program.py 16.2 KB
Newer Older
MissPenguin's avatar
refine  
MissPenguin committed
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
LDOUBLEV's avatar
LDOUBLEV committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

WenmuZhou's avatar
WenmuZhou committed
19
import os
LDOUBLEV's avatar
LDOUBLEV committed
20
import sys
21
import platform
LDOUBLEV's avatar
LDOUBLEV committed
22
23
import yaml
import time
WenmuZhou's avatar
WenmuZhou committed
24
25
26
27
28
29
import shutil
import paddle
import paddle.distributed as dist
from tqdm import tqdm
from argparse import ArgumentParser, RawDescriptionHelpFormatter

LDOUBLEV's avatar
LDOUBLEV committed
30
31
from ppocr.utils.stats import TrainingStats
from ppocr.utils.save_load import save_model
dyning's avatar
dyning committed
32
33
from ppocr.utils.utility import print_dict
from ppocr.utils.logging import get_logger
LDOUBLEV's avatar
LDOUBLEV committed
34
from ppocr.utils import profiler
dyning's avatar
dyning committed
35
36
from ppocr.data import build_dataloader
import numpy as np
LDOUBLEV's avatar
LDOUBLEV committed
37

dyning's avatar
dyning committed
38

LDOUBLEV's avatar
LDOUBLEV committed
39
40
41
42
43
44
45
class ArgsParser(ArgumentParser):
    def __init__(self):
        super(ArgsParser, self).__init__(
            formatter_class=RawDescriptionHelpFormatter)
        self.add_argument("-c", "--config", help="configuration file to use")
        self.add_argument(
            "-o", "--opt", nargs='+', help="set configuration options")
LDOUBLEV's avatar
LDOUBLEV committed
46
47
48
49
50
51
52
        self.add_argument(
            '-p',
            '--profiler_options',
            type=str,
            default=None,
            help='The option of profiler, which should be in format \"key1=value1;key2=value2;key3=value3\".'
        )
LDOUBLEV's avatar
LDOUBLEV committed
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86

    def parse_args(self, argv=None):
        args = super(ArgsParser, self).parse_args(argv)
        assert args.config is not None, \
            "Please specify --config=configure_file_path."
        args.opt = self._parse_opt(args.opt)
        return args

    def _parse_opt(self, opts):
        config = {}
        if not opts:
            return config
        for s in opts:
            s = s.strip()
            k, v = s.split('=')
            config[k] = yaml.load(v, Loader=yaml.Loader)
        return config


class AttrDict(dict):
    """Single level attribute dict, NOT recursive"""

    def __init__(self, **kwargs):
        super(AttrDict, self).__init__()
        super(AttrDict, self).update(kwargs)

    def __getattr__(self, key):
        if key in self:
            return self[key]
        raise AttributeError("object has no attribute '{}'".format(key))


global_config = AttrDict()

lyl120117's avatar
lyl120117 committed
87
88
default_config = {'Global': {'debug': False, }}

LDOUBLEV's avatar
LDOUBLEV committed
89
90
91
92
93
94
95
96

def load_config(file_path):
    """
    Load config from yml/yaml file.
    Args:
        file_path (str): Path of the config file to be loaded.
    Returns: global config
    """
lyl120117's avatar
lyl120117 committed
97
    merge_config(default_config)
LDOUBLEV's avatar
LDOUBLEV committed
98
99
    _, ext = os.path.splitext(file_path)
    assert ext in ['.yml', '.yaml'], "only support yaml files for now"
WenmuZhou's avatar
WenmuZhou committed
100
    merge_config(yaml.load(open(file_path, 'rb'), Loader=yaml.Loader))
LDOUBLEV's avatar
LDOUBLEV committed
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
    return global_config


