utility.py 21.9 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
WenmuZhou's avatar
WenmuZhou committed
16
import os
WenmuZhou's avatar
WenmuZhou committed
17
import sys
LDOUBLEV's avatar
LDOUBLEV committed
18
19
import cv2
import numpy as np
LDOUBLEV's avatar
LDOUBLEV committed
20
21
import json
from PIL import Image, ImageDraw, ImageFont
22
import math
WenmuZhou's avatar
WenmuZhou committed
23
from paddle import inference
LDOUBLEV's avatar
LDOUBLEV committed
24
25
import time
from ppocr.utils.logging import get_logger
WenmuZhou's avatar
WenmuZhou committed
26

LDOUBLEV's avatar
LDOUBLEV committed
27

28
29
def str2bool(v):
    return v.lower() in ("true", "t", "1")
LDOUBLEV's avatar
LDOUBLEV committed
30
31


WenmuZhou's avatar
WenmuZhou committed
32
def init_args():
LDOUBLEV's avatar
LDOUBLEV committed
33
    parser = argparse.ArgumentParser()
WenmuZhou's avatar
WenmuZhou committed
34
    # params for prediction engine
LDOUBLEV's avatar
LDOUBLEV committed
35
36
37
    parser.add_argument("--use_gpu", type=str2bool, default=True)
    parser.add_argument("--ir_optim", type=str2bool, default=True)
    parser.add_argument("--use_tensorrt", type=str2bool, default=False)
LDOUBLEV's avatar
LDOUBLEV committed
38
    parser.add_argument("--min_subgraph_size", type=int, default=10)
LDOUBLEV's avatar
LDOUBLEV committed
39
    parser.add_argument("--precision", type=str, default="fp32")
40
    parser.add_argument("--gpu_mem", type=int, default=500)
LDOUBLEV's avatar
LDOUBLEV committed
41

WenmuZhou's avatar
WenmuZhou committed
42
    # params for text detector
LDOUBLEV's avatar
LDOUBLEV committed
43
44
45
    parser.add_argument("--image_dir", type=str)
    parser.add_argument("--det_algorithm", type=str, default='DB')
    parser.add_argument("--det_model_dir", type=str)
WenmuZhou's avatar
WenmuZhou committed
46
47
    parser.add_argument("--det_limit_side_len", type=float, default=960)
    parser.add_argument("--det_limit_type", type=str, default='max')
LDOUBLEV's avatar
LDOUBLEV committed
48

WenmuZhou's avatar
WenmuZhou committed
49
    # DB parmas
LDOUBLEV's avatar
LDOUBLEV committed
50
    parser.add_argument("--det_db_thresh", type=float, default=0.3)
LDOUBLEV's avatar
LDOUBLEV committed
51
52
    parser.add_argument("--det_db_box_thresh", type=float, default=0.6)
    parser.add_argument("--det_db_unclip_ratio", type=float, default=1.5)
LDOUBLEV's avatar
LDOUBLEV committed
53
    parser.add_argument("--max_batch_size", type=int, default=10)
LDOUBLEV's avatar
LDOUBLEV committed
54
    parser.add_argument("--use_dilation", type=bool, default=False)
littletomatodonkey's avatar
littletomatodonkey committed
55
    parser.add_argument("--det_db_score_mode", type=str, default="fast")
WenmuZhou's avatar
WenmuZhou committed
56
    # EAST parmas
LDOUBLEV's avatar
LDOUBLEV committed
57
58
59
60
    parser.add_argument("--det_east_score_thresh", type=float, default=0.8)
    parser.add_argument("--det_east_cover_thresh", type=float, default=0.1)
    parser.add_argument("--det_east_nms_thresh", type=float, default=0.2)

WenmuZhou's avatar
WenmuZhou committed
61
    # SAST parmas
licx's avatar
licx committed
62
63
    parser.add_argument("--det_sast_score_thresh", type=float, default=0.5)
    parser.add_argument("--det_sast_nms_thresh", type=float, default=0.2)
64
    parser.add_argument("--det_sast_polygon", type=bool, default=False)
licx's avatar
licx committed
65

