predict_rec.py 15.4 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
LDOUBLEV's avatar
LDOUBLEV committed
14
15
import os
import sys
Topdu's avatar
Topdu committed
16
from PIL import Image
17
__dir__ = os.path.dirname(os.path.abspath(__file__))
LDOUBLEV's avatar
LDOUBLEV committed
18
sys.path.append(__dir__)
19
sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))
LDOUBLEV's avatar
LDOUBLEV committed
20

21
22
os.environ["FLAGS_allocator_strategy"] = 'auto_growth'

LDOUBLEV's avatar
LDOUBLEV committed
23
24
25
26
import cv2
import numpy as np
import math
import time
WenmuZhou's avatar
WenmuZhou committed
27
import traceback
tink2123's avatar
tink2123 committed
28
import paddle
29
30

import tools.infer.utility as utility
WenmuZhou's avatar
WenmuZhou committed
31
32
from ppocr.postprocess import build_post_process
from ppocr.utils.logging import get_logger
33
from ppocr.utils.utility import get_image_file_list, check_and_read_gif
LDOUBLEV's avatar
LDOUBLEV committed
34

WenmuZhou's avatar
WenmuZhou committed
35
36
logger = get_logger()

LDOUBLEV's avatar
LDOUBLEV committed
37
38
39

class TextRecognizer(object):
    def __init__(self, args):
40
        self.rec_image_shape = [int(v) for v in args.rec_image_shape.split(",")]
41
        self.rec_batch_num = args.rec_batch_num
tink2123's avatar
tink2123 committed
42
        self.rec_algorithm = args.rec_algorithm
WenmuZhou's avatar
WenmuZhou committed
43
44
        postprocess_params = {
            'name': 'CTCLabelDecode',
45
            "character_dict_path": args.rec_char_dict_path,
WenmuZhou's avatar
WenmuZhou committed
46
            "use_space_char": args.use_space_char
tink2123's avatar
tink2123 committed
47
        }
tink2123's avatar
tink2123 committed
48
49
50
        if self.rec_algorithm == "SRN":
            postprocess_params = {
                'name': 'SRNLabelDecode',
WenmuZhou's avatar
WenmuZhou committed
51
52
53
54
55
56
                "character_dict_path": args.rec_char_dict_path,
                "use_space_char": args.use_space_char
            }
        elif self.rec_algorithm == "RARE":
            postprocess_params = {
                'name': 'AttnLabelDecode',
tink2123's avatar
tink2123 committed
57
58
59
                "character_dict_path": args.rec_char_dict_path,
                "use_space_char": args.use_space_char
            }
Topdu's avatar
Topdu committed
60
61
62
63
64
65
        elif self.rec_algorithm == 'NRTR':
            postprocess_params = {
                'name': 'NRTRLabelDecode',
                "character_dict_path": args.rec_char_dict_path,
                "use_space_char": args.use_space_char
            }
Topdu's avatar
Topdu committed
66
67
68
69
70
71
        elif self.rec_algorithm == "SAR":
            postprocess_params = {
                'name': 'SARLabelDecode',
                "character_dict_path": args.rec_char_dict_path,
                "use_space_char": args.use_space_char
            }
WenmuZhou's avatar
WenmuZhou committed
72
        self.postprocess_op = build_post_process(postprocess_params)
LDOUBLEV's avatar
LDOUBLEV committed
73
        self.predictor, self.input_tensor, self.output_tensors, self.config = \
WenmuZhou's avatar
WenmuZhou committed
74
            utility.create_predictor(args, 'rec', logger)
tink2123's avatar
tink2123 committed
75
76
77
78
        self.benchmark = args.benchmark
        if args.benchmark:
            import auto_log
            pid = os.getpid()
LDOUBLEV's avatar
LDOUBLEV committed
79
            gpu_id = utility.get_infer_gpuid()
tink2123's avatar
tink2123 committed
80
81
82
            self.autolog = auto_log.AutoLogger(
                model_name="rec",
                model_precision=args.precision,
tink2123's avatar
tink2123 committed
83
                batch_size=args.rec_batch_num,
tink2123's avatar
tink2123 committed
84
                data_shape="dynamic",
85
                save_path=None,  #args.save_log_path,
tink2123's avatar
tink2123 committed
86
87
88
                inference_config=self.config,
                pids=pid,
                process_name=None,
LDOUBLEV's avatar
LDOUBLEV committed
89
                gpu_ids=gpu_id if args.use_gpu else None,
tink2123's avatar
tink2123 committed
90
91
92
                time_keys=[
                    'preprocess_time', 'inference_time', 'postprocess_time'
                ],
93
94
                warmup=2,
                logger=logger)
LDOUBLEV's avatar
LDOUBLEV committed
95

