program.py 20.3 KB
Newer Older
MissPenguin's avatar
refine  
MissPenguin committed
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
LDOUBLEV's avatar
LDOUBLEV committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

WenmuZhou's avatar
WenmuZhou committed
19
import os
LDOUBLEV's avatar
LDOUBLEV committed
20
import sys
21
import platform
LDOUBLEV's avatar
LDOUBLEV committed
22
23
import yaml
import time
24
import datetime
WenmuZhou's avatar
WenmuZhou committed
25
26
27
28
29
import paddle
import paddle.distributed as dist
from tqdm import tqdm
from argparse import ArgumentParser, RawDescriptionHelpFormatter

LDOUBLEV's avatar
LDOUBLEV committed
30
31
from ppocr.utils.stats import TrainingStats
from ppocr.utils.save_load import save_model
32
from ppocr.utils.utility import print_dict, AverageMeter
dyning's avatar
dyning committed
33
from ppocr.utils.logging import get_logger
LDOUBLEV's avatar
LDOUBLEV committed
34
from ppocr.utils import profiler
dyning's avatar
dyning committed
35
from ppocr.data import build_dataloader
LDOUBLEV's avatar
LDOUBLEV committed
36

dyning's avatar
dyning committed
37

LDOUBLEV's avatar
LDOUBLEV committed
38
39
40
41
42
43
44
class ArgsParser(ArgumentParser):
    def __init__(self):
        super(ArgsParser, self).__init__(
            formatter_class=RawDescriptionHelpFormatter)
        self.add_argument("-c", "--config", help="configuration file to use")
        self.add_argument(
            "-o", "--opt", nargs='+', help="set configuration options")
LDOUBLEV's avatar
LDOUBLEV committed
45
46
47
48
49
        self.add_argument(
            '-p',
            '--profiler_options',
            type=str,
            default=None,
50
51
            help='The option of profiler, which should be in format ' \
                 '\"key1=value1;key2=value2;key3=value3\".'
LDOUBLEV's avatar
LDOUBLEV committed
52
        )
LDOUBLEV's avatar
LDOUBLEV committed
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

    def parse_args(self, argv=None):
        args = super(ArgsParser, self).parse_args(argv)
        assert args.config is not None, \
            "Please specify --config=configure_file_path."
        args.opt = self._parse_opt(args.opt)
        return args

    def _parse_opt(self, opts):
        config = {}
        if not opts:
            return config
        for s in opts:
            s = s.strip()
            k, v = s.split('=')
            config[k] = yaml.load(v, Loader=yaml.Loader)
        return config


def load_config(file_path):
    """
    Load config from yml/yaml file.
    Args:
        file_path (str): Path of the config file to be loaded.
    Returns: global config
    """
    _, ext = os.path.splitext(file_path)
    assert ext in ['.yml', '.yaml'], "only support yaml files for now"
81
82
    config = yaml.load(open(file_path, 'rb'), Loader=yaml.Loader)
    return config
LDOUBLEV's avatar
LDOUBLEV committed
83
84


85
def merge_config(config, opts):
LDOUBLEV's avatar
LDOUBLEV committed
86
87
88
89
90
91
    """
    Merge config into global config.
    Args:
        config (dict): Config to be merged.
    Returns: global config
    """
92
    for key, value in opts.items():
LDOUBLEV's avatar
LDOUBLEV committed
93
        if "." not in key:
94
95
            if isinstance(value, dict) and key in config:
                config[key].update(value)
LDOUBLEV's avatar
LDOUBLEV committed
96
            else:
97
                config[key] = value
LDOUBLEV's avatar
LDOUBLEV committed
98
99
        else:
            sub_keys = key.split('.')
tink2123's avatar
tink2123 committed
100
            assert (
101
                sub_keys[0] in config
102
103
            ), "the sub_keys can only be one of global_config: {}, but get: " \
               "{}, please check your running command".format(
104
105
                config.keys(), sub_keys[0])
            cur = config[sub_keys[0]]
LDOUBLEV's avatar
LDOUBLEV committed
106
107
108
109
110
            for idx, sub_key in enumerate(sub_keys[1:]):
                if idx == len(sub_keys) - 2:
                    cur[sub_key] = value
                else:
                    cur = cur[sub_key]
111
    return config
LDOUBLEV's avatar
LDOUBLEV committed
112
113
114
115
116
117
118
119
120
121
122
123
124
125