WenmuZhou's avatar
WenmuZhou committed
66
67
68
69
    # PSE parmas
    parser.add_argument("--det_pse_thresh", type=float, default=0)
    parser.add_argument("--det_pse_box_thresh", type=float, default=0.85)
    parser.add_argument("--det_pse_min_area", type=float, default=16)
WenmuZhou's avatar
WenmuZhou committed
70
    parser.add_argument("--det_pse_box_type", type=str, default='box')
WenmuZhou's avatar
WenmuZhou committed
71
72
    parser.add_argument("--det_pse_scale", type=int, default=1)

WenmuZhou's avatar
WenmuZhou committed
73
    # params for text recognizer
LDOUBLEV's avatar
LDOUBLEV committed
74
75
    parser.add_argument("--rec_algorithm", type=str, default='CRNN')
    parser.add_argument("--rec_model_dir", type=str)
tink2123's avatar
fix bug  
tink2123 committed
76
77
    parser.add_argument("--rec_image_shape", type=str, default="3, 32, 320")
    parser.add_argument("--rec_char_type", type=str, default='ch')
78
    parser.add_argument("--rec_batch_num", type=int, default=6)
tink2123's avatar
fix bug  
tink2123 committed
79
    parser.add_argument("--max_text_length", type=int, default=25)
LDOUBLEV's avatar
LDOUBLEV committed
80
81
82
83
    parser.add_argument(
        "--rec_char_dict_path",
        type=str,
        default="./ppocr/utils/ppocr_keys_v1.txt")
WenmuZhou's avatar
WenmuZhou committed
84
85
    parser.add_argument("--use_space_char", type=str2bool, default=True)
    parser.add_argument(
tink2123's avatar
tink2123 committed
86
        "--vis_font_path", type=str, default="./doc/fonts/simfang.ttf")
WenmuZhou's avatar
WenmuZhou committed
87
    parser.add_argument("--drop_score", type=float, default=0.5)
WenmuZhou's avatar
WenmuZhou committed
88

Jethong's avatar
Jethong committed
89
90
91
92
93
94
95
96
97
    # params for e2e
    parser.add_argument("--e2e_algorithm", type=str, default='PGNet')
    parser.add_argument("--e2e_model_dir", type=str)
    parser.add_argument("--e2e_limit_side_len", type=float, default=768)
    parser.add_argument("--e2e_limit_type", type=str, default='max')

    # PGNet parmas
    parser.add_argument("--e2e_pgnet_score_thresh", type=float, default=0.5)
    parser.add_argument(
Jethong's avatar
Jethong committed
98
        "--e2e_char_dict_path", type=str, default="./ppocr/utils/ic15_dict.txt")
Jethong's avatar
Jethong committed
99
    parser.add_argument("--e2e_pgnet_valid_set", type=str, default='totaltext')
Jethong's avatar
Jethong committed
100
    parser.add_argument("--e2e_pgnet_polygon", type=bool, default=True)
Jethong's avatar
Jethong committed
101
    parser.add_argument("--e2e_pgnet_mode", type=str, default='fast')
Jethong's avatar
Jethong committed
102

WenmuZhou's avatar
WenmuZhou committed
103
104
105
106
107
    # params for text classifier
    parser.add_argument("--use_angle_cls", type=str2bool, default=False)
    parser.add_argument("--cls_model_dir", type=str)
    parser.add_argument("--cls_image_shape", type=str, default="3, 48, 192")
    parser.add_argument("--label_list", type=list, default=['0', '180'])
108
    parser.add_argument("--cls_batch_num", type=int, default=6)
WenmuZhou's avatar
WenmuZhou committed
109
110
111
    parser.add_argument("--cls_thresh", type=float, default=0.9)

    parser.add_argument("--enable_mkldnn", type=str2bool, default=False)
LDOUBLEV's avatar
LDOUBLEV committed
112
    parser.add_argument("--cpu_threads", type=int, default=10)
WenmuZhou's avatar
WenmuZhou committed
113
    parser.add_argument("--use_pdserving", type=str2bool, default=False)
LDOUBLEV's avatar
LDOUBLEV committed
114
    parser.add_argument("--warmup", type=str2bool, default=True)
WenmuZhou's avatar
WenmuZhou committed
115

LDOUBLEV's avatar
LDOUBLEV committed
116
    # multi-process
littletomatodonkey's avatar
littletomatodonkey committed
117
    parser.add_argument("--use_mp", type=str2bool, default=False)
118
119
    parser.add_argument("--total_process_num", type=int, default=1)
    parser.add_argument("--process_id", type=int, default=0)
WenmuZhou's avatar
WenmuZhou committed
120