96
    def resize_norm_img(self, img, max_wh_ratio):
LDOUBLEV's avatar
LDOUBLEV committed
97
        imgC, imgH, imgW = self.rec_image_shape
Topdu's avatar
Topdu committed
98
        if self.rec_algorithm == 'NRTR':
Topdu's avatar
Topdu committed
99
100
101
102
103
104
105
106
107
            img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
            # return padding_im
            image_pil = Image.fromarray(np.uint8(img))
            img = image_pil.resize([100, 32], Image.ANTIALIAS)
            img = np.array(img)
            norm_img = np.expand_dims(img, -1)
            norm_img = norm_img.transpose((2, 0, 1))
            return norm_img.astype(np.float32) / 128. - 1.

108
        assert imgC == img.shape[2]
tink2123's avatar
tink2123 committed
109
        imgW = int((32 * max_wh_ratio))
110
        h, w = img.shape[:2]
111
112
113
114
115
        ratio = w / float(h)
        if math.ceil(imgH * ratio) > imgW:
            resized_w = imgW
        else:
            resized_w = int(math.ceil(imgH * ratio))
tink2123's avatar
tink2123 committed
116
        resized_image = cv2.resize(img, (resized_w, imgH))
LDOUBLEV's avatar
LDOUBLEV committed
117
118
119
120
121
122
123
124
        resized_image = resized_image.astype('float32')
        resized_image = resized_image.transpose((2, 0, 1)) / 255
        resized_image -= 0.5
        resized_image /= 0.5
        padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
        padding_im[:, :, 0:resized_w] = resized_image
        return padding_im

tink2123's avatar
tink2123 committed
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
    def resize_norm_img_srn(self, img, image_shape):
        imgC, imgH, imgW = image_shape

        img_black = np.zeros((imgH, imgW))
        im_hei = img.shape[0]
        im_wid = img.shape[1]

        if im_wid <= im_hei * 1:
            img_new = cv2.resize(img, (imgH * 1, imgH))
        elif im_wid <= im_hei * 2:
            img_new = cv2.resize(img, (imgH * 2, imgH))
        elif im_wid <= im_hei * 3:
            img_new = cv2.resize(img, (imgH * 3, imgH))
        else:
            img_new = cv2.resize(img, (imgW, imgH))

        img_np = np.asarray(img_new)
        img_np = cv2.cvtColor(img_np, cv2.COLOR_BGR2GRAY)
        img_black[:, 0:img_np.shape[1]] = img_np
        img_black = img_black[:, :, np.newaxis]

        row, col, c = img_black.shape
        c = 1

        return np.reshape(img_black, (c, row, col)).astype(np.float32)

    def srn_other_inputs(self, image_shape, num_heads, max_text_length):

        imgC, imgH, imgW = image_shape
        feature_dim = int((imgH / 8) * (imgW / 8))

        encoder_word_pos = np.array(range(0, feature_dim)).reshape(
            (feature_dim, 1)).astype('int64')
        gsrm_word_pos = np.array(range(0, max_text_length)).reshape(
            (max_text_length, 1)).astype('int64')