def check_gpu(use_gpu):
    """
    Log error and exit when set use_gpu=true in paddlepaddle
    cpu version.
    """
    err = "Config use_gpu cannot be set as true while you are " \
          "using paddlepaddle cpu version ! \nPlease try: \n" \
          "\t1. Install paddlepaddle-gpu to run model on GPU \n" \
          "\t2. Set use_gpu as false in config file to run " \
          "model on CPU"

    try:
WenmuZhou's avatar
WenmuZhou committed
126
        if use_gpu and not paddle.is_compiled_with_cuda():
WenmuZhou's avatar
WenmuZhou committed
127
            print(err)
LDOUBLEV's avatar
LDOUBLEV committed
128
129
130
131
132
            sys.exit(1)
    except Exception as e:
        pass


133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
def check_xpu(use_xpu):
    """
    Log error and exit when set use_xpu=true in paddlepaddle
    cpu/gpu version.
    """
    err = "Config use_xpu cannot be set as true while you are " \
          "using paddlepaddle cpu/gpu version ! \nPlease try: \n" \
          "\t1. Install paddlepaddle-xpu to run model on XPU \n" \
          "\t2. Set use_xpu as false in config file to run " \
          "model on CPU/GPU"

    try:
        if use_xpu and not paddle.is_compiled_with_xpu():
            print(err)
            sys.exit(1)
    except Exception as e:
        pass


WenmuZhou's avatar
WenmuZhou committed
152
def train(config,
dyning's avatar
dyning committed
153
154
155
          train_dataloader,
          valid_dataloader,
          device,
WenmuZhou's avatar
WenmuZhou committed
156
157
158
159
160
161
162
163
          model,
          loss_class,
          optimizer,
          lr_scheduler,
          post_process_class,
          eval_class,
          pre_best_model_dict,
          logger,
stephon's avatar
stephon committed
164
165
          vdl_writer=None,
          scaler=None):
WenmuZhou's avatar
WenmuZhou committed
166
167
    cal_metric_during_train = config['Global'].get('cal_metric_during_train',
                                                   False)
168
    calc_epoch_interval = config['Global'].get('calc_epoch_interval', 1)
LDOUBLEV's avatar
LDOUBLEV committed
169
170
171
172
    log_smooth_window = config['Global']['log_smooth_window']
    epoch_num = config['Global']['epoch_num']
    print_batch_step = config['Global']['print_batch_step']
    eval_batch_step = config['Global']['eval_batch_step']
LDOUBLEV's avatar
LDOUBLEV committed
173
    profiler_options = config['profiler_options']
WenmuZhou's avatar
WenmuZhou committed
174

dyning's avatar
dyning committed
175
    global_step = 0
176
177
    if 'global_step' in pre_best_model_dict:
        global_step = pre_best_model_dict['global_step']
LDOUBLEV's avatar
LDOUBLEV committed
178
179
180
181
    start_eval_step = 0
    if type(eval_batch_step) == list and len(eval_batch_step) >= 2:
        start_eval_step = eval_batch_step[0]
        eval_batch_step = eval_batch_step[1]
WenmuZhou's avatar
WenmuZhou committed
182
183
        if len(valid_dataloader) == 0:
            logger.info(
184
185
                'No Images in eval dataset, evaluation during training ' \
                'will be disabled'
WenmuZhou's avatar
WenmuZhou committed
186
187
            )
            start_eval_step = 1e111
LDOUBLEV's avatar
LDOUBLEV committed
188
        logger.info(
189
190
            "During the training process, after the {}th iteration, " \
            "an evaluation is run every {} iterations".
LDOUBLEV's avatar
LDOUBLEV committed
191
            format(start_eval_step, eval_batch_step))
LDOUBLEV's avatar
LDOUBLEV committed
192
193
    save_epoch_step = config['Global']['save_epoch_step']
    save_model_dir = config['Global']['save_model_dir']
194
195
    if not os.path.exists(save_model_dir):
        os.makedirs(save_model_dir)
WenmuZhou's avatar
WenmuZhou committed
196
197
198
199
    main_indicator = eval_class.main_indicator
    best_model_dict = {main_indicator: 0}
    best_model_dict.update(pre_best_model_dict)
    train_stats = TrainingStats(log_smooth_window, ['lr'])
tink2123's avatar
tink2123 committed
200
    model_average = False
WenmuZhou's avatar
WenmuZhou committed
201
202
    model.train()