LDOUBLEV's avatar
LDOUBLEV committed
121
122
    parser.add_argument("--benchmark", type=bool, default=False)
    parser.add_argument("--save_log_path", type=str, default="./log_output/")
Double_V's avatar
Double_V committed
123

WenmuZhou's avatar
WenmuZhou committed
124
    parser.add_argument("--show_log", type=str2bool, default=True)
WenmuZhou's avatar
WenmuZhou committed
125
    return parser
WenmuZhou's avatar
WenmuZhou committed
126

127

128
def parse_args():
WenmuZhou's avatar
WenmuZhou committed
129
    parser = init_args()
LDOUBLEV's avatar
LDOUBLEV committed
130
131
132
    return parser.parse_args()


WenmuZhou's avatar
WenmuZhou committed
133
134
135
136
137
def create_predictor(args, mode, logger):
    if mode == "det":
        model_dir = args.det_model_dir
    elif mode == 'cls':
        model_dir = args.cls_model_dir
Jethong's avatar
Jethong committed
138
    elif mode == 'rec':
WenmuZhou's avatar
WenmuZhou committed
139
        model_dir = args.rec_model_dir
WenmuZhou's avatar
WenmuZhou committed
140
141
    elif mode == 'table':
        model_dir = args.table_model_dir
Jethong's avatar
Jethong committed
142
143
    else:
        model_dir = args.e2e_model_dir
WenmuZhou's avatar
WenmuZhou committed
144
145
146
147

    if model_dir is None:
        logger.info("not find {} model file path {}".format(mode, model_dir))
        sys.exit(0)
WenmuZhou's avatar
WenmuZhou committed
148
149
    model_file_path = model_dir + "/inference.pdmodel"
    params_file_path = model_dir + "/inference.pdiparams"
WenmuZhou's avatar
WenmuZhou committed
150
    if not os.path.exists(model_file_path):
LDOUBLEV's avatar
LDOUBLEV committed
151
        raise ValueError("not find model file path {}".format(model_file_path))
WenmuZhou's avatar
WenmuZhou committed
152
    if not os.path.exists(params_file_path):
LDOUBLEV's avatar
LDOUBLEV committed
153
154
        raise ValueError("not find params file path {}".format(
            params_file_path))
WenmuZhou's avatar
WenmuZhou committed
155

WenmuZhou's avatar
WenmuZhou committed
156
    config = inference.Config(model_file_path, params_file_path)
WenmuZhou's avatar
WenmuZhou committed
157

LDOUBLEV's avatar
LDOUBLEV committed
158
159
160
161
162
163
164
165
166
167
    if hasattr(args, 'precision'):
        if args.precision == "fp16" and args.use_tensorrt:
            precision = inference.PrecisionType.Half
        elif args.precision == "int8":
            precision = inference.PrecisionType.Int8
        else:
            precision = inference.PrecisionType.Float32
    else:
        precision = inference.PrecisionType.Float32

