program.py 14.8 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

WenmuZhou's avatar
WenmuZhou committed
19
import os
LDOUBLEV's avatar
LDOUBLEV committed
20
21
22
import sys
import yaml
import time
WenmuZhou's avatar
WenmuZhou committed
23
24
25
26
27
28
import shutil
import paddle
import paddle.distributed as dist
from tqdm import tqdm
from argparse import ArgumentParser, RawDescriptionHelpFormatter

LDOUBLEV's avatar
LDOUBLEV committed
29
30
from ppocr.utils.stats import TrainingStats
from ppocr.utils.save_load import save_model
dyning's avatar
dyning committed
31
32
33
34
from ppocr.utils.utility import print_dict
from ppocr.utils.logging import get_logger
from ppocr.data import build_dataloader
import numpy as np
LDOUBLEV's avatar
LDOUBLEV committed
35

dyning's avatar
dyning committed
36

LDOUBLEV's avatar
LDOUBLEV committed
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
class ArgsParser(ArgumentParser):
    def __init__(self):
        super(ArgsParser, self).__init__(
            formatter_class=RawDescriptionHelpFormatter)
        self.add_argument("-c", "--config", help="configuration file to use")
        self.add_argument(
            "-o", "--opt", nargs='+', help="set configuration options")

    def parse_args(self, argv=None):
        args = super(ArgsParser, self).parse_args(argv)
        assert args.config is not None, \
            "Please specify --config=configure_file_path."
        args.opt = self._parse_opt(args.opt)
        return args

    def _parse_opt(self, opts):
        config = {}
        if not opts:
            return config
        for s in opts:
            s = s.strip()
            k, v = s.split('=')
            config[k] = yaml.load(v, Loader=yaml.Loader)
        return config


class AttrDict(dict):
    """Single level attribute dict, NOT recursive"""

    def __init__(self, **kwargs):
        super(AttrDict, self).__init__()
        super(AttrDict, self).update(kwargs)

    def __getattr__(self, key):
        if key in self:
            return self[key]
        raise AttributeError("object has no attribute '{}'".format(key))


global_config = AttrDict()

lyl120117's avatar
lyl120117 committed
78
79
default_config = {'Global': {'debug': False, }}

LDOUBLEV's avatar
LDOUBLEV committed
80
81
82
83
84
85
86
87

def load_config(file_path):
    """
    Load config from yml/yaml file.
    Args:
        file_path (str): Path of the config file to be loaded.
    Returns: global config
    """
lyl120117's avatar
lyl120117 committed
88
    merge_config(default_config)
LDOUBLEV's avatar
LDOUBLEV committed
89
90
    _, ext = os.path.splitext(file_path)
    assert ext in ['.yml', '.yaml'], "only support yaml files for now"
WenmuZhou's avatar
WenmuZhou committed
91
    merge_config(yaml.load(open(file_path, 'rb'), Loader=yaml.Loader))
LDOUBLEV's avatar
LDOUBLEV committed
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
    return global_config


def merge_config(config):
    """
    Merge config into global config.
    Args:
        config (dict): Config to be merged.
    Returns: global config
    """
    for key, value in config.items():
        if "." not in key:
            if isinstance(value, dict) and key in global_config:
                global_config[key].update(value)
            else:
                global_config[key] = value
        else:
            sub_keys = key.split('.')
tink2123's avatar
tink2123 committed
110
111
112
113
            assert (
                sub_keys[0] in global_config
            ), "the sub_keys can only be one of global_config: {}, but get: {}, please check your running command".format(
                global_config.keys(), sub_keys[0])
LDOUBLEV's avatar
LDOUBLEV committed
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
            cur = global_config[sub_keys[0]]
            for idx, sub_key in enumerate(sub_keys[1:]):
                if idx == len(sub_keys) - 2:
                    cur[sub_key] = value
                else:
                    cur = cur[sub_key]


def check_gpu(use_gpu):
    """
    Log error and exit when set use_gpu=true in paddlepaddle
    cpu version.
    """
    err = "Config use_gpu cannot be set as true while you are " \
          "using paddlepaddle cpu version ! \nPlease try: \n" \
          "\t1. Install paddlepaddle-gpu to run model on GPU \n" \
          "\t2. Set use_gpu as false in config file to run " \
          "model on CPU"

    try:
WenmuZhou's avatar
WenmuZhou committed
134
        if use_gpu and not paddle.is_compiled_with_cuda():
WenmuZhou's avatar
WenmuZhou committed
135
            print(err)
LDOUBLEV's avatar
LDOUBLEV committed
136
137
138
139
140
            sys.exit(1)
    except Exception as e:
        pass