def merge_config(config):
    """
    Merge config into global config.
    Args:
        config (dict): Config to be merged.
    Returns: global config
    """
    for key, value in config.items():
        if "." not in key:
            if isinstance(value, dict) and key in global_config:
                global_config[key].update(value)
            else:
                global_config[key] = value
        else:
            sub_keys = key.split('.')
tink2123's avatar
tink2123 committed
119
120
121
122
            assert (
                sub_keys[0] in global_config
            ), "the sub_keys can only be one of global_config: {}, but get: {}, please check your running command".format(
                global_config.keys(), sub_keys[0])
LDOUBLEV's avatar
LDOUBLEV committed
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
            cur = global_config[sub_keys[0]]
            for idx, sub_key in enumerate(sub_keys[1:]):
                if idx == len(sub_keys) - 2:
                    cur[sub_key] = value
                else:
                    cur = cur[sub_key]


def check_gpu(use_gpu):
    """
    Log error and exit when set use_gpu=true in paddlepaddle
    cpu version.
    """
    err = "Config use_gpu cannot be set as true while you are " \
          "using paddlepaddle cpu version ! \nPlease try: \n" \
          "\t1. Install paddlepaddle-gpu to run model on GPU \n" \
          "\t2. Set use_gpu as false in config file to run " \
          "model on CPU"

    try:
WenmuZhou's avatar
WenmuZhou committed
143
        if use_gpu and not paddle.is_compiled_with_cuda():
WenmuZhou's avatar
WenmuZhou committed
144
            print(err)
LDOUBLEV's avatar
LDOUBLEV committed
145
146
147
148
149
            sys.exit(1)
    except Exception as e:
        pass


WenmuZhou's avatar
WenmuZhou committed
150
def train(config,
dyning's avatar
dyning committed
151
152
153
          train_dataloader,
          valid_dataloader,
          device,
WenmuZhou's avatar
WenmuZhou committed
154
155
156
157
158
159
160
161
          model,
          loss_class,
          optimizer,
          lr_scheduler,
          post_process_class,
          eval_class,
          pre_best_model_dict,
          logger,
LDOUBLEV's avatar
LDOUBLEV committed
162
163
          vdl_writer=None,
          profiler_options=None):
WenmuZhou's avatar
WenmuZhou committed
164
165
    cal_metric_during_train = config['Global'].get('cal_metric_during_train',
                                                   False)
LDOUBLEV's avatar
LDOUBLEV committed
166
167
168
169
    log_smooth_window = config['Global']['log_smooth_window']
    epoch_num = config['Global']['epoch_num']
    print_batch_step = config['Global']['print_batch_step']
    eval_batch_step = config['Global']['eval_batch_step']
WenmuZhou's avatar
WenmuZhou committed
170

dyning's avatar
dyning committed
171
    global_step = 0
172
173
    if 'global_step' in pre_best_model_dict:
        global_step = pre_best_model_dict['global_step']
LDOUBLEV's avatar
LDOUBLEV committed
174
175
176
177
    start_eval_step = 0
    if type(eval_batch_step) == list and len(eval_batch_step) >= 2:
        start_eval_step = eval_batch_step[0]
        eval_batch_step = eval_batch_step[1]
WenmuZhou's avatar
WenmuZhou committed
178
179
180
181
182
        if len(valid_dataloader) == 0:
            logger.info(
                'No Images in eval dataset, evaluation during training will be disabled'
            )
            start_eval_step = 1e111
LDOUBLEV's avatar
LDOUBLEV committed
183
184
185
        logger.info(
            "During the training process, after the {}th iteration, an evaluation is run every {} iterations".
            format(start_eval_step, eval_batch_step))
LDOUBLEV's avatar
LDOUBLEV committed
186
187
    save_epoch_step = config['Global']['save_epoch_step']
    save_model_dir = config['Global']['save_model_dir']
188
189
    if not os.path.exists(save_model_dir):
        os.makedirs(save_model_dir)
WenmuZhou's avatar
WenmuZhou committed
190
191
192
193
    main_indicator = eval_class.main_indicator
    best_model_dict = {main_indicator: 0}
    best_model_dict.update(pre_best_model_dict)
    train_stats = TrainingStats(log_smooth_window, ['lr'])
tink2123's avatar
tink2123 committed
194
    model_average = False
WenmuZhou's avatar
WenmuZhou committed
195
196
    model.train()

