program.py 21.7 KB
Newer Older
MissPenguin's avatar
refine  
MissPenguin committed
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
LDOUBLEV's avatar
LDOUBLEV committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

WenmuZhou's avatar
WenmuZhou committed
19
import os
LDOUBLEV's avatar
LDOUBLEV committed
20
import sys
21
import platform
LDOUBLEV's avatar
LDOUBLEV committed
22
23
import yaml
import time
24
import datetime
WenmuZhou's avatar
WenmuZhou committed
25
26
27
28
29
import paddle
import paddle.distributed as dist
from tqdm import tqdm
from argparse import ArgumentParser, RawDescriptionHelpFormatter

LDOUBLEV's avatar
LDOUBLEV committed
30
31
from ppocr.utils.stats import TrainingStats
from ppocr.utils.save_load import save_model
32
from ppocr.utils.utility import print_dict, AverageMeter
dyning's avatar
dyning committed
33
from ppocr.utils.logging import get_logger
34
from ppocr.utils.loggers import VDLLogger, WandbLogger, Loggers
LDOUBLEV's avatar
LDOUBLEV committed
35
from ppocr.utils import profiler
dyning's avatar
dyning committed
36
from ppocr.data import build_dataloader
LDOUBLEV's avatar
LDOUBLEV committed
37

dyning's avatar
dyning committed
38

LDOUBLEV's avatar
LDOUBLEV committed
39
40
41
42
43
44
45
class ArgsParser(ArgumentParser):
    def __init__(self):
        super(ArgsParser, self).__init__(
            formatter_class=RawDescriptionHelpFormatter)
        self.add_argument("-c", "--config", help="configuration file to use")
        self.add_argument(
            "-o", "--opt", nargs='+', help="set configuration options")
LDOUBLEV's avatar
LDOUBLEV committed
46
47
48
49
50
        self.add_argument(
            '-p',
            '--profiler_options',
            type=str,
            default=None,
51
52
            help='The option of profiler, which should be in format ' \
                 '\"key1=value1;key2=value2;key3=value3\".'
LDOUBLEV's avatar
LDOUBLEV committed
53
        )
LDOUBLEV's avatar
LDOUBLEV committed
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81

    def parse_args(self, argv=None):
        args = super(ArgsParser, self).parse_args(argv)
        assert args.config is not None, \
            "Please specify --config=configure_file_path."
        args.opt = self._parse_opt(args.opt)
        return args

    def _parse_opt(self, opts):
        config = {}
        if not opts:
            return config
        for s in opts:
            s = s.strip()
            k, v = s.split('=')
            config[k] = yaml.load(v, Loader=yaml.Loader)
        return config


def load_config(file_path):
    """
    Load config from yml/yaml file.
    Args:
        file_path (str): Path of the config file to be loaded.
    Returns: global config
    """
    _, ext = os.path.splitext(file_path)
    assert ext in ['.yml', '.yaml'], "only support yaml files for now"
82
83
    config = yaml.load(open(file_path, 'rb'), Loader=yaml.Loader)
    return config
LDOUBLEV's avatar
LDOUBLEV committed
84
85


86
def merge_config(config, opts):
LDOUBLEV's avatar
LDOUBLEV committed
87
88
89
90
91
92
    """
    Merge config into global config.
    Args:
        config (dict): Config to be merged.
    Returns: global config
    """
93
    for key, value in opts.items():
LDOUBLEV's avatar
LDOUBLEV committed
94
        if "." not in key:
95
96
            if isinstance(value, dict) and key in config:
                config[key].update(value)
LDOUBLEV's avatar
LDOUBLEV committed
97
            else:
98
                config[key] = value
LDOUBLEV's avatar
LDOUBLEV committed
99
100
        else:
            sub_keys = key.split('.')
tink2123's avatar
tink2123 committed
101
            assert (
102
                sub_keys[0] in config
103
104
            ), "the sub_keys can only be one of global_config: {}, but get: " \
               "{}, please check your running command".format(
105
106
                config.keys(), sub_keys[0])
            cur = config[sub_keys[0]]
LDOUBLEV's avatar
LDOUBLEV committed
107
108
109
110
111
            for idx, sub_key in enumerate(sub_keys[1:]):
                if idx == len(sub_keys) - 2:
                    cur[sub_key] = value
                else:
                    cur = cur[sub_key]
112
    return config
LDOUBLEV's avatar
LDOUBLEV committed
113
114
115
116
117
118
119
120
121
122
123
124
125
126


