread(img_path)
    for box, str in zip(dt_boxes, strs):
        box = box.astype(np.int32).reshape((-1, 1, 2))
        cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
        cv2.putText(
            src_im,
            str,
            org=(int(box[0, 0, 0]), int(box[0, 0, 1])),
            fontFace=cv2.FONT_HERSHEY_COMPLEX,
            fontScale=0.7,
            color=(0, 255, 0),
            thickness=1)
    return src_im


LDOUBLEV's avatar
LDOUBLEV committed
329
def draw_text_det_res(dt_boxes, img_path):
LDOUBLEV's avatar
LDOUBLEV committed
330
331
332
333
    src_im = cv2.imread(img_path)
    for box in dt_boxes:
        box = np.array(box).astype(np.int32).reshape(-1, 2)
        cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
LDOUBLEV's avatar
LDOUBLEV committed
334
    return src_im
LDOUBLEV's avatar
LDOUBLEV committed
335
336


LDOUBLEV's avatar
LDOUBLEV committed
337
338
def resize_img(img, input_size=600):
    """
LDOUBLEV's avatar
LDOUBLEV committed
339
    resize img and limit the longest side of the image to input_size
LDOUBLEV's avatar
LDOUBLEV committed
340
341
342
343
344
    """
    img = np.array(img)
    im_shape = img.shape
    im_size_max = np.max(im_shape[0:2])
    im_scale = float(input_size) / float(im_size_max)
WenmuZhou's avatar
WenmuZhou committed
345
346
    img = cv2.resize(img, None, None, fx=im_scale, fy=im_scale)
    return img
LDOUBLEV's avatar
LDOUBLEV committed
347
348


WenmuZhou's avatar
WenmuZhou committed
349
350
351
352
353
def draw_ocr(image,
             boxes,
             txts=None,
             scores=None,
             drop_score=0.5,
LDOUBLEV's avatar
LDOUBLEV committed
354
             font_path="./doc/fonts/simfang.ttf"):
355
356
357
    """
    Visualize the results of OCR detection and recognition
    args:
LDOUBLEV's avatar
LDOUBLEV committed
358
        image(Image|array): RGB image
359
360
361
362
        boxes(list): boxes with shape(N, 4, 2)
        txts(list): the texts
        scores(list): txxs corresponding scores
        drop_score(float): only scores greater than drop_threshold will be visualized
WenmuZhou's avatar
WenmuZhou committed
363
        font_path: the path of font which is used to draw text
364
365
366
    return(array):
        the visualized img
    """
LDOUBLEV's avatar
LDOUBLEV committed
367
368
    if scores is None:
        scores = [1] * len(boxes)
WenmuZhou's avatar
WenmuZhou committed
369
370
371
372
    box_num = len(boxes)
    for i in range(box_num):
        if scores is not None and (scores[i] < drop_score or
                                   math.isnan(scores[i])):
LDOUBLEV's avatar
LDOUBLEV committed
373
            continue
WenmuZhou's avatar
WenmuZhou committed
374
        box = np.reshape(np.array(boxes[i]), [-1, 1, 2]).astype(np.int64)
LDOUBLEV's avatar
LDOUBLEV committed
375
        image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2)
WenmuZhou's avatar
WenmuZhou committed
376
    if txts is not None:
LDOUBLEV's avatar
LDOUBLEV committed
377
        img = np.array(resize_img(image, input_size=600))
378
        txt_img = text_visual(
WenmuZhou's avatar
WenmuZhou committed
379
380
381
382
383
384
            txts,
            scores,
            img_h=img.shape[0],
            img_w=600,
            threshold=drop_score,
            font_path=font_path)
385
        img = np.concatenate([np.array(img), np.array(txt_img)], axis=1)
LDOUBLEV's avatar
LDOUBLEV committed
386
387
        return img
    return image
388
389