tink2123's avatar
tink2123 committed
197
    use_srn = config['Architecture']['algorithm'] == "SRN"
Topdu's avatar
Topdu committed
198
    use_nrtr = config['Architecture']['algorithm'] == "NRTR"
andyjpaddle's avatar
andyjpaddle committed
199
    use_sar = config['Architecture']['algorithm'] == 'SAR'
200
    try:
LDOUBLEV's avatar
fix bug  
LDOUBLEV committed
201
        model_type = config['Architecture']['model_type']
202
    except:
LDOUBLEV's avatar
fix bug  
LDOUBLEV committed
203
        model_type = None
MissPenguin's avatar
refine  
MissPenguin committed
204

WenmuZhou's avatar
WenmuZhou committed
205
206
207
    if 'start_epoch' in best_model_dict:
        start_epoch = best_model_dict['start_epoch']
    else:
tink2123's avatar
tink2123 committed
208
        start_epoch = 1
WenmuZhou's avatar
WenmuZhou committed
209

tink2123's avatar
tink2123 committed
210
    for epoch in range(start_epoch, epoch_num + 1):
211
212
        train_dataloader = build_dataloader(
            config, 'Train', device, logger, seed=epoch)
WenmuZhou's avatar
WenmuZhou committed
213
214
215
216
        train_batch_cost = 0.0
        train_reader_cost = 0.0
        batch_sum = 0
        batch_start = time.time()
Jane-Ding's avatar
Jane-Ding committed
217
218
219
        max_iter = len(train_dataloader) - 1 if platform.system(
        ) == "Windows" else len(train_dataloader)
        for idx, batch in enumerate(train_dataloader):
LDOUBLEV's avatar
LDOUBLEV committed
220
            profiler.add_profiler_step(profiler_options)
WenmuZhou's avatar
WenmuZhou committed
221
            train_reader_cost += time.time() - batch_start
Jane-Ding's avatar
Jane-Ding committed
222
223
            if idx >= max_iter:
                break
WenmuZhou's avatar
WenmuZhou committed
224
225
            lr = optimizer.get_lr()
            images = batch[0]
tink2123's avatar
tink2123 committed
226
            if use_srn:
tink2123's avatar
tink2123 committed
227
                model_average = True
andyjpaddle's avatar
andyjpaddle committed
228
            if use_srn or model_type == 'table' or use_nrtr or use_sar:
MissPenguin's avatar
refine  
MissPenguin committed
229
230
231
                preds = model(images, data=batch[1:])
            else:
                preds = model(images)
WenmuZhou's avatar
WenmuZhou committed
232
233
            loss = loss_class(preds, batch)
            avg_loss = loss['loss']
dyning's avatar
dyning committed
234
            avg_loss.backward()
WenmuZhou's avatar
WenmuZhou committed
235
236
            optimizer.step()
            optimizer.clear_grad()
WenmuZhou's avatar
WenmuZhou committed
237
238
239
240

            train_batch_cost += time.time() - batch_start
            batch_sum += len(images)

dyning's avatar
dyning committed
241
242
            if not isinstance(lr_scheduler, float):
                lr_scheduler.step()
WenmuZhou's avatar
WenmuZhou committed
243
244
245
246
247
248

            # logger and visualdl
            stats = {k: v.numpy().mean() for k, v in loss.items()}
            stats['lr'] = lr
            train_stats.update(stats)