def check_gpu(use_gpu):
    """
    Log error and exit when set use_gpu=true in paddlepaddle
    cpu version.
    """
    err = "Config use_gpu cannot be set as true while you are " \
          "using paddlepaddle cpu version ! \nPlease try: \n" \
          "\t1. Install paddlepaddle-gpu to run model on GPU \n" \
          "\t2. Set use_gpu as false in config file to run " \
          "model on CPU"

    try:
WenmuZhou's avatar
WenmuZhou committed
127
        if use_gpu and not paddle.is_compiled_with_cuda():
WenmuZhou's avatar
WenmuZhou committed
128
            print(err)
LDOUBLEV's avatar
LDOUBLEV committed
129
130
131
132
133
            sys.exit(1)
    except Exception as e:
        pass


134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
def check_xpu(use_xpu):
    """
    Log error and exit when set use_xpu=true in paddlepaddle
    cpu/gpu version.
    """
    err = "Config use_xpu cannot be set as true while you are " \
          "using paddlepaddle cpu/gpu version ! \nPlease try: \n" \
          "\t1. Install paddlepaddle-xpu to run model on XPU \n" \
          "\t2. Set use_xpu as false in config file to run " \
          "model on CPU/GPU"

    try:
        if use_xpu and not paddle.is_compiled_with_xpu():
            print(err)
            sys.exit(1)
    except Exception as e:
        pass


WenmuZhou's avatar
WenmuZhou committed
153
def train(config,
dyning's avatar
dyning committed
154
155
156
          train_dataloader,
          valid_dataloader,
          device,
WenmuZhou's avatar
WenmuZhou committed
157
158
159
160
161
162
163
164
          model,
          loss_class,
          optimizer,
          lr_scheduler,
          post_process_class,
          eval_class,
          pre_best_model_dict,
          logger,
165
          log_writer=None,
stephon's avatar
stephon committed
166
          scaler=None):
WenmuZhou's avatar
WenmuZhou committed
167
168
    cal_metric_during_train = config['Global'].get('cal_metric_during_train',
                                                   False)
169
    calc_epoch_interval = config['Global'].get('calc_epoch_interval', 1)
LDOUBLEV's avatar
LDOUBLEV committed
170
171
172
173
    log_smooth_window = config['Global']['log_smooth_window']
    epoch_num = config['Global']['epoch_num']
    print_batch_step = config['Global']['print_batch_step']
    eval_batch_step = config['Global']['eval_batch_step']
LDOUBLEV's avatar
LDOUBLEV committed
174
    profiler_options = config['profiler_options']
WenmuZhou's avatar
WenmuZhou committed
175

dyning's avatar
dyning committed
176
    global_step = 0
177
178
    if 'global_step' in pre_best_model_dict:
        global_step = pre_best_model_dict['global_step']
LDOUBLEV's avatar
LDOUBLEV committed
179
180
181
182
    start_eval_step = 0
    if type(eval_batch_step) == list and len(eval_batch_step) >= 2:
        start_eval_step = eval_batch_step[0]
        eval_batch_step = eval_batch_step[1]
WenmuZhou's avatar
WenmuZhou committed
183
184
        if len(valid_dataloader) == 0:
            logger.info(
185
186
                'No Images in eval dataset, evaluation during training ' \
                'will be disabled'
WenmuZhou's avatar
WenmuZhou committed
187
188
            )
            start_eval_step = 1e111
LDOUBLEV's avatar
LDOUBLEV committed
189
        logger.info(
190
191
            "During the training process, after the {}th iteration, " \
            "an evaluation is run every {} iterations".
LDOUBLEV's avatar
LDOUBLEV committed
192
            format(start_eval_step, eval_batch_step))
LDOUBLEV's avatar
LDOUBLEV committed
193
194
    save_epoch_step = config['Global']['save_epoch_step']
    save_model_dir = config['Global']['save_model_dir']
195
196
    if not os.path.exists(save_model_dir):
        os.makedirs(save_model_dir)
WenmuZhou's avatar
WenmuZhou committed
197
198
199
200
    main_indicator = eval_class.main_indicator
    best_model_dict = {main_indicator: 0}
    best_model_dict.update(pre_best_model_dict)
    train_stats = TrainingStats(log_smooth_window, ['lr'])
tink2123's avatar
tink2123 committed
201
    model_average = False
WenmuZhou's avatar
WenmuZhou committed
202
203
    model.train()