WenmuZhou's avatar
WenmuZhou committed
390
391
392
393
394
395
def draw_ocr_box_txt(image,
                     boxes,
                     txts,
                     scores=None,
                     drop_score=0.5,
                     font_path="./doc/simfang.ttf"):
396
397
398
    h, w = image.height, image.width
    img_left = image.copy()
    img_right = Image.new('RGB', (w, h), (255, 255, 255))
399
400

    import random
LDOUBLEV's avatar
LDOUBLEV committed
401

402
403
404
    random.seed(0)
    draw_left = ImageDraw.Draw(img_left)
    draw_right = ImageDraw.Draw(img_right)
WenmuZhou's avatar
WenmuZhou committed
405
406
407
    for idx, (box, txt) in enumerate(zip(boxes, txts)):
        if scores is not None and scores[idx] < drop_score:
            continue
tink2123's avatar
tink2123 committed
408
409
        color = (random.randint(0, 255), random.randint(0, 255),
                 random.randint(0, 255))
410
        draw_left.polygon(box, fill=color)
tink2123's avatar
tink2123 committed
411
412
413
414
415
416
417
418
419
420
        draw_right.polygon(
            [
                box[0][0], box[0][1], box[1][0], box[1][1], box[2][0],
                box[2][1], box[3][0], box[3][1]
            ],
            outline=color)
        box_height = math.sqrt((box[0][0] - box[3][0])**2 + (box[0][1] - box[3][
            1])**2)
        box_width = math.sqrt((box[0][0] - box[1][0])**2 + (box[0][1] - box[1][
            1])**2)
421
422
        if box_height > 2 * box_width:
            font_size = max(int(box_width * 0.9), 10)
WenmuZhou's avatar
WenmuZhou committed
423
            font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
424
425
426
            cur_y = box[0][1]
            for c in txt:
                char_size = font.getsize(c)
tink2123's avatar
tink2123 committed
427
428
                draw_right.text(
                    (box[0][0] + 3, cur_y), c, fill=(0, 0, 0), font=font)
429
430
431
                cur_y += char_size[1]
        else:
            font_size = max(int(box_height * 0.8), 10)
WenmuZhou's avatar
WenmuZhou committed
432
            font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
tink2123's avatar
tink2123 committed
433
434
            draw_right.text(
                [box[0][0], box[0][1]], txt, fill=(0, 0, 0), font=font)
435
436
437
438
    img_left = Image.blend(image, img_left, 0.5)
    img_show = Image.new('RGB', (w * 2, h), (255, 255, 255))
    img_show.paste(img_left, (0, 0, w, h))
    img_show.paste(img_right, (w, 0, w * 2, h))
439
440
441
    return np.array(img_show)


442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
def str_count(s):
    """
    Count the number of Chinese characters,
    a single English character and a single number
    equal to half the length of Chinese characters.
    args:
        s(string): the input of string
    return(int):
        the number of Chinese characters
    """
    import string
    count_zh = count_pu = 0
    s_len = len(s)
    en_dg_count = 0
    for c in s:
        if c in string.ascii_letters or c.isdigit() or c.isspace():
            en_dg_count += 1
        elif c.isalpha():
            count_zh += 1
        else:
            count_pu += 1
    return s_len - math.ceil(en_dg_count / 2)


WenmuZhou's avatar
WenmuZhou committed
466
467
468
469
470
471
def text_visual(texts,
                scores,
                img_h=400,
                img_w=600,
                threshold=0.,
                font_path="./doc/simfang.ttf"):
472
473
474
475
476
477
478
    """
    create new blank img and draw txt on it
    args:
        texts(list): the text will be draw
        scores(list|None): corresponding score of each txt
        img_h(int): the height of blank img
        img_w(int): the width of blank img
WenmuZhou's avatar
WenmuZhou committed
479
        font_path: the path of font which is used to draw text
480
481
482
483
484
485
486
487
488
    return(array):
    """
    if scores is not None:
        assert len(texts) == len(
            scores), "The number of txts and corresponding scores must match"

    def create_blank_img():
        blank_img = np.ones(shape=[img_h, img_w], dtype=np.int8) * 255
        blank_img[:, img_w - 1:] = 0
LDOUBLEV's avatar
LDOUBLEV committed
489
490
        blank_img = Image.fromarray(blank_img).convert("RGB")
        draw_txt = ImageDraw.Draw(blank_img)
491
        return blank_img, draw_txt
LDOUBLEV's avatar
LDOUBLEV committed
492