LDOUBLEV's avatar
LDOUBLEV committed
249
            if cal_metric_during_train:  # only rec and cls need
WenmuZhou's avatar
WenmuZhou committed
250
                batch = [item.numpy() for item in batch]
MissPenguin's avatar
MissPenguin committed
251
252
253
254
255
                if model_type == 'table':
                    eval_class(preds, batch)
                else:
                    post_result = post_process_class(preds, batch[1])
                    eval_class(post_result, batch)
littletomatodonkey's avatar
fix doc  
littletomatodonkey committed
256
257
                metric = eval_class.get_metric()
                train_stats.update(metric)
WenmuZhou's avatar
WenmuZhou committed
258
259
260
261
262
263

            if vdl_writer is not None and dist.get_rank() == 0:
                for k, v in train_stats.get().items():
                    vdl_writer.add_scalar('TRAIN/{}'.format(k), v, global_step)
                vdl_writer.add_scalar('TRAIN/lr', lr, global_step)

264
265
266
            if dist.get_rank() == 0 and (
                (global_step > 0 and global_step % print_batch_step == 0) or
                (idx >= len(train_dataloader) - 1)):
WenmuZhou's avatar
WenmuZhou committed
267
                logs = train_stats.log()
WenmuZhou's avatar
WenmuZhou committed
268
                strs = 'epoch: [{}/{}], iter: {}, {}, reader_cost: {:.5f} s, batch_cost: {:.5f} s, samples: {}, ips: {:.5f}'.format(
WenmuZhou's avatar
WenmuZhou committed
269
270
271
                    epoch, epoch_num, global_step, logs, train_reader_cost /
                    print_batch_step, train_batch_cost / print_batch_step,
                    batch_sum, batch_sum / train_batch_cost)
WenmuZhou's avatar
WenmuZhou committed
272
                logger.info(strs)
WenmuZhou's avatar
WenmuZhou committed
273
274
275
                train_batch_cost = 0.0
                train_reader_cost = 0.0
                batch_sum = 0
WenmuZhou's avatar
WenmuZhou committed
276
277
278
            # eval
            if global_step > start_eval_step and \
                    (global_step - start_eval_step) % eval_batch_step == 0 and dist.get_rank() == 0:
tink2123's avatar
tink2123 committed
279
280
281
282
283
284
285
                if model_average:
                    Model_Average = paddle.incubate.optimizer.ModelAverage(
                        0.15,
                        parameters=model.parameters(),
                        min_average_window=10000,
                        max_average_window=15625)
                    Model_Average.apply()
tink2123's avatar
tink2123 committed
286
287
288
289
290
                cur_metric = eval(
                    model,
                    valid_dataloader,
                    post_process_class,
                    eval_class,
MissPenguin's avatar
refine  
MissPenguin committed
291
                    model_type,
andyjpaddle's avatar
andyjpaddle committed
292
293
                    use_srn=use_srn,
                    use_sar=use_sar)
LDOUBLEV's avatar
LDOUBLEV committed
294
295
296
                cur_metric_str = 'cur metric, {}'.format(', '.join(
                    ['{}: {}'.format(k, v) for k, v in cur_metric.items()]))
                logger.info(cur_metric_str)
WenmuZhou's avatar
WenmuZhou committed
297
298
299