WenmuZhou's avatar
WenmuZhou committed
141
def train(config,
dyning's avatar
dyning committed
142
143
144
          train_dataloader,
          valid_dataloader,
          device,
WenmuZhou's avatar
WenmuZhou committed
145
146
147
148
149
150
151
152
153
154
155
          model,
          loss_class,
          optimizer,
          lr_scheduler,
          post_process_class,
          eval_class,
          pre_best_model_dict,
          logger,
          vdl_writer=None):
    cal_metric_during_train = config['Global'].get('cal_metric_during_train',
                                                   False)
LDOUBLEV's avatar
LDOUBLEV committed
156
157
158
159
    log_smooth_window = config['Global']['log_smooth_window']
    epoch_num = config['Global']['epoch_num']
    print_batch_step = config['Global']['print_batch_step']
    eval_batch_step = config['Global']['eval_batch_step']
WenmuZhou's avatar
WenmuZhou committed
160

dyning's avatar
dyning committed
161
    global_step = 0
162
163
    if 'global_step' in pre_best_model_dict:
        global_step = pre_best_model_dict['global_step']
LDOUBLEV's avatar
LDOUBLEV committed
164
165
166
167
    start_eval_step = 0
    if type(eval_batch_step) == list and len(eval_batch_step) >= 2:
        start_eval_step = eval_batch_step[0]
        eval_batch_step = eval_batch_step[1]
WenmuZhou's avatar
WenmuZhou committed
168
169
170
171
172
        if len(valid_dataloader) == 0:
            logger.info(
                'No Images in eval dataset, evaluation during training will be disabled'
            )
            start_eval_step = 1e111
LDOUBLEV's avatar
LDOUBLEV committed
173
174
175
        logger.info(
            "During the training process, after the {}th iteration, an evaluation is run every {} iterations".
            format(start_eval_step, eval_batch_step))
LDOUBLEV's avatar
LDOUBLEV committed
176
177
    save_epoch_step = config['Global']['save_epoch_step']
    save_model_dir = config['Global']['save_model_dir']
178
179
    if not os.path.exists(save_model_dir):
        os.makedirs(save_model_dir)
WenmuZhou's avatar
WenmuZhou committed
180
181
182
183
    main_indicator = eval_class.main_indicator
    best_model_dict = {main_indicator: 0}
    best_model_dict.update(pre_best_model_dict)
    train_stats = TrainingStats(log_smooth_window, ['lr'])
tink2123's avatar
tink2123 committed
184
    model_average = False
WenmuZhou's avatar
WenmuZhou committed
185
186
    model.train()

tink2123's avatar
tink2123 committed
187
188
    use_srn = config['Architecture']['algorithm'] == "SRN"

WenmuZhou's avatar
WenmuZhou committed
189
190
191
    if 'start_epoch' in best_model_dict:
        start_epoch = best_model_dict['start_epoch']
    else:
tink2123's avatar
tink2123 committed
192
        start_epoch = 1
WenmuZhou's avatar
WenmuZhou committed
193