        gsrm_attn_bias_data = np.ones((1, max_text_length, max_text_length))
        gsrm_slf_attn_bias1 = np.triu(gsrm_attn_bias_data, 1).reshape(
            [-1, 1, max_text_length, max_text_length])
        gsrm_slf_attn_bias1 = np.tile(
            gsrm_slf_attn_bias1,
            [1, num_heads, 1, 1]).astype('float32') * [-1e9]

        gsrm_slf_attn_bias2 = np.tril(gsrm_attn_bias_data, -1).reshape(
            [-1, 1, max_text_length, max_text_length])
        gsrm_slf_attn_bias2 = np.tile(
            gsrm_slf_attn_bias2,
            [1, num_heads, 1, 1]).astype('float32') * [-1e9]

        encoder_word_pos = encoder_word_pos[np.newaxis, :]
        gsrm_word_pos = gsrm_word_pos[np.newaxis, :]

        return [
            encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1,
            gsrm_slf_attn_bias2
        ]

    def process_image_srn(self, img, image_shape, num_heads, max_text_length):
        norm_img = self.resize_norm_img_srn(img, image_shape)
        norm_img = norm_img[np.newaxis, :]

        [encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1, gsrm_slf_attn_bias2] = \
            self.srn_other_inputs(image_shape, num_heads, max_text_length)

        gsrm_slf_attn_bias1 = gsrm_slf_attn_bias1.astype(np.float32)
        gsrm_slf_attn_bias2 = gsrm_slf_attn_bias2.astype(np.float32)
        encoder_word_pos = encoder_word_pos.astype(np.int64)
        gsrm_word_pos = gsrm_word_pos.astype(np.int64)

        return (norm_img, encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1,
                gsrm_slf_attn_bias2)

Topdu's avatar
Topdu committed
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
    def resize_norm_img_sar(self, img, image_shape,
                            width_downsample_ratio=0.25):
        imgC, imgH, imgW_min, imgW_max = image_shape
        h = img.shape[0]
        w = img.shape[1]
        valid_ratio = 1.0
        # make sure new_width is an integral multiple of width_divisor.
        width_divisor = int(1 / width_downsample_ratio)
        # resize
        ratio = w / float(h)
        resize_w = math.ceil(imgH * ratio)
        if resize_w % width_divisor != 0:
            resize_w = round(resize_w / width_divisor) * width_divisor
        if imgW_min is not None:
            resize_w = max(imgW_min, resize_w)
        if imgW_max is not None:
            valid_ratio = min(1.0, 1.0 * resize_w / imgW_max)
            resize_w = min(imgW_max, resize_w)
        resized_image = cv2.resize(img, (resize_w, imgH))
        resized_image = resized_image.astype('float32')
        # norm 
        if image_shape[0] == 1:
            resized_image = resized_image / 255
            resized_image = resized_image[np.newaxis, :]
        else:
            resized_image = resized_image.transpose((2, 0, 1)) / 255
        resized_image -= 0.5
        resized_image /= 0.5
        resize_shape = resized_image.shape
        padding_im = -1.0 * np.ones((imgC, imgH, imgW_max), dtype=np.float32)
        padding_im[:, :, 0:resize_w] = resized_image
        pad_shape = padding_im.shape