WenmuZhou's avatar
WenmuZhou committed
168
169
    if args.use_gpu:
        config.enable_use_gpu(args.gpu_mem, 0)
LDOUBLEV's avatar
LDOUBLEV committed
170
171
        if args.use_tensorrt:
            config.enable_tensorrt_engine(
Double_V's avatar
Double_V committed
172
                precision_mode=precision,
LDOUBLEV's avatar
LDOUBLEV committed
173
                max_batch_size=args.max_batch_size,
LDOUBLEV's avatar
LDOUBLEV committed
174
175
                min_subgraph_size=args.min_subgraph_size)
            # skip the minmum trt subgraph
LDOUBLEV's avatar
LDOUBLEV committed
176
        if mode == "det":
LDOUBLEV's avatar
LDOUBLEV committed
177
178
            min_input_shape = {
                "x": [1, 3, 50, 50],
fengshuai03's avatar
fengshuai03 committed
179
180
                "conv2d_92.tmp_0": [1, 120, 20, 20],
                "conv2d_91.tmp_0": [1, 24, 10, 10],
LDOUBLEV's avatar
LDOUBLEV committed
181
                "conv2d_59.tmp_0": [1, 96, 20, 20],
fengshuai03's avatar
fengshuai03 committed
182
183
184
185
186
187
                "nearest_interp_v2_1.tmp_0": [1, 256, 10, 10],
                "nearest_interp_v2_2.tmp_0": [1, 256, 20, 20],
                "conv2d_124.tmp_0": [1, 256, 20, 20],
                "nearest_interp_v2_3.tmp_0": [1, 64, 20, 20],
                "nearest_interp_v2_4.tmp_0": [1, 64, 20, 20],
                "nearest_interp_v2_5.tmp_0": [1, 64, 20, 20],
LDOUBLEV's avatar
LDOUBLEV committed
188
                "elementwise_add_7": [1, 56, 2, 2],
fengshuai03's avatar
fengshuai03 committed
189
                "nearest_interp_v2_0.tmp_0": [1, 256, 2, 2]
LDOUBLEV's avatar
LDOUBLEV committed
190
191
192
            }
            max_input_shape = {
                "x": [1, 3, 2000, 2000],
fengshuai03's avatar
fengshuai03 committed
193
194
                "conv2d_92.tmp_0": [1, 120, 400, 400],
                "conv2d_91.tmp_0": [1, 24, 200, 200],
LDOUBLEV's avatar
LDOUBLEV committed
195
                "conv2d_59.tmp_0": [1, 96, 400, 400],
fengshuai03's avatar
fengshuai03 committed
196
                "nearest_interp_v2_1.tmp_0": [1, 256, 200, 200],
LDOUBLEV's avatar
LDOUBLEV committed
197
                "conv2d_124.tmp_0": [1, 256, 400, 400],
fengshuai03's avatar
fengshuai03 committed
198
199
200
201
                "nearest_interp_v2_2.tmp_0": [1, 256, 400, 400],
                "nearest_interp_v2_3.tmp_0": [1, 64, 400, 400],
                "nearest_interp_v2_4.tmp_0": [1, 64, 400, 400],
                "nearest_interp_v2_5.tmp_0": [1, 64, 400, 400],
LDOUBLEV's avatar
LDOUBLEV committed
202
                "elementwise_add_7": [1, 56, 400, 400],
fengshuai03's avatar
fengshuai03 committed
203
                "nearest_interp_v2_0.tmp_0": [1, 256, 400, 400]
LDOUBLEV's avatar
LDOUBLEV committed
204
205
206
            }
            opt_input_shape = {
                "x": [1, 3, 640, 640],
fengshuai03's avatar
fengshuai03 committed
207
208
                "conv2d_92.tmp_0": [1, 120, 160, 160],
                "conv2d_91.tmp_0": [1, 24, 80, 80],
LDOUBLEV's avatar
LDOUBLEV committed
209
                "conv2d_59.tmp_0": [1, 96, 160, 160],
fengshuai03's avatar
fengshuai03 committed
210
211
                "nearest_interp_v2_1.tmp_0": [1, 256, 80, 80],
                "nearest_interp_v2_2.tmp_0": [1, 256, 160, 160],
LDOUBLEV's avatar
LDOUBLEV committed
212
                "conv2d_124.tmp_0": [1, 256, 160, 160],
fengshuai03's avatar
fengshuai03 committed
213
214
215
                "nearest_interp_v2_3.tmp_0": [1, 64, 160, 160],
                "nearest_interp_v2_4.tmp_0": [1, 64, 160, 160],
                "nearest_interp_v2_5.tmp_0": [1, 64, 160, 160],
LDOUBLEV's avatar
LDOUBLEV committed
216
                "elementwise_add_7": [1, 56, 40, 40],
fengshuai03's avatar
fengshuai03 committed
217
                "nearest_interp_v2_0.tmp_0": [1, 256, 40, 40]
LDOUBLEV's avatar
LDOUBLEV committed
218
            }
fengshuai03's avatar
fengshuai03 committed
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
            min_pact_shape = {
                "nearest_interp_v2_26.tmp_0":[1,256,20,20],
                "nearest_interp_v2_27.tmp_0":[1,64,20,20],
                "nearest_interp_v2_28.tmp_0":[1,64,20,20],
                "nearest_interp_v2_29.tmp_0":[1,64,20,20]
            }
            max_pact_shape = {
                "nearest_interp_v2_26.tmp_0":[1,256,400,400],
                "nearest_interp_v2_27.tmp_0":[1,64,400,400],
                "nearest_interp_v2_28.tmp_0":[1,64,400,400],
                "nearest_interp_v2_29.tmp_0":[1,64,400,400]
            }
            opt_pact_shape = {
                "nearest_interp_v2_26.tmp_0":[1,256,160,160],
                "nearest_interp_v2_27.tmp_0":[1,64,160,160],
                "nearest_interp_v2_28.tmp_0":[1,64,160,160],
                "nearest_interp_v2_29.tmp_0":[1,64,160,160]
            }
            min_input_shape.update(min_pact_shape)
            max_input_shape.update(max_pact_shape)
            opt_input_shape.update(opt_pact_shape)
LDOUBLEV's avatar
LDOUBLEV committed
240
241
242
243
244
245
246
247
        elif mode == "rec":
            min_input_shape = {"x": [args.rec_batch_num, 3, 32, 10]}
            max_input_shape = {"x": [args.rec_batch_num, 3, 32, 2000]}
            opt_input_shape = {"x": [args.rec_batch_num, 3, 32, 320]}
        elif mode == "cls":
            min_input_shape = {"x": [args.rec_batch_num, 3, 48, 10]}
            max_input_shape = {"x": [args.rec_batch_num, 3, 48, 2000]}
            opt_input_shape = {"x": [args.rec_batch_num, 3, 48, 320]}
LDOUBLEV's avatar
LDOUBLEV committed
248
249
250
251
        else:
            min_input_shape = {"x": [1, 3, 10, 10]}
            max_input_shape = {"x": [1, 3, 1000, 1000]}
            opt_input_shape = {"x": [1, 3, 500, 500]}
LDOUBLEV's avatar
LDOUBLEV committed
252
253
254
        config.set_trt_dynamic_shape_info(min_input_shape, max_input_shape,
                                          opt_input_shape)