tink2123's avatar
tink2123 committed
194
    for epoch in range(start_epoch, epoch_num + 1):
195
196
        train_dataloader = build_dataloader(
            config, 'Train', device, logger, seed=epoch)
WenmuZhou's avatar
WenmuZhou committed
197
198
199
200
        train_batch_cost = 0.0
        train_reader_cost = 0.0
        batch_sum = 0
        batch_start = time.time()
201
        for idx, batch in enumerate(train_dataloader()):
WenmuZhou's avatar
WenmuZhou committed
202
            train_reader_cost += time.time() - batch_start
WenmuZhou's avatar
WenmuZhou committed
203
204
            lr = optimizer.get_lr()
            images = batch[0]
tink2123's avatar
tink2123 committed
205
            if use_srn:
tink2123's avatar
tink2123 committed
206
207
                others = batch[-4:]
                preds = model(images, others)
tink2123's avatar
tink2123 committed
208
                model_average = True
tink2123's avatar
tink2123 committed
209
210
            else:
                preds = model(images)
WenmuZhou's avatar
WenmuZhou committed
211
212
            loss = loss_class(preds, batch)
            avg_loss = loss['loss']
dyning's avatar
dyning committed
213
            avg_loss.backward()
WenmuZhou's avatar
WenmuZhou committed
214
215
            optimizer.step()
            optimizer.clear_grad()
WenmuZhou's avatar
WenmuZhou committed
216
217
218
219

            train_batch_cost += time.time() - batch_start
            batch_sum += len(images)

dyning's avatar
dyning committed
220
221
            if not isinstance(lr_scheduler, float):
                lr_scheduler.step()
WenmuZhou's avatar
WenmuZhou committed
222
223
224
225
226
227

            # logger and visualdl
            stats = {k: v.numpy().mean() for k, v in loss.items()}
            stats['lr'] = lr
            train_stats.update(stats)

LDOUBLEV's avatar
LDOUBLEV committed
228
            if cal_metric_during_train:  # only rec and cls need
WenmuZhou's avatar
WenmuZhou committed
229
230
231
                batch = [item.numpy() for item in batch]
                post_result = post_process_class(preds, batch[1])
                eval_class(post_result, batch)
littletomatodonkey's avatar
fix doc  
littletomatodonkey committed
232
233
                metric = eval_class.get_metric()
                train_stats.update(metric)
WenmuZhou's avatar
WenmuZhou committed
234
235
236
237
238
239

            if vdl_writer is not None and dist.get_rank() == 0:
                for k, v in train_stats.get().items():
                    vdl_writer.add_scalar('TRAIN/{}'.format(k), v, global_step)
                vdl_writer.add_scalar('TRAIN/lr', lr, global_step)

240
241
242
            if dist.get_rank() == 0 and (
                (global_step > 0 and global_step % print_batch_step == 0) or
                (idx >= len(train_dataloader) - 1)):
WenmuZhou's avatar
WenmuZhou committed
243
                logs = train_stats.log()
WenmuZhou's avatar
WenmuZhou committed
244
                strs = 'epoch: [{}/{}], iter: {}, {}, reader_cost: {:.5f} s, batch_cost: {:.5f} s, samples: {}, ips: {:.5f}'.format(
WenmuZhou's avatar
WenmuZhou committed
245
246
247
                    epoch, epoch_num, global_step, logs, train_reader_cost /
                    print_batch_step, train_batch_cost / print_batch_step,
                    batch_sum, batch_sum / train_batch_cost)
WenmuZhou's avatar
WenmuZhou committed
248
                logger.info(strs)
WenmuZhou's avatar
WenmuZhou committed
249
250
251
                train_batch_cost = 0.0
                train_reader_cost = 0.0
                batch_sum = 0
WenmuZhou's avatar
WenmuZhou committed
252
253
254
            # eval
            if global_step > start_eval_step and \
                    (global_step - start_eval_step) % eval_batch_step == 0 and dist.get_rank() == 0:
tink2123's avatar
tink2123 committed
255
256
257
258
259
260
261
                if model_average:
                    Model_Average = paddle.incubate.optimizer.ModelAverage(
                        0.15,
                        parameters=model.parameters(),
                        min_average_window=10000,
                        max_average_window=15625)
                    Model_Average.apply()
tink2123's avatar
tink2123 committed
262
263
264
265
266
267
                cur_metric = eval(
                    model,
                    valid_dataloader,
                    post_process_class,
                    eval_class,
                    use_srn=use_srn)
LDOUBLEV's avatar
LDOUBLEV committed
268
269
270
                cur_metric_str = 'cur metric, {}'.format(', '.join(
                    ['{}: {}'.format(k, v) for k, v in cur_metric.items()]))
                logger.info(cur_metric_str)
WenmuZhou's avatar
WenmuZhou committed
271
272
273