493
494
495
496
    blank_img, draw_txt = create_blank_img()

    font_size = 20
    txt_color = (0, 0, 0)
WenmuZhou's avatar
WenmuZhou committed
497
    font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
498
499
500

    gap = font_size + 5
    txt_img_list = []
LDOUBLEV's avatar
LDOUBLEV committed
501
    count, index = 1, 0
502
503
    for idx, txt in enumerate(texts):
        index += 1
LDOUBLEV's avatar
LDOUBLEV committed
504
        if scores[idx] < threshold or math.isnan(scores[idx]):
505
506
507
508
509
510
511
512
513
514
515
            index -= 1
            continue
        first_line = True
        while str_count(txt) >= img_w // font_size - 4:
            tmp = txt
            txt = tmp[:img_w // font_size - 4]
            if first_line:
                new_txt = str(index) + ': ' + txt
                first_line = False
            else:
                new_txt = '    ' + txt
LDOUBLEV's avatar
LDOUBLEV committed
516
            draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
517
518
519
520
521
            txt = tmp[img_w // font_size - 4:]
            if count >= img_h // gap - 1:
                txt_img_list.append(np.array(blank_img))
                blank_img, draw_txt = create_blank_img()
                count = 0
LDOUBLEV's avatar
LDOUBLEV committed
522
            count += 1
523
524
525
        if first_line:
            new_txt = str(index) + ': ' + txt + '   ' + '%.3f' % (scores[idx])
        else:
LDOUBLEV's avatar
LDOUBLEV committed
526
            new_txt = "  " + txt + "  " + '%.3f' % (scores[idx])
LDOUBLEV's avatar
LDOUBLEV committed
527
        draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
528
        # whether add new blank img or not
LDOUBLEV's avatar
LDOUBLEV committed
529
        if count >= img_h // gap - 1 and idx + 1 < len(texts):
530
531
532
            txt_img_list.append(np.array(blank_img))
            blank_img, draw_txt = create_blank_img()
            count = 0
LDOUBLEV's avatar
LDOUBLEV committed
533
        count += 1
534
535
536
537
538
539
    txt_img_list.append(np.array(blank_img))
    if len(txt_img_list) == 1:
        blank_img = np.array(txt_img_list[0])
    else:
        blank_img = np.concatenate(txt_img_list, axis=1)
    return np.array(blank_img)
LDOUBLEV's avatar
LDOUBLEV committed
540
541


dyning's avatar
dyning committed
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
def base64_to_cv2(b64str):
    import base64
    data = base64.b64decode(b64str.encode('utf8'))
    data = np.fromstring(data, np.uint8)
    data = cv2.imdecode(data, cv2.IMREAD_COLOR)
    return data


def draw_boxes(image, boxes, scores=None, drop_score=0.5):
    if scores is None:
        scores = [1] * len(boxes)
    for (box, score) in zip(boxes, scores):
        if score < drop_score:
            continue
        box = np.reshape(np.array(box), [-1, 1, 2]).astype(np.int64)
        image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2)
    return image


WenmuZhou's avatar
WenmuZhou committed
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
def get_rotate_crop_image(img, points):
    '''
    img_height, img_width = img.shape[0:2]
    left = int(np.min(points[:, 0]))
    right = int(np.max(points[:, 0]))
    top = int(np.min(points[:, 1]))
    bottom = int(np.max(points[:, 1]))
    img_crop = img[top:bottom, left:right, :].copy()
    points[:, 0] = points[:, 0] - left
    points[:, 1] = points[:, 1] - top
    '''
    assert len(points) == 4, "shape of points must be 4*2"
    img_crop_width = int(
        max(
            np.linalg.norm(points[0] - points[1]),
            np.linalg.norm(points[2] - points[3])))
    img_crop_height = int(
        max(
            np.linalg.norm(points[0] - points[3]),
            np.linalg.norm(points[1] - points[2])))
    pts_std = np.float32([[0, 0], [img_crop_width, 0],
                          [img_crop_width, img_crop_height],
                          [0, img_crop_height]])
    M = cv2.getPerspectiveTransform(points, pts_std)
    dst_img = cv2.warpPerspective(
        img,
        M, (img_crop_width, img_crop_height),
        borderMode=cv2.BORDER_REPLICATE,
        flags=cv2.INTER_CUBIC)
    dst_img_height, dst_img_width = dst_img.shape[0:2]
    if dst_img_height * 1.0 / dst_img_width >= 1.5:
        dst_img = np.rot90(dst_img)
    return dst_img


LDOUBLEV's avatar
LDOUBLEV committed
596
if __name__ == '__main__':
LDOUBLEV's avatar
LDOUBLEV committed
597
    pass