                # logger metric
                if vdl_writer is not None:
LDOUBLEV's avatar
LDOUBLEV committed
300
                    for k, v in cur_metric.items():
WenmuZhou's avatar
WenmuZhou committed
301
302
                        if isinstance(v, (float, int)):
                            vdl_writer.add_scalar('EVAL/{}'.format(k),
LDOUBLEV's avatar
LDOUBLEV committed
303
304
                                                  cur_metric[k], global_step)
                if cur_metric[main_indicator] >= best_model_dict[
WenmuZhou's avatar
WenmuZhou committed
305
                        main_indicator]:
LDOUBLEV's avatar
LDOUBLEV committed
306
                    best_model_dict.update(cur_metric)
WenmuZhou's avatar
WenmuZhou committed
307
308
309
310
311
312
313
314
315
                    best_model_dict['best_epoch'] = epoch
                    save_model(
                        model,
                        optimizer,
                        save_model_dir,
                        logger,
                        is_best=True,
                        prefix='best_accuracy',
                        best_model_dict=best_model_dict,
316
317
                        epoch=epoch,
                        global_step=global_step)
LDOUBLEV's avatar
LDOUBLEV committed
318
                best_str = 'best metric, {}'.format(', '.join([
WenmuZhou's avatar
WenmuZhou committed
319
320
321
322
323
324
325
326
327
                    '{}: {}'.format(k, v) for k, v in best_model_dict.items()
                ]))
                logger.info(best_str)
                # logger best metric
                if vdl_writer is not None:
                    vdl_writer.add_scalar('EVAL/best_{}'.format(main_indicator),
                                          best_model_dict[main_indicator],
                                          global_step)
            global_step += 1
tink2123's avatar
tink2123 committed
328
            optimizer.clear_grad()
329
            batch_start = time.time()
WenmuZhou's avatar
WenmuZhou committed
330
331
332
333
334
335
336
337
338
        if dist.get_rank() == 0:
            save_model(
                model,
                optimizer,
                save_model_dir,
                logger,
                is_best=False,
                prefix='latest',
                best_model_dict=best_model_dict,
339
340
                epoch=epoch,
                global_step=global_step)
WenmuZhou's avatar
WenmuZhou committed
341
342
343
344
345
346
347
348
349
        if dist.get_rank() == 0 and epoch > 0 and epoch % save_epoch_step == 0:
            save_model(
                model,
                optimizer,
                save_model_dir,
                logger,
                is_best=False,
                prefix='iter_epoch_{}'.format(epoch),
                best_model_dict=best_model_dict,
350
351
                epoch=epoch,
                global_step=global_step)
LDOUBLEV's avatar
LDOUBLEV committed
352
    best_str = 'best metric, {}'.format(', '.join(
WenmuZhou's avatar
WenmuZhou committed
353
354
355
356
        ['{}: {}'.format(k, v) for k, v in best_model_dict.items()]))
    logger.info(best_str)
    if dist.get_rank() == 0 and vdl_writer is not None:
        vdl_writer.close()
LDOUBLEV's avatar
LDOUBLEV committed
357
358
359
    return


MissPenguin's avatar
refine  
MissPenguin committed
360
361
362
363
def eval(model,
         valid_dataloader,
         post_process_class,
         eval_class,
LDOUBLEV's avatar
LDOUBLEV committed
364
         model_type=None,
andyjpaddle's avatar
andyjpaddle committed
365
366
         use_srn=False,
         use_sar=False):
WenmuZhou's avatar
WenmuZhou committed
367
368
369
370
    model.eval()
    with paddle.no_grad():
        total_frame = 0.0
        total_time = 0.0
WenmuZhou's avatar
fix bug  
WenmuZhou committed
371
        pbar = tqdm(total=len(valid_dataloader), desc='eval model:')
372
373
        max_iter = len(valid_dataloader) - 1 if platform.system(
        ) == "Windows" else len(valid_dataloader)
WenmuZhou's avatar
WenmuZhou committed
374
        for idx, batch in enumerate(valid_dataloader):
375
            if idx >= max_iter:
WenmuZhou's avatar
WenmuZhou committed
376
                break
WenmuZhou's avatar
fix bug  
WenmuZhou committed
377
            images = batch[0]
WenmuZhou's avatar
WenmuZhou committed
378
            start = time.time()
andyjpaddle's avatar
andyjpaddle committed
379
            if use_srn or model_type == 'table' or use_sar:
MissPenguin's avatar
refine  
MissPenguin committed
380
381
382
                preds = model(images, data=batch[1:])
            else:
                preds = model(images)
WenmuZhou's avatar
WenmuZhou committed
383
384
385
386
            batch = [item.numpy() for item in batch]
            # Obtain usable results from post-processing methods
            total_time += time.time() - start
            # Evaluate the results of the current batch
MissPenguin's avatar
MissPenguin committed
387
388
389
390
391
            if model_type == 'table':
                eval_class(preds, batch)
            else:
                post_result = post_process_class(preds, batch[1])
                eval_class(post_result, batch)
WenmuZhou's avatar
fix bug  
WenmuZhou committed
392
            pbar.update(1)
WenmuZhou's avatar
WenmuZhou committed
393
            total_frame += len(images)
LDOUBLEV's avatar
LDOUBLEV committed
394
395
        # Get final metric,eg. acc or hmean
        metric = eval_class.get_metric()
dyning's avatar
dyning committed
396