                # logger metric
                if vdl_writer is not None:
LDOUBLEV's avatar
LDOUBLEV committed
274
                    for k, v in cur_metric.items():
WenmuZhou's avatar
WenmuZhou committed
275
276
                        if isinstance(v, (float, int)):
                            vdl_writer.add_scalar('EVAL/{}'.format(k),
LDOUBLEV's avatar
LDOUBLEV committed
277
278
                                                  cur_metric[k], global_step)
                if cur_metric[main_indicator] >= best_model_dict[
WenmuZhou's avatar
WenmuZhou committed
279
                        main_indicator]:
LDOUBLEV's avatar
LDOUBLEV committed
280
                    best_model_dict.update(cur_metric)
WenmuZhou's avatar
WenmuZhou committed
281
282
283
284
285
286
287
288
289
                    best_model_dict['best_epoch'] = epoch
                    save_model(
                        model,
                        optimizer,
                        save_model_dir,
                        logger,
                        is_best=True,
                        prefix='best_accuracy',
                        best_model_dict=best_model_dict,
290
291
                        epoch=epoch,
                        global_step=global_step)
LDOUBLEV's avatar
LDOUBLEV committed
292
                best_str = 'best metric, {}'.format(', '.join([
WenmuZhou's avatar
WenmuZhou committed
293
294
295
296
297
298
299
300
301
                    '{}: {}'.format(k, v) for k, v in best_model_dict.items()
                ]))
                logger.info(best_str)
                # logger best metric
                if vdl_writer is not None:
                    vdl_writer.add_scalar('EVAL/best_{}'.format(main_indicator),
                                          best_model_dict[main_indicator],
                                          global_step)
            global_step += 1
tink2123's avatar
tink2123 committed
302
            optimizer.clear_grad()
303
            batch_start = time.time()
WenmuZhou's avatar
WenmuZhou committed
304
305
306
307
308
309
310
311
312
        if dist.get_rank() == 0:
            save_model(
                model,
                optimizer,
                save_model_dir,
                logger,
                is_best=False,
                prefix='latest',
                best_model_dict=best_model_dict,
313
314
                epoch=epoch,
                global_step=global_step)
WenmuZhou's avatar
WenmuZhou committed
315
316
317
318
319
320
321
322
323
        if dist.get_rank() == 0 and epoch > 0 and epoch % save_epoch_step == 0:
            save_model(
                model,
                optimizer,
                save_model_dir,
                logger,
                is_best=False,
                prefix='iter_epoch_{}'.format(epoch),
                best_model_dict=best_model_dict,
324
325
                epoch=epoch,
                global_step=global_step)
LDOUBLEV's avatar
LDOUBLEV committed
326
    best_str = 'best metric, {}'.format(', '.join(
WenmuZhou's avatar
WenmuZhou committed
327
328
329
330
        ['{}: {}'.format(k, v) for k, v in best_model_dict.items()]))
    logger.info(best_str)
    if dist.get_rank() == 0 and vdl_writer is not None:
        vdl_writer.close()
LDOUBLEV's avatar
LDOUBLEV committed
331
332
333
    return


tink2123's avatar
tink2123 committed
334
335
def eval(model, valid_dataloader, post_process_class, eval_class,
         use_srn=False):
WenmuZhou's avatar
WenmuZhou committed
336
337
338
339
    model.eval()
    with paddle.no_grad():
        total_frame = 0.0
        total_time = 0.0
WenmuZhou's avatar
fix bug  
WenmuZhou committed
340
        pbar = tqdm(total=len(valid_dataloader), desc='eval model:')
WenmuZhou's avatar
WenmuZhou committed
341
342
343
        for idx, batch in enumerate(valid_dataloader):
            if idx >= len(valid_dataloader):
                break
WenmuZhou's avatar
fix bug  
WenmuZhou committed
344
            images = batch[0]
WenmuZhou's avatar
WenmuZhou committed
345
            start = time.time()
tink2123's avatar
tink2123 committed
346
347