tink2123's avatar
tink2123 committed
203
    use_srn = config['Architecture']['algorithm'] == "SRN"
tink2123's avatar
tink2123 committed
204
    extra_input = config['Architecture'][
LDOUBLEV's avatar
LDOUBLEV committed
205
        'algorithm'] in ["SRN", "NRTR", "SAR", "SEED"]
206
    try:
LDOUBLEV's avatar
fix bug  
LDOUBLEV committed
207
        model_type = config['Architecture']['model_type']
208
    except:
LDOUBLEV's avatar
fix bug  
LDOUBLEV committed
209
        model_type = None
tink2123's avatar
tink2123 committed
210
    algorithm = config['Architecture']['algorithm']
tink2123's avatar
tink2123 committed
211

212
213
214
215
    start_epoch = best_model_dict[
        'start_epoch'] if 'start_epoch' in best_model_dict else 1

    total_samples = 0
216
217
    train_reader_cost = 0.0
    train_batch_cost = 0.0
218
    reader_start = time.time()
219
    eta_meter = AverageMeter()
220
221
222

    max_iter = len(train_dataloader) - 1 if platform.system(
    ) == "Windows" else len(train_dataloader)
WenmuZhou's avatar
WenmuZhou committed
223

tink2123's avatar
tink2123 committed
224
    for epoch in range(start_epoch, epoch_num + 1):
225
226
227
228
229
        if train_dataloader.dataset.need_reset:
            train_dataloader = build_dataloader(
                config, 'Train', device, logger, seed=epoch)
            max_iter = len(train_dataloader) - 1 if platform.system(
            ) == "Windows" else len(train_dataloader)
WenmuZhou's avatar
WenmuZhou committed
230
        for idx, batch in enumerate(train_dataloader):
LDOUBLEV's avatar
LDOUBLEV committed
231
            profiler.add_profiler_step(profiler_options)
WenmuZhou's avatar
WenmuZhou committed
232
            train_reader_cost += time.time() - reader_start
Jane-Ding's avatar
Jane-Ding committed
233
            if idx >= max_iter:
WenmuZhou's avatar
WenmuZhou committed
234
235
236
                break
            lr = optimizer.get_lr()
            images = batch[0]
tink2123's avatar
tink2123 committed
237
            if use_srn:
tink2123's avatar
tink2123 committed
238
                model_average = True
stephon's avatar
stephon committed
239
240
241
242
243
244
245
246

            # use amp
            if scaler:
                with paddle.amp.auto_cast():
                    if model_type == 'table' or extra_input:
                        preds = model(images, data=batch[1:])
                    else:
                        preds = model(images)
tink2123's avatar
tink2123 committed
247
            else:
stephon's avatar
stephon committed
248
249
                if model_type == 'table' or extra_input:
                    preds = model(images, data=batch[1:])
250
                elif model_type in ["kie", 'vqa']:
LDOUBLEV's avatar
LDOUBLEV committed
251
                    preds = model(batch)
stephon's avatar
stephon committed
252
253
                else:
                    preds = model(images)
254