WenmuZhou's avatar
fix bug  
WenmuZhou committed
397
    pbar.close()
WenmuZhou's avatar
WenmuZhou committed
398
    model.train()
LDOUBLEV's avatar
LDOUBLEV committed
399
400
    metric['fps'] = total_frame / total_time
    return metric
licx's avatar
licx committed
401

tink2123's avatar
tink2123 committed
402

403
def preprocess(is_train=False):
licx's avatar
licx committed
404
    FLAGS = ArgsParser().parse_args()
LDOUBLEV's avatar
LDOUBLEV committed
405
    profiler_options = FLAGS.profiler_options
licx's avatar
licx committed
406
407
408
409
410
411
412
    config = load_config(FLAGS.config)
    merge_config(FLAGS.opt)

    # check if set use_gpu=True in paddlepaddle cpu version
    use_gpu = config['Global']['use_gpu']
    check_gpu(use_gpu)

WenmuZhou's avatar
WenmuZhou committed
413
414
    alg = config['Architecture']['algorithm']
    assert alg in [
Jethong's avatar
Jethong committed
415
        'EAST', 'DB', 'SAST', 'Rosetta', 'CRNN', 'STARNet', 'RARE', 'SRN',
WenmuZhou's avatar
WenmuZhou committed
416
        'CLS', 'PGNet', 'Distillation', 'NRTR', 'TableAttn', 'SAR', 'PSE'
WenmuZhou's avatar
WenmuZhou committed
417
    ]
licx's avatar
licx committed
418

WenmuZhou's avatar
WenmuZhou committed
419
420
    device = 'gpu:{}'.format(dist.ParallelEnv().dev_id) if use_gpu else 'cpu'
    device = paddle.set_device(device)
dyning's avatar
dyning committed
421

dyning's avatar
dyning committed
422
    config['Global']['distributed'] = dist.get_world_size() != 1
423
424
425
426
427
428
429
430
431
432
433
    if is_train:
        # save_config
        save_model_dir = config['Global']['save_model_dir']
        os.makedirs(save_model_dir, exist_ok=True)
        with open(os.path.join(save_model_dir, 'config.yml'), 'w') as f:
            yaml.dump(
                dict(config), f, default_flow_style=False, sort_keys=False)
        log_file = '{}/train.log'.format(save_model_dir)
    else:
        log_file = None
    logger = get_logger(name='root', log_file=log_file)
dyning's avatar
dyning committed
434
435
    if config['Global']['use_visualdl']:
        from visualdl import LogWriter
LDOUBLEV's avatar
fix bug  
LDOUBLEV committed
436
        save_model_dir = config['Global']['save_model_dir']
dyning's avatar
dyning committed
437
438
439
440
441
442
443
444
        vdl_writer_path = '{}/vdl/'.format(save_model_dir)
        os.makedirs(vdl_writer_path, exist_ok=True)
        vdl_writer = LogWriter(logdir=vdl_writer_path)
    else:
        vdl_writer = None
    print_dict(config, logger)
    logger.info('train with paddle {} and device {}'.format(paddle.__version__,
                                                            device))
LDOUBLEV's avatar
LDOUBLEV committed
445
    return config, device, logger, vdl_writer, profiler_options