            if use_srn:
xiaoting's avatar
xiaoting committed
348
349
350
351
                others = batch[-4:]
                preds = model(images, others)
            else:
                preds = model(images)
WenmuZhou's avatar
WenmuZhou committed
352
353
354
355
356
357
358

            batch = [item.numpy() for item in batch]
            # Obtain usable results from post-processing methods
            post_result = post_process_class(preds, batch[1])
            total_time += time.time() - start
            # Evaluate the results of the current batch
            eval_class(post_result, batch)
WenmuZhou's avatar
fix bug  
WenmuZhou committed
359
            pbar.update(1)
WenmuZhou's avatar
WenmuZhou committed
360
            total_frame += len(images)
LDOUBLEV's avatar
LDOUBLEV committed
361
362
        # Get final metric,eg. acc or hmean
        metric = eval_class.get_metric()
dyning's avatar
dyning committed
363

WenmuZhou's avatar
fix bug  
WenmuZhou committed
364
    pbar.close()
WenmuZhou's avatar
WenmuZhou committed
365
    model.train()
LDOUBLEV's avatar
LDOUBLEV committed
366
367
    metric['fps'] = total_frame / total_time
    return metric
licx's avatar
licx committed
368

tink2123's avatar
tink2123 committed
369

370
def preprocess(is_train=False):
licx's avatar
licx committed
371
372
373
374
375
376
377
378
    FLAGS = ArgsParser().parse_args()
    config = load_config(FLAGS.config)
    merge_config(FLAGS.opt)

    # check if set use_gpu=True in paddlepaddle cpu version
    use_gpu = config['Global']['use_gpu']
    check_gpu(use_gpu)

WenmuZhou's avatar
WenmuZhou committed
379
380
    alg = config['Architecture']['algorithm']
    assert alg in [
Jethong's avatar
Jethong committed
381
        'EAST', 'DB', 'SAST', 'Rosetta', 'CRNN', 'STARNet', 'RARE', 'SRN',
382
        'CLS', 'PGNet'
WenmuZhou's avatar
WenmuZhou committed
383
    ]
licx's avatar
licx committed
384

WenmuZhou's avatar
WenmuZhou committed
385
386
    device = 'gpu:{}'.format(dist.ParallelEnv().dev_id) if use_gpu else 'cpu'
    device = paddle.set_device(device)
dyning's avatar
dyning committed
387

dyning's avatar
dyning committed
388
    config['Global']['distributed'] = dist.get_world_size() != 1
389
390
391
392
393
394
395
396
397
398
399
    if is_train:
        # save_config
        save_model_dir = config['Global']['save_model_dir']
        os.makedirs(save_model_dir, exist_ok=True)
        with open(os.path.join(save_model_dir, 'config.yml'), 'w') as f:
            yaml.dump(
                dict(config), f, default_flow_style=False, sort_keys=False)
        log_file = '{}/train.log'.format(save_model_dir)
    else:
        log_file = None
    logger = get_logger(name='root', log_file=log_file)
dyning's avatar
dyning committed
400
401
    if config['Global']['use_visualdl']:
        from visualdl import LogWriter
LDOUBLEV's avatar
fix bug  
LDOUBLEV committed
402
        save_model_dir = config['Global']['save_model_dir']
dyning's avatar
dyning committed
403
404
405
406
407
408
409
410
411
        vdl_writer_path = '{}/vdl/'.format(save_model_dir)
        os.makedirs(vdl_writer_path, exist_ok=True)
        vdl_writer = LogWriter(logdir=vdl_writer_path)
    else:
        vdl_writer = None
    print_dict(config, logger)
    logger.info('train with paddle {} and device {}'.format(paddle.__version__,
                                                            device))
    return config, device, logger, vdl_writer