WenmuZhou's avatar
WenmuZhou committed
255
256
            loss = loss_class(preds, batch)
            avg_loss = loss['loss']
stephon's avatar
stephon committed
257
258
259
260
261
262
263
264

            if scaler:
                scaled_avg_loss = scaler.scale(avg_loss)
                scaled_avg_loss.backward()
                scaler.minimize(optimizer, scaled_avg_loss)
            else:
                avg_loss.backward()
                optimizer.step()
WenmuZhou's avatar
WenmuZhou committed
265
            optimizer.clear_grad()
WenmuZhou's avatar
WenmuZhou committed
266

267
268
269
270
271
272
273
274
275
276
            if cal_metric_during_train and epoch % calc_epoch_interval == 0:  # only rec and cls need
                batch = [item.numpy() for item in batch]
                if model_type in ['table', 'kie']:
                    eval_class(preds, batch)
                else:
                    post_result = post_process_class(preds, batch[1])
                    eval_class(post_result, batch)
                metric = eval_class.get_metric()
                train_stats.update(metric)

277
278
279
            train_batch_time = time.time() - reader_start
            train_batch_cost += train_batch_time
            eta_meter.update(train_batch_time)
280
            global_step += 1
WenmuZhou's avatar
WenmuZhou committed
281
            total_samples += len(images)
WenmuZhou's avatar
WenmuZhou committed
282

dyning's avatar
dyning committed
283
284
            if not isinstance(lr_scheduler, float):
                lr_scheduler.step()
WenmuZhou's avatar
WenmuZhou committed
285
286
287
288
289
290
291
292
293
294
295

            # logger and visualdl
            stats = {k: v.numpy().mean() for k, v in loss.items()}
            stats['lr'] = lr
            train_stats.update(stats)

            if vdl_writer is not None and dist.get_rank() == 0:
                for k, v in train_stats.get().items():
                    vdl_writer.add_scalar('TRAIN/{}'.format(k), v, global_step)
                vdl_writer.add_scalar('TRAIN/lr', lr, global_step)

296
297
298
            if dist.get_rank() == 0 and (
                (global_step > 0 and global_step % print_batch_step == 0) or
                (idx >= len(train_dataloader) - 1)):
WenmuZhou's avatar
WenmuZhou committed
299
                logs = train_stats.log()
LDOUBLEV's avatar
LDOUBLEV committed
300

301
302
303
304
305
                eta_sec = ((epoch_num + 1 - epoch) * \
                    len(train_dataloader) - idx - 1) * eta_meter.avg
                eta_sec_format = str(datetime.timedelta(seconds=int(eta_sec)))
                strs = 'epoch: [{}/{}], global_step: {}, {}, avg_reader_cost: ' \
                       '{:.5f} s, avg_batch_cost: {:.5f} s, avg_samples: {}, ' \
LDOUBLEV's avatar
LDOUBLEV committed
306
                       'ips: {:.5f} samples/s, eta: {}'.format(
307
308
309
310
311
                    epoch, epoch_num, global_step, logs,
                    train_reader_cost / print_batch_step,
                    train_batch_cost / print_batch_step,
                    total_samples / print_batch_step,
                    total_samples / train_batch_cost, eta_sec_format)
WenmuZhou's avatar
WenmuZhou committed
312
                logger.info(strs)
313

WenmuZhou's avatar
WenmuZhou committed
314
                total_samples = 0
315
316
                train_reader_cost = 0.0
                train_batch_cost = 0.0
WenmuZhou's avatar
WenmuZhou committed
317
318
            # eval
            if global_step > start_eval_step and \
319
320
                    (global_step - start_eval_step) % eval_batch_step == 0 \
                    and dist.get_rank() == 0:
tink2123's avatar
tink2123 committed
321
322
323
324
325
326
327
                if model_average:
                    Model_Average = paddle.incubate.optimizer.ModelAverage(
                        0.15,
                        parameters=model.parameters(),
                        min_average_window=10000,
                        max_average_window=15625)
                    Model_Average.apply()
tink2123's avatar
tink2123 committed
328
329
330
331
332
                cur_metric = eval(
                    model,
                    valid_dataloader,
                    post_process_class,
                    eval_class,
MissPenguin's avatar
refine  
MissPenguin committed
333
                    model_type,
tink2123's avatar
tink2123 committed
334
                    extra_input=extra_input)
LDOUBLEV's avatar
LDOUBLEV committed
335
336
337
                cur_metric_str = 'cur metric, {}'.format(', '.join(
                    ['{}: {}'.format(k, v) for k, v in cur_metric.items()]))
                logger.info(cur_metric_str)
WenmuZhou's avatar
WenmuZhou committed
338
339
340