        return padding_im, resize_shape, pad_shape, valid_ratio

LDOUBLEV's avatar
LDOUBLEV committed
232
233
    def __call__(self, img_list):
        img_num = len(img_list)
234
        # Calculate the aspect ratio of all text bars
235
236
237
        width_list = []
        for img in img_list:
            width_list.append(img.shape[1] / float(img.shape[0]))
zhangxin's avatar
zhangxin committed
238
        # Sorting can speed up the recognition process
239
240
        indices = np.argsort(np.array(width_list))
        rec_res = [['', 0.0]] * img_num
241
        batch_num = self.rec_batch_num
LDOUBLEV's avatar
LDOUBLEV committed
242
        st = time.time()
tink2123's avatar
tink2123 committed
243
244
        if self.benchmark:
            self.autolog.times.start()
LDOUBLEV's avatar
LDOUBLEV committed
245
246
247
        for beg_img_no in range(0, img_num, batch_num):
            end_img_no = min(img_num, beg_img_no + batch_num)
            norm_img_batch = []
248
            max_wh_ratio = 0
LDOUBLEV's avatar
LDOUBLEV committed
249
            for ino in range(beg_img_no, end_img_no):
250
                h, w = img_list[indices[ino]].shape[0:2]
251
252
253
                wh_ratio = w * 1.0 / h
                max_wh_ratio = max(max_wh_ratio, wh_ratio)
            for ino in range(beg_img_no, end_img_no):
Topdu's avatar
Topdu committed
254
                if self.rec_algorithm != "SRN" and self.rec_algorithm != "SAR":
tink2123's avatar
tink2123 committed
255
256
257
258
                    norm_img = self.resize_norm_img(img_list[indices[ino]],
                                                    max_wh_ratio)
                    norm_img = norm_img[np.newaxis, :]
                    norm_img_batch.append(norm_img)
Topdu's avatar
Topdu committed
259
260
261
262
263
264
265
266
                elif self.rec_algorithm == "SAR":
                    norm_img, _, _, valid_ratio = self.resize_norm_img_sar(
                        img_list[indices[ino]], self.rec_image_shape)
                    norm_img = norm_img[np.newaxis, :]
                    valid_ratio = np.expand_dims(valid_ratio, axis=0)
                    valid_ratios = []
                    valid_ratios.append(valid_ratio)
                    norm_img_batch.append(norm_img)
tink2123's avatar
tink2123 committed
267
                else:
LDOUBLEV's avatar
LDOUBLEV committed
268
269
                    norm_img = self.process_image_srn(
                        img_list[indices[ino]], self.rec_image_shape, 8, 25)
tink2123's avatar
tink2123 committed
270
271
272
273
274
275
276
277
278
                    encoder_word_pos_list = []
                    gsrm_word_pos_list = []
                    gsrm_slf_attn_bias1_list = []
                    gsrm_slf_attn_bias2_list = []
                    encoder_word_pos_list.append(norm_img[1])
                    gsrm_word_pos_list.append(norm_img[2])
                    gsrm_slf_attn_bias1_list.append(norm_img[3])
                    gsrm_slf_attn_bias2_list.append(norm_img[4])
                    norm_img_batch.append(norm_img[0])
LDOUBLEV's avatar
LDOUBLEV committed
279
280
            norm_img_batch = np.concatenate(norm_img_batch)
            norm_img_batch = norm_img_batch.copy()
tink2123's avatar
tink2123 committed
281
282
            if self.benchmark:
                self.autolog.times.stamp()
tink2123's avatar
tink2123 committed
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308

            if self.rec_algorithm == "SRN":
                encoder_word_pos_list = np.concatenate(encoder_word_pos_list)
                gsrm_word_pos_list = np.concatenate(gsrm_word_pos_list)
                gsrm_slf_attn_bias1_list = np.concatenate(
                    gsrm_slf_attn_bias1_list)
                gsrm_slf_attn_bias2_list = np.concatenate(
                    gsrm_slf_attn_bias2_list)