WenmuZhou's avatar
WenmuZhou committed
255
256
    else:
        config.disable_gpu()
LDOUBLEV's avatar
LDOUBLEV committed
257
258
259
        if hasattr(args, "cpu_threads"):
            config.set_cpu_math_library_num_threads(args.cpu_threads)
        else:
WenmuZhou's avatar
WenmuZhou committed
260
            # default cpu threads as 10
LDOUBLEV's avatar
LDOUBLEV committed
261
            config.set_cpu_math_library_num_threads(10)
WenmuZhou's avatar
WenmuZhou committed
262
263
264
265
266
        if args.enable_mkldnn:
            # cache 10 different shapes for mkldnn to avoid memory leak
            config.set_mkldnn_cache_capacity(10)
            config.enable_mkldnn()

LDOUBLEV's avatar
LDOUBLEV committed
267
268
    # enable memory optim
    config.enable_memory_optim()
LDOUBLEV's avatar
LDOUBLEV committed
269
    #config.disable_glog_info()
WenmuZhou's avatar
WenmuZhou committed
270

WenmuZhou's avatar
WenmuZhou committed
271
    config.delete_pass("conv_transpose_eltwiseadd_bn_fuse_pass")
WenmuZhou's avatar
WenmuZhou committed
272
    if mode == 'table':
WenmuZhou's avatar
WenmuZhou committed
273
        config.delete_pass("fc_fuse_pass")  # not supported for table
WenmuZhou's avatar
WenmuZhou committed
274
    config.switch_use_feed_fetch_ops(False)
WenmuZhou's avatar
WenmuZhou committed
275
    config.switch_ir_optim(True)
276

WenmuZhou's avatar
WenmuZhou committed
277
278
    # create predictor
    predictor = inference.create_predictor(config)
WenmuZhou's avatar
WenmuZhou committed
279
280
    input_names = predictor.get_input_names()
    for name in input_names:
WenmuZhou's avatar
WenmuZhou committed
281
        input_tensor = predictor.get_input_handle(name)
WenmuZhou's avatar
WenmuZhou committed
282
283
284
    output_names = predictor.get_output_names()
    output_tensors = []
    for output_name in output_names:
WenmuZhou's avatar
WenmuZhou committed
285
        output_tensor = predictor.get_output_handle(output_name)
WenmuZhou's avatar
WenmuZhou committed
286
        output_tensors.append(output_tensor)
LDOUBLEV's avatar
LDOUBLEV committed
287
    return predictor, input_tensor, output_tensors, config
WenmuZhou's avatar
WenmuZhou committed
288
289