                # logger metric
                if vdl_writer is not None:
LDOUBLEV's avatar
LDOUBLEV committed
341
                    for k, v in cur_metric.items():
WenmuZhou's avatar
WenmuZhou committed
342
343
                        if isinstance(v, (float, int)):
                            vdl_writer.add_scalar('EVAL/{}'.format(k),
LDOUBLEV's avatar
LDOUBLEV committed
344
345
                                                  cur_metric[k], global_step)
                if cur_metric[main_indicator] >= best_model_dict[
WenmuZhou's avatar
WenmuZhou committed
346
                        main_indicator]:
LDOUBLEV's avatar
LDOUBLEV committed
347
                    best_model_dict.update(cur_metric)
WenmuZhou's avatar
WenmuZhou committed
348
349
350
351
352
353
                    best_model_dict['best_epoch'] = epoch
                    save_model(
                        model,
                        optimizer,
                        save_model_dir,
                        logger,
354
                        config,
WenmuZhou's avatar
WenmuZhou committed
355
356
357
                        is_best=True,
                        prefix='best_accuracy',
                        best_model_dict=best_model_dict,
358
359
                        epoch=epoch,
                        global_step=global_step)
LDOUBLEV's avatar
LDOUBLEV committed
360
                best_str = 'best metric, {}'.format(', '.join([
WenmuZhou's avatar
WenmuZhou committed
361
362
363
364
365
366
367
368
                    '{}: {}'.format(k, v) for k, v in best_model_dict.items()
                ]))
                logger.info(best_str)
                # logger best metric
                if vdl_writer is not None:
                    vdl_writer.add_scalar('EVAL/best_{}'.format(main_indicator),
                                          best_model_dict[main_indicator],
                                          global_step)
369

WenmuZhou's avatar
WenmuZhou committed
370
            reader_start = time.time()
WenmuZhou's avatar
WenmuZhou committed
371
372
373
374
375
376
        if dist.get_rank() == 0:
            save_model(
                model,
                optimizer,
                save_model_dir,
                logger,
377
                config,
WenmuZhou's avatar
WenmuZhou committed
378
379
380
                is_best=False,
                prefix='latest',
                best_model_dict=best_model_dict,
381
382
                epoch=epoch,
                global_step=global_step)
WenmuZhou's avatar
WenmuZhou committed
383
384
385
386
387
388
        if dist.get_rank() == 0 and epoch > 0 and epoch % save_epoch_step == 0:
            save_model(
                model,
                optimizer,
                save_model_dir,
                logger,
389
                config,
WenmuZhou's avatar
WenmuZhou committed
390
391
392
                is_best=False,
                prefix='iter_epoch_{}'.format(epoch),
                best_model_dict=best_model_dict,
393
394
                epoch=epoch,
                global_step=global_step)
LDOUBLEV's avatar
LDOUBLEV committed
395
    best_str = 'best metric, {}'.format(', '.join(
WenmuZhou's avatar
WenmuZhou committed
396
397
398
399
        ['{}: {}'.format(k, v) for k, v in best_model_dict.items()]))
    logger.info(best_str)
    if dist.get_rank() == 0 and vdl_writer is not None:
        vdl_writer.close()
LDOUBLEV's avatar
LDOUBLEV committed
400
401
402
    return