                inputs = [
                    norm_img_batch,
                    encoder_word_pos_list,
                    gsrm_word_pos_list,
                    gsrm_slf_attn_bias1_list,
                    gsrm_slf_attn_bias2_list,
                ]
                input_names = self.predictor.get_input_names()
                for i in range(len(input_names)):
                    input_tensor = self.predictor.get_input_handle(input_names[
                        i])
                    input_tensor.copy_from_cpu(inputs[i])
                self.predictor.run()
                outputs = []
                for output_tensor in self.output_tensors:
                    output = output_tensor.copy_to_cpu()
                    outputs.append(output)
tink2123's avatar
tink2123 committed
309
310
                if self.benchmark:
                    self.autolog.times.stamp()
tink2123's avatar
tink2123 committed
311
                preds = {"predict": outputs[2]}
Topdu's avatar
Topdu committed
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
            elif self.rec_algorithm == "SAR":
                valid_ratios = np.concatenate(valid_ratios)
                inputs = [
                    norm_img_batch,
                    valid_ratios,
                ]
                input_names = self.predictor.get_input_names()
                for i in range(len(input_names)):
                    input_tensor = self.predictor.get_input_handle(input_names[
                        i])
                    input_tensor.copy_from_cpu(inputs[i])
                self.predictor.run()
                outputs = []
                for output_tensor in self.output_tensors:
                    output = output_tensor.copy_to_cpu()
                    outputs.append(output)
                if self.benchmark:
                    self.autolog.times.stamp()
                preds = outputs[0]
tink2123's avatar
tink2123 committed
331
332
333
334
335
336
337
            else:
                self.input_tensor.copy_from_cpu(norm_img_batch)
                self.predictor.run()
                outputs = []
                for output_tensor in self.output_tensors:
                    output = output_tensor.copy_to_cpu()
                    outputs.append(output)
tink2123's avatar
tink2123 committed
338
339
                if self.benchmark:
                    self.autolog.times.stamp()
Topdu's avatar
Topdu committed
340
341
342
343
                if len(outputs) != 1:
                    preds = outputs
                else:
                    preds = outputs[0]
WenmuZhou's avatar
WenmuZhou committed
344
345
346
            rec_result = self.postprocess_op(preds)
            for rno in range(len(rec_result)):
                rec_res[indices[beg_img_no + rno]] = rec_result[rno]
tink2123's avatar
tink2123 committed
347
348
            if self.benchmark:
                self.autolog.times.end(stamp=True)
LDOUBLEV's avatar
LDOUBLEV committed
349
        return rec_res, time.time() - st
LDOUBLEV's avatar
LDOUBLEV committed
350
351


352
def main(args):
dyning's avatar
dyning committed
353
    image_file_list = get_image_file_list(args.image_dir)
LDOUBLEV's avatar
LDOUBLEV committed
354
355
356
    text_recognizer = TextRecognizer(args)
    valid_image_file_list = []
    img_list = []
LDOUBLEV's avatar
LDOUBLEV committed
357

358
    # warmup 2 times
LDOUBLEV's avatar
LDOUBLEV committed
359
360
    if args.warmup:
        img = np.random.uniform(0, 255, [32, 320, 3]).astype(np.uint8)
361
        for i in range(2):
LDOUBLEV's avatar
LDOUBLEV committed
362
            res = text_recognizer([img] * int(args.rec_batch_num))
LDOUBLEV's avatar
LDOUBLEV committed
363

LDOUBLEV's avatar
LDOUBLEV committed
364
    for image_file in image_file_list:
LDOUBLEV's avatar
LDOUBLEV committed
365
366
367
        img, flag = check_and_read_gif(image_file)
        if not flag:
            img = cv2.imread(image_file)
LDOUBLEV's avatar
LDOUBLEV committed
368
369
370
371
372
        if img is None:
            logger.info("error in loading image:{}".format(image_file))
            continue
        valid_image_file_list.append(image_file)
        img_list.append(img)
LDOUBLEV's avatar
LDOUBLEV committed
373
374
375
376
377
378
379
380
381
382
    try:
        rec_res, _ = text_recognizer(img_list)

    except Exception as E:
        logger.info(traceback.format_exc())
        logger.info(E)
        exit()
    for ino in range(len(img_list)):
        logger.info("Predicts of {}:{}".format(valid_image_file_list[ino],
                                               rec_res[ino]))
tink2123's avatar
tink2123 committed
383
384
    if args.benchmark:
        text_recognizer.autolog.report()
385
386
387
388


if __name__ == "__main__":
    main(utility.parse_args())