tink2123's avatar
tink2123 committed
204
    use_srn = config['Architecture']['algorithm'] == "SRN"
andyjpaddle's avatar
andyjpaddle committed
205
    extra_input_models = ["SRN", "NRTR", "SAR", "SEED", "SVTR"]
andyjpaddle's avatar
andyjpaddle committed
206
    extra_input = False
andyjpaddle's avatar
andyjpaddle committed
207
    if config['Architecture']['algorithm'] == 'Distillation':
andyjpaddle's avatar
andyjpaddle committed
208
209
210
        for key in config['Architecture']["Models"]:
            extra_input = extra_input or config['Architecture']['Models'][key][
                'algorithm'] in extra_input_models
andyjpaddle's avatar
andyjpaddle committed
211
212
    else:
        extra_input = config['Architecture']['algorithm'] in extra_input_models
213
    try:
LDOUBLEV's avatar
fix bug  
LDOUBLEV committed
214
        model_type = config['Architecture']['model_type']
215
    except:
LDOUBLEV's avatar
fix bug  
LDOUBLEV committed
216
        model_type = None
andyjpaddle's avatar
andyjpaddle committed
217

tink2123's avatar
tink2123 committed
218
    algorithm = config['Architecture']['algorithm']
tink2123's avatar
tink2123 committed
219

220
221
222
223
    start_epoch = best_model_dict[
        'start_epoch'] if 'start_epoch' in best_model_dict else 1

    total_samples = 0
224
225
    train_reader_cost = 0.0
    train_batch_cost = 0.0
226
    reader_start = time.time()
227
    eta_meter = AverageMeter()
228
229
230

    max_iter = len(train_dataloader) - 1 if platform.system(
    ) == "Windows" else len(train_dataloader)
WenmuZhou's avatar
WenmuZhou committed
231

tink2123's avatar
tink2123 committed
232
    for epoch in range(start_epoch, epoch_num + 1):
233
234
235
236
237
        if train_dataloader.dataset.need_reset:
            train_dataloader = build_dataloader(
                config, 'Train', device, logger, seed=epoch)
            max_iter = len(train_dataloader) - 1 if platform.system(
            ) == "Windows" else len(train_dataloader)
WenmuZhou's avatar
WenmuZhou committed
238
        for idx, batch in enumerate(train_dataloader):
LDOUBLEV's avatar
LDOUBLEV committed
239
            profiler.add_profiler_step(profiler_options)
WenmuZhou's avatar
WenmuZhou committed
240
            train_reader_cost += time.time() - reader_start
Jane-Ding's avatar
Jane-Ding committed
241
            if idx >= max_iter:
WenmuZhou's avatar
WenmuZhou committed
242
243
244
                break
            lr = optimizer.get_lr()
            images = batch[0]
tink2123's avatar
tink2123 committed
245
            if use_srn:
tink2123's avatar
tink2123 committed
246
                model_average = True
stephon's avatar
stephon committed
247
248
249
250
251
252
253
254

            # use amp
            if scaler:
                with paddle.amp.auto_cast():
                    if model_type == 'table' or extra_input:
                        preds = model(images, data=batch[1:])
                    else:
                        preds = model(images)
tink2123's avatar
tink2123 committed
255
            else:
stephon's avatar
stephon committed
256
257
                if model_type == 'table' or extra_input:
                    preds = model(images, data=batch[1:])
258
                elif model_type in ["kie", 'vqa']:
LDOUBLEV's avatar
LDOUBLEV committed
259
                    preds = model(batch)
stephon's avatar
stephon committed
260
261
                else:
                    preds = model(images)
262

WenmuZhou's avatar
WenmuZhou committed
263
264
            loss = loss_class(preds, batch)
            avg_loss = loss['loss']
stephon's avatar
stephon committed
265
266
267
268
269
270
271
272

            if scaler:
                scaled_avg_loss = scaler.scale(avg_loss)
                scaled_avg_loss.backward()
                scaler.minimize(optimizer, scaled_avg_loss)
            else:
                avg_loss.backward()
                optimizer.step()
WenmuZhou's avatar
WenmuZhou committed
273
            optimizer.clear_grad()
WenmuZhou's avatar
WenmuZhou committed
274