Jethong's avatar
Jethong committed
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
def draw_e2e_res(dt_boxes, strs, img_path):
    src_im = cv2.imread(img_path)
    for box, str in zip(dt_boxes, strs):
        box = box.astype(np.int32).reshape((-1, 1, 2))
        cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
        cv2.putText(
            src_im,
            str,
            org=(int(box[0, 0, 0]), int(box[0, 0, 1])),
            fontFace=cv2.FONT_HERSHEY_COMPLEX,
            fontScale=0.7,
            color=(0, 255, 0),
            thickness=1)
    return src_im


LDOUBLEV's avatar
LDOUBLEV committed
306
def draw_text_det_res(dt_boxes, img_path):
LDOUBLEV's avatar
LDOUBLEV committed
307
308
309
310
    src_im = cv2.imread(img_path)
    for box in dt_boxes:
        box = np.array(box).astype(np.int32).reshape(-1, 2)
        cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
LDOUBLEV's avatar
LDOUBLEV committed
311
    return src_im
LDOUBLEV's avatar
LDOUBLEV committed
312
313


LDOUBLEV's avatar
LDOUBLEV committed
314
315
def resize_img(img, input_size=600):
    """
LDOUBLEV's avatar
LDOUBLEV committed
316
    resize img and limit the longest side of the image to input_size
LDOUBLEV's avatar
LDOUBLEV committed
317
318
319
320
321
    """
    img = np.array(img)
    im_shape = img.shape
    im_size_max = np.max(im_shape[0:2])
    im_scale = float(input_size) / float(im_size_max)
WenmuZhou's avatar
WenmuZhou committed
322
323
    img = cv2.resize(img, None, None, fx=im_scale, fy=im_scale)
    return img
LDOUBLEV's avatar
LDOUBLEV committed
324
325


WenmuZhou's avatar
WenmuZhou committed
326
327
328
329
330
def draw_ocr(image,
             boxes,
             txts=None,
             scores=None,
             drop_score=0.5,
LDOUBLEV's avatar
LDOUBLEV committed
331
             font_path="./doc/fonts/simfang.ttf"):
332
333
334
    """
    Visualize the results of OCR detection and recognition
    args:
LDOUBLEV's avatar
LDOUBLEV committed
335
        image(Image|array): RGB image
336
337
338
339
        boxes(list): boxes with shape(N, 4, 2)
        txts(list): the texts
        scores(list): txxs corresponding scores
        drop_score(float): only scores greater than drop_threshold will be visualized
WenmuZhou's avatar
WenmuZhou committed
340
        font_path: the path of font which is used to draw text
341
342
343
    return(array):
        the visualized img
    """
LDOUBLEV's avatar
LDOUBLEV committed
344
345
    if scores is None:
        scores = [1] * len(boxes)
WenmuZhou's avatar
WenmuZhou committed
346
347
348
349
    box_num = len(boxes)
    for i in range(box_num):
        if scores is not None and (scores[i] < drop_score or
                                   math.isnan(scores[i])):
LDOUBLEV's avatar
LDOUBLEV committed
350
            continue
WenmuZhou's avatar
WenmuZhou committed
351
        box = np.reshape(np.array(boxes[i]), [-1, 1, 2]).astype(np.int64)
LDOUBLEV's avatar
LDOUBLEV committed
352
        image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2)
WenmuZhou's avatar
WenmuZhou committed
353
    if txts is not None:
LDOUBLEV's avatar
LDOUBLEV committed
354
        img = np.array(resize_img(image, input_size=600))
355
        txt_img = text_visual(
WenmuZhou's avatar
WenmuZhou committed
356
357
358
359
360
361
            txts,
            scores,
            img_h=img.shape[0],
            img_w=600,
            threshold=drop_score,
            font_path=font_path)
362
        img = np.concatenate([np.array(img), np.array(txt_img)], axis=1)
LDOUBLEV's avatar
LDOUBLEV committed
363
364
        return img
    return image
365
366