275
276
277
278
279
            if cal_metric_during_train and epoch % calc_epoch_interval == 0:  # only rec and cls need
                batch = [item.numpy() for item in batch]
                if model_type in ['table', 'kie']:
                    eval_class(preds, batch)
                else:
andyjpaddle's avatar
andyjpaddle committed
280
281
282
283
284
285
                    if config['Loss']['name'] in ['MultiLoss', 'MultiLoss_v2'
                                                  ]:  # for multi head loss
                        post_result = post_process_class(
                            preds['ctc'], batch[1])  # for CTC head out
                    else:
                        post_result = post_process_class(preds, batch[1])
286
287
288
289
                    eval_class(post_result, batch)
                metric = eval_class.get_metric()
                train_stats.update(metric)

290
291
292
            train_batch_time = time.time() - reader_start
            train_batch_cost += train_batch_time
            eta_meter.update(train_batch_time)
293
            global_step += 1
WenmuZhou's avatar
WenmuZhou committed
294
            total_samples += len(images)
WenmuZhou's avatar
WenmuZhou committed
295

dyning's avatar
dyning committed
296
297
            if not isinstance(lr_scheduler, float):
                lr_scheduler.step()
WenmuZhou's avatar
WenmuZhou committed
298
299
300
301
302
303

            # logger and visualdl
            stats = {k: v.numpy().mean() for k, v in loss.items()}
            stats['lr'] = lr
            train_stats.update(stats)

304
305
            if log_writer is not None and dist.get_rank() == 0:
                log_writer.log_metrics(metrics=train_stats.get(), prefix="TRAIN", step=global_step)
WenmuZhou's avatar
WenmuZhou committed
306

307
308
309
            if dist.get_rank() == 0 and (
                (global_step > 0 and global_step % print_batch_step == 0) or
                (idx >= len(train_dataloader) - 1)):
WenmuZhou's avatar
WenmuZhou committed
310
                logs = train_stats.log()
LDOUBLEV's avatar
LDOUBLEV committed
311

312
313
314
315
316
                eta_sec = ((epoch_num + 1 - epoch) * \
                    len(train_dataloader) - idx - 1) * eta_meter.avg
                eta_sec_format = str(datetime.timedelta(seconds=int(eta_sec)))
                strs = 'epoch: [{}/{}], global_step: {}, {}, avg_reader_cost: ' \
                       '{:.5f} s, avg_batch_cost: {:.5f} s, avg_samples: {}, ' \
LDOUBLEV's avatar
LDOUBLEV committed
317
                       'ips: {:.5f} samples/s, eta: {}'.format(
318
319
320
321
322
                    epoch, epoch_num, global_step, logs,
                    train_reader_cost / print_batch_step,
                    train_batch_cost / print_batch_step,
                    total_samples / print_batch_step,
                    total_samples / train_batch_cost, eta_sec_format)
WenmuZhou's avatar
WenmuZhou committed
323
                logger.info(strs)
324

WenmuZhou's avatar
WenmuZhou committed
325
                total_samples = 0
326
327
                train_reader_cost = 0.0
                train_batch_cost = 0.0
WenmuZhou's avatar
WenmuZhou committed
328
329
            # eval
            if global_step > start_eval_step and \
330
331
                    (global_step - start_eval_step) % eval_batch_step == 0 \
                    and dist.get_rank() == 0:
tink2123's avatar
tink2123 committed
332
333
334
335
336
337
338
                if model_average:
                    Model_Average = paddle.incubate.optimizer.ModelAverage(
                        0.15,
                        parameters=model.parameters(),
                        min_average_window=10000,
                        max_average_window=15625)
                    Model_Average.apply()
tink2123's avatar
tink2123 committed
339
340
341
342
343
                cur_metric = eval(
                    model,
                    valid_dataloader,
                    post_process_class,
                    eval_class,
MissPenguin's avatar
refine  
MissPenguin committed
344
                    model_type,
tink2123's avatar
tink2123 committed
345
                    extra_input=extra_input)
LDOUBLEV's avatar
LDOUBLEV committed
346
347
348
                cur_metric_str = 'cur metric, {}'.format(', '.join(
                    ['{}: {}'.format(k, v) for k, v in cur_metric.items()]))
                logger.info(cur_metric_str)
WenmuZhou's avatar
WenmuZhou committed
349
350

                # logger metric
351
352
353
                if log_writer is not None:
                    log_writer.log_metrics(metrics=cur_metric, prefix="EVAL", step=global_step)

LDOUBLEV's avatar
LDOUBLEV committed
354
                if cur_metric[main_indicator] >= best_model_dict[
WenmuZhou's avatar
WenmuZhou committed
355
                        main_indicator]:
LDOUBLEV's avatar
LDOUBLEV committed
356
                    best_model_dict.update(cur_metric)
WenmuZhou's avatar
WenmuZhou committed
357
358
359
360
361
362
                    best_model_dict['best_epoch'] = epoch
                    save_model(
                        model,
                        optimizer,
                        save_model_dir,
                        logger,
363
                        config,
WenmuZhou's avatar
WenmuZhou committed
364
365
366
                        is_best=True,
                        prefix='best_accuracy',
                        best_model_dict=best_model_dict,
367
368
                        epoch=epoch,
                        global_step=global_step)
LDOUBLEV's avatar
LDOUBLEV committed
369
                best_str = 'best metric, {}'.format(', '.join([
WenmuZhou's avatar
WenmuZhou committed
370
371
372
373
                    '{}: {}'.format(k, v) for k, v in best_model_dict.items()
                ]))
                logger.info(best_str)
                # logger best metric
374
375
376
                if log_writer is not None:
                    log_writer.log_metrics(metrics={
                        "best_{}".format(main_indicator): best_model_dict[main_indicator]
377
378
379
                        }, prefix="EVAL", step=global_step)
                    
                    log_writer.log_model(is_best=True, prefix="best_accuracy", metadata=best_model_dict)
380

WenmuZhou's avatar
WenmuZhou committed
381
            reader_start = time.time()
WenmuZhou's avatar
WenmuZhou committed
382
383
384
385
386
387
        if dist.get_rank() == 0:
            save_model(
                model,
                optimizer,
                save_model_dir,
                logger,
388
                config,
WenmuZhou's avatar
WenmuZhou committed
389
390
391
                is_best=False,
                prefix='latest',
                best_model_dict=best_model_dict,
392
393
                epoch=epoch,
                global_step=global_step)
394

395
396
            if log_writer is not None:
                log_writer.log_model(is_best=False, prefix="latest")
397

WenmuZhou's avatar
WenmuZhou committed
398
399
400
401
402
403
        if dist.get_rank() == 0 and epoch > 0 and epoch % save_epoch_step == 0:
            save_model(
                model,
                optimizer,
                save_model_dir,
                logger,
404
                config,
WenmuZhou's avatar
WenmuZhou committed
405
406
407
                is_best=False,
                prefix='iter_epoch_{}'.format(epoch),
                best_model_dict=best_model_dict,
408
409
                epoch=epoch,
                global_step=global_step)
410
411
            if log_writer is not None:
                log_writer.log_model(is_best=False, prefix='iter_epoch_{}'.format(epoch))
412

LDOUBLEV's avatar
LDOUBLEV committed
413
    best_str = 'best metric, {}'.format(', '.join(
WenmuZhou's avatar
WenmuZhou committed
414
415
        ['{}: {}'.format(k, v) for k, v in best_model_dict.items()]))
    logger.info(best_str)
416
417
    if dist.get_rank() == 0 and log_writer is not None:
        log_writer.close()
LDOUBLEV's avatar
LDOUBLEV committed
418
419
420
    return