WenmuZhou's avatar
WenmuZhou committed
367
368
369
370
371
372
def draw_ocr_box_txt(image,
                     boxes,
                     txts,
                     scores=None,
                     drop_score=0.5,
                     font_path="./doc/simfang.ttf"):
373
374
375
    h, w = image.height, image.width
    img_left = image.copy()
    img_right = Image.new('RGB', (w, h), (255, 255, 255))
376
377

    import random
LDOUBLEV's avatar
LDOUBLEV committed
378

379
380
381
    random.seed(0)
    draw_left = ImageDraw.Draw(img_left)
    draw_right = ImageDraw.Draw(img_right)
WenmuZhou's avatar
WenmuZhou committed
382
383
384
    for idx, (box, txt) in enumerate(zip(boxes, txts)):
        if scores is not None and scores[idx] < drop_score:
            continue
tink2123's avatar
tink2123 committed
385
386
        color = (random.randint(0, 255), random.randint(0, 255),
                 random.randint(0, 255))
387
        draw_left.polygon(box, fill=color)
tink2123's avatar
tink2123 committed
388
389
390
391
392
393
394
395
396
397
        draw_right.polygon(
            [
                box[0][0], box[0][1], box[1][0], box[1][1], box[2][0],
                box[2][1], box[3][0], box[3][1]
            ],
            outline=color)
        box_height = math.sqrt((box[0][0] - box[3][0])**2 + (box[0][1] - box[3][
            1])**2)
        box_width = math.sqrt((box[0][0] - box[1][0])**2 + (box[0][1] - box[1][
            1])**2)
398
399
        if box_height > 2 * box_width:
            font_size = max(int(box_width * 0.9), 10)
WenmuZhou's avatar
WenmuZhou committed
400
            font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
401
402
403
            cur_y = box[0][1]
            for c in txt:
                char_size = font.getsize(c)
tink2123's avatar
tink2123 committed
404
405
                draw_right.text(
                    (box[0][0] + 3, cur_y), c, fill=(0, 0, 0), font=font)
406
407
408
                cur_y += char_size[1]
        else:
            font_size = max(int(box_height * 0.8), 10)
WenmuZhou's avatar
WenmuZhou committed
409
            font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
tink2123's avatar
tink2123 committed
410
411
            draw_right.text(
                [box[0][0], box[0][1]], txt, fill=(0, 0, 0), font=font)
412
413
414
415
    img_left = Image.blend(image, img_left, 0.5)
    img_show = Image.new('RGB', (w * 2, h), (255, 255, 255))
    img_show.paste(img_left, (0, 0, w, h))
    img_show.paste(img_right, (w, 0, w * 2, h))
416
417
418
    return np.array(img_show)


419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
def str_count(s):
    """
    Count the number of Chinese characters,
    a single English character and a single number
    equal to half the length of Chinese characters.
    args:
        s(string): the input of string
    return(int):
        the number of Chinese characters
    """
    import string
    count_zh = count_pu = 0
    s_len = len(s)
    en_dg_count = 0
    for c in s:
        if c in string.ascii_letters or c.isdigit() or c.isspace():
            en_dg_count += 1
        elif c.isalpha():
            count_zh += 1
        else:
            count_pu += 1
    return s_len - math.ceil(en_dg_count / 2)


WenmuZhou's avatar
WenmuZhou committed
443
444
445
446
447
448
def text_visual(texts,
                scores,
                img_h=400,
                img_w=600,
                threshold=0.,
                font_path="./doc/simfang.ttf"):
449
450
451
452
453
454
455
    """
    create new blank img and draw txt on it
    args:
        texts(list): the text will be draw
        scores(list|None): corresponding score of each txt
        img_h(int): the height of blank img
        img_w(int): the width of blank img
WenmuZhou's avatar
WenmuZhou committed
456
        font_path: the path of font which is used to draw text
457
458
459
460
461
462
463
464
465
    return(array):
    """
    if scores is not None:
        assert len(texts) == len(
            scores), "The number of txts and corresponding scores must match"

    def create_blank_img():
        blank_img = np.ones(shape=[img_h, img_w], dtype=np.int8) * 255
        blank_img[:, img_w - 1:] = 0
LDOUBLEV's avatar
LDOUBLEV committed
466
467
        blank_img = Image.fromarray(blank_img).convert("RGB")
        draw_txt = ImageDraw.Draw(blank_img)
468
        return blank_img, draw_txt
LDOUBLEV's avatar
LDOUBLEV committed
469