MissPenguin's avatar
refine  
MissPenguin committed
421
422
423
424
def eval(model,
         valid_dataloader,
         post_process_class,
         eval_class,
LDOUBLEV's avatar
LDOUBLEV committed
425
         model_type=None,
tink2123's avatar
tink2123 committed
426
         extra_input=False):
WenmuZhou's avatar
WenmuZhou committed
427
428
429
430
    model.eval()
    with paddle.no_grad():
        total_frame = 0.0
        total_time = 0.0
WenmuZhou's avatar
WenmuZhou committed
431
432
433
434
435
        pbar = tqdm(
            total=len(valid_dataloader),
            desc='eval model:',
            position=0,
            leave=True)
436
437
        max_iter = len(valid_dataloader) - 1 if platform.system(
        ) == "Windows" else len(valid_dataloader)
WenmuZhou's avatar
WenmuZhou committed
438
        for idx, batch in enumerate(valid_dataloader):
439
            if idx >= max_iter:
WenmuZhou's avatar
WenmuZhou committed
440
                break
WenmuZhou's avatar
fix bug  
WenmuZhou committed
441
            images = batch[0]
WenmuZhou's avatar
WenmuZhou committed
442
            start = time.time()
tink2123's avatar
tink2123 committed
443
            if model_type == 'table' or extra_input:
MissPenguin's avatar
refine  
MissPenguin committed
444
                preds = model(images, data=batch[1:])
445
            elif model_type in ["kie", 'vqa']:
LDOUBLEV's avatar
LDOUBLEV committed
446
                preds = model(batch)
xiaoting's avatar
xiaoting committed
447
            else:
LDOUBLEV's avatar
LDOUBLEV committed
448
                preds = model(images)
449
450
451
452
453
454
455

            batch_numpy = []
            for item in batch:
                if isinstance(item, paddle.Tensor):
                    batch_numpy.append(item.numpy())
                else:
                    batch_numpy.append(item)
WenmuZhou's avatar
WenmuZhou committed
456
457
458
            # Obtain usable results from post-processing methods
            total_time += time.time() - start
            # Evaluate the results of the current batch
LDOUBLEV's avatar
LDOUBLEV committed
459
            if model_type in ['table', 'kie']:
460
461
462
463
                eval_class(preds, batch_numpy)
            elif model_type in ['vqa']:
                post_result = post_process_class(preds, batch_numpy)
                eval_class(post_result, batch_numpy)
MissPenguin's avatar
MissPenguin committed
464
            else:
465
466
                post_result = post_process_class(preds, batch_numpy[1])
                eval_class(post_result, batch_numpy)
LDOUBLEV's avatar
LDOUBLEV committed
467

WenmuZhou's avatar
fix bug  
WenmuZhou committed
468
            pbar.update(1)
WenmuZhou's avatar
WenmuZhou committed
469
            total_frame += len(images)
LDOUBLEV's avatar
LDOUBLEV committed
470
471
        # Get final metric,eg. acc or hmean
        metric = eval_class.get_metric()
dyning's avatar
dyning committed
472

WenmuZhou's avatar
fix bug  
WenmuZhou committed
473
    pbar.close()
WenmuZhou's avatar
WenmuZhou committed
474
    model.train()
LDOUBLEV's avatar
LDOUBLEV committed
475
476
    metric['fps'] = total_frame / total_time
    return metric
licx's avatar
licx committed
477

tink2123's avatar
tink2123 committed
478

Bin Lu's avatar
Bin Lu committed
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
def update_center(char_center, post_result, preds):
    result, label = post_result
    feats, logits = preds
    logits = paddle.argmax(logits, axis=-1)
    feats = feats.numpy()
    logits = logits.numpy()

    for idx_sample in range(len(label)):
        if result[idx_sample][0] == label[idx_sample][0]:
            feat = feats[idx_sample]
            logit = logits[idx_sample]
            for idx_time in range(len(logit)):
                index = logit[idx_time]
                if index in char_center.keys():
                    char_center[index][0] = (
                        char_center[index][0] * char_center[index][1] +
                        feat[idx_time]) / (char_center[index][1] + 1)
                    char_center[index][1] += 1
                else:
                    char_center[index] = [feat[idx_time], 1]
    return char_center


def get_center(model, eval_dataloader, post_process_class):
    pbar = tqdm(total=len(eval_dataloader), desc='get center:')
    max_iter = len(eval_dataloader) - 1 if platform.system(
    ) == "Windows" else len(eval_dataloader)
    char_center = dict()
    for idx, batch in enumerate(eval_dataloader):
        if idx >= max_iter:
            break
        images = batch[0]
        start = time.time()
        preds = model(images)

        batch = [item.numpy() for item in batch]
        # Obtain usable results from post-processing methods
        post_result = post_process_class(preds, batch[1])

        #update char_center
        char_center = update_center(char_center, post_result, preds)
        pbar.update(1)

    pbar.close()
    for key in char_center.keys():
        char_center[key] = char_center[key][0]
    return char_center


528
def preprocess(is_train=False):
licx's avatar
licx committed
529
    FLAGS = ArgsParser().parse_args()
LDOUBLEV's avatar
LDOUBLEV committed
530
    profiler_options = FLAGS.profiler_options
licx's avatar
licx committed
531
    config = load_config(FLAGS.config)
532
    config = merge_config(config, FLAGS.opt)
LDOUBLEV's avatar
LDOUBLEV committed
533
    profile_dic = {"profiler_options": FLAGS.profiler_options}
534
    config = merge_config(config, profile_dic)
licx's avatar
licx committed
535

536
537
538
539
540
541
542
543
544
545
    if is_train:
        # save_config
        save_model_dir = config['Global']['save_model_dir']
        os.makedirs(save_model_dir, exist_ok=True)
        with open(os.path.join(save_model_dir, 'config.yml'), 'w') as f:
            yaml.dump(
                dict(config), f, default_flow_style=False, sort_keys=False)
        log_file = '{}/train.log'.format(save_model_dir)
    else:
        log_file = None
zhoujun's avatar
zhoujun committed
546
    logger = get_logger(log_file=log_file)
licx's avatar
licx committed
547
548
549
550
551

    # check if set use_gpu=True in paddlepaddle cpu version
    use_gpu = config['Global']['use_gpu']
    check_gpu(use_gpu)

552
553
554
555
556
557
    # check if set use_xpu=True in paddlepaddle cpu/gpu version
    use_xpu = False
    if 'use_xpu' in config['Global']:
        use_xpu = config['Global']['use_xpu']
    check_xpu(use_xpu)

WenmuZhou's avatar
WenmuZhou committed
558
559
    alg = config['Architecture']['algorithm']
    assert alg in [
Jethong's avatar
Jethong committed
560
        'EAST', 'DB', 'SAST', 'Rosetta', 'CRNN', 'STARNet', 'RARE', 'SRN',
tink2123's avatar
tink2123 committed
561
        'CLS', 'PGNet', 'Distillation', 'NRTR', 'TableAttn', 'SAR', 'PSE',
andyjpaddle's avatar
andyjpaddle committed
562
        'SEED', 'SDMGR', 'LayoutXLM', 'LayoutLM', 'PREN', 'FCE', 'SVTR'
WenmuZhou's avatar
WenmuZhou committed
563
    ]
licx's avatar
licx committed
564

565
566
567
568
569
    device = 'cpu'
    if use_gpu:
        device = 'gpu:{}'.format(dist.ParallelEnv().dev_id)
    if use_xpu:
        device = 'xpu'
WenmuZhou's avatar
WenmuZhou committed
570
    device = paddle.set_device(device)
dyning's avatar
dyning committed
571

dyning's avatar
dyning committed
572
    config['Global']['distributed'] = dist.get_world_size() != 1
573

574
575
    loggers = []

576
    if 'use_visualdl' in config['Global'] and config['Global']['use_visualdl']:
LDOUBLEV's avatar
fix bug  
LDOUBLEV committed
577
        save_model_dir = config['Global']['save_model_dir']
dyning's avatar
dyning committed
578
        vdl_writer_path = '{}/vdl/'.format(save_model_dir)
579
        log_writer = VDLLogger(save_model_dir)
580
        loggers.append(log_writer)
581
    if ('use_wandb' in config['Global'] and config['Global']['use_wandb']) or 'wandb' in config:
582
583
584
585
586
587
588
589
        save_dir = config['Global']['save_model_dir']
        wandb_writer_path = "{}/wandb".format(save_dir)
        if "wandb" in config:
            wandb_params = config['wandb']
        else:
            wandb_params = dict()
        wandb_params.update({'save_dir': save_model_dir})
        log_writer = WandbLogger(**wandb_params, config=config)
590
        loggers.append(log_writer)
dyning's avatar
dyning committed
591
    else:
592
        log_writer = None
dyning's avatar
dyning committed
593
    print_dict(config, logger)
594
595
596
597
598
599

    if loggers:
        log_writer = Loggers(loggers)
    else:
        log_writer = None

dyning's avatar
dyning committed
600
601
    logger.info('train with paddle {} and device {}'.format(paddle.__version__,
                                                            device))
602
    return config, device, logger, log_writer