470
471
472
473
    blank_img, draw_txt = create_blank_img()

    font_size = 20
    txt_color = (0, 0, 0)
WenmuZhou's avatar
WenmuZhou committed
474
    font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
475
476
477

    gap = font_size + 5
    txt_img_list = []
LDOUBLEV's avatar
LDOUBLEV committed
478
    count, index = 1, 0
479
480
    for idx, txt in enumerate(texts):
        index += 1
LDOUBLEV's avatar
LDOUBLEV committed
481
        if scores[idx] < threshold or math.isnan(scores[idx]):
482
483
484
485
486
487
488
489
490
491
492
            index -= 1
            continue
        first_line = True
        while str_count(txt) >= img_w // font_size - 4:
            tmp = txt
            txt = tmp[:img_w // font_size - 4]
            if first_line:
                new_txt = str(index) + ': ' + txt
                first_line = False
            else:
                new_txt = '    ' + txt
LDOUBLEV's avatar
LDOUBLEV committed
493
            draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
494
495
496
497
498
            txt = tmp[img_w // font_size - 4:]
            if count >= img_h // gap - 1:
                txt_img_list.append(np.array(blank_img))
                blank_img, draw_txt = create_blank_img()
                count = 0
LDOUBLEV's avatar
LDOUBLEV committed
499
            count += 1
500
501
502
        if first_line:
            new_txt = str(index) + ': ' + txt + '   ' + '%.3f' % (scores[idx])
        else:
LDOUBLEV's avatar
LDOUBLEV committed
503
            new_txt = "  " + txt + "  " + '%.3f' % (scores[idx])
LDOUBLEV's avatar
LDOUBLEV committed
504
        draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
505
        # whether add new blank img or not
LDOUBLEV's avatar
LDOUBLEV committed
506
        if count >= img_h // gap - 1 and idx + 1 < len(texts):
507
508
509
            txt_img_list.append(np.array(blank_img))
            blank_img, draw_txt = create_blank_img()
            count = 0
LDOUBLEV's avatar
LDOUBLEV committed
510
        count += 1
511
512
513
514
515
516
    txt_img_list.append(np.array(blank_img))
    if len(txt_img_list) == 1:
        blank_img = np.array(txt_img_list[0])
    else:
        blank_img = np.concatenate(txt_img_list, axis=1)
    return np.array(blank_img)
LDOUBLEV's avatar
LDOUBLEV committed
517
518


dyning's avatar
dyning committed
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
def base64_to_cv2(b64str):
    import base64
    data = base64.b64decode(b64str.encode('utf8'))
    data = np.fromstring(data, np.uint8)
    data = cv2.imdecode(data, cv2.IMREAD_COLOR)
    return data


def draw_boxes(image, boxes, scores=None, drop_score=0.5):
    if scores is None:
        scores = [1] * len(boxes)
    for (box, score) in zip(boxes, scores):
        if score < drop_score:
            continue
        box = np.reshape(np.array(box), [-1, 1, 2]).astype(np.int64)
        image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2)
    return image


WenmuZhou's avatar
WenmuZhou committed
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
def get_rotate_crop_image(img, points):
    '''
    img_height, img_width = img.shape[0:2]
    left = int(np.min(points[:, 0]))
    right = int(np.max(points[:, 0]))
    top = int(np.min(points[:, 1]))
    bottom = int(np.max(points[:, 1]))
    img_crop = img[top:bottom, left:right, :].copy()
    points[:, 0] = points[:, 0] - left
    points[:, 1] = points[:, 1] - top
    '''
    assert len(points) == 4, "shape of points must be 4*2"
    img_crop_width = int(
        max(
            np.linalg.norm(points[0] - points[1]),
            np.linalg.norm(points[2] - points[3])))
    img_crop_height = int(
        max(
            np.linalg.norm(points[0] - points[3]),
            np.linalg.norm(points[1] - points[2])))
    pts_std = np.float32([[0, 0], [img_crop_width, 0],
                          [img_crop_width, img_crop_height],
                          [0, img_crop_height]])
    M = cv2.getPerspectiveTransform(points, pts_std)
    dst_img = cv2.warpPerspective(
        img,
        M, (img_crop_width, img_crop_height),
        borderMode=cv2.BORDER_REPLICATE,
        flags=cv2.INTER_CUBIC)
    dst_img_height, dst_img_width = dst_img.shape[0:2]
    if dst_img_height * 1.0 / dst_img_width >= 1.5:
        dst_img = np.rot90(dst_img)
    return dst_img


LDOUBLEV's avatar
LDOUBLEV committed
573
if __name__ == '__main__':
LDOUBLEV's avatar
LDOUBLEV committed
574
    pass