MissPenguin's avatar
refine  
MissPenguin committed
403
404
405
406
def eval(model,
         valid_dataloader,
         post_process_class,
         eval_class,
LDOUBLEV's avatar
LDOUBLEV committed
407
         model_type=None,
tink2123's avatar
tink2123 committed
408
         extra_input=False):
WenmuZhou's avatar
WenmuZhou committed
409
410
411
412
    model.eval()
    with paddle.no_grad():
        total_frame = 0.0
        total_time = 0.0
WenmuZhou's avatar
WenmuZhou committed
413
414
415
416
417
        pbar = tqdm(
            total=len(valid_dataloader),
            desc='eval model:',
            position=0,
            leave=True)
418
419
        max_iter = len(valid_dataloader) - 1 if platform.system(
        ) == "Windows" else len(valid_dataloader)
WenmuZhou's avatar
WenmuZhou committed
420
        for idx, batch in enumerate(valid_dataloader):
421
            if idx >= max_iter:
WenmuZhou's avatar
WenmuZhou committed
422
                break
WenmuZhou's avatar
fix bug  
WenmuZhou committed
423
            images = batch[0]
WenmuZhou's avatar
WenmuZhou committed
424
            start = time.time()
tink2123's avatar
tink2123 committed
425
            if model_type == 'table' or extra_input:
MissPenguin's avatar
refine  
MissPenguin committed
426
                preds = model(images, data=batch[1:])
427
            elif model_type in ["kie", 'vqa']:
LDOUBLEV's avatar
LDOUBLEV committed
428
                preds = model(batch)
xiaoting's avatar
xiaoting committed
429
            else:
LDOUBLEV's avatar
LDOUBLEV committed
430
                preds = model(images)
431
432
433
434
435
436
437

            batch_numpy = []
            for item in batch:
                if isinstance(item, paddle.Tensor):
                    batch_numpy.append(item.numpy())
                else:
                    batch_numpy.append(item)
WenmuZhou's avatar
WenmuZhou committed
438
439
440
            # Obtain usable results from post-processing methods
            total_time += time.time() - start
            # Evaluate the results of the current batch
LDOUBLEV's avatar
LDOUBLEV committed
441
            if model_type in ['table', 'kie']:
442
443
444
445
                eval_class(preds, batch_numpy)
            elif model_type in ['vqa']:
                post_result = post_process_class(preds, batch_numpy)
                eval_class(post_result, batch_numpy)
MissPenguin's avatar
MissPenguin committed
446
            else:
447
448
                post_result = post_process_class(preds, batch_numpy[1])
                eval_class(post_result, batch_numpy)
LDOUBLEV's avatar
LDOUBLEV committed
449

WenmuZhou's avatar
fix bug  
WenmuZhou committed
450
            pbar.update(1)
WenmuZhou's avatar
WenmuZhou committed
451
            total_frame += len(images)
LDOUBLEV's avatar
LDOUBLEV committed
452
453
        # Get final metric,eg. acc or hmean
        metric = eval_class.get_metric()
dyning's avatar
dyning committed
454

WenmuZhou's avatar
fix bug  
WenmuZhou committed
455
    pbar.close()
WenmuZhou's avatar
WenmuZhou committed
456
    model.train()
LDOUBLEV's avatar
LDOUBLEV committed
457
458
    metric['fps'] = total_frame / total_time
    return metric
licx's avatar
licx committed
459

tink2123's avatar
tink2123 committed
460

Bin Lu's avatar
Bin Lu committed
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
def update_center(char_center, post_result, preds):
    result, label = post_result
    feats, logits = preds
    logits = paddle.argmax(logits, axis=-1)
    feats = feats.numpy()
    logits = logits.numpy()

    for idx_sample in range(len(label)):
        if result[idx_sample][0] == label[idx_sample][0]:
            feat = feats[idx_sample]
            logit = logits[idx_sample]
            for idx_time in range(len(logit)):
                index = logit[idx_time]
                if index in char_center.keys():
                    char_center[index][0] = (
                        char_center[index][0] * char_center[index][1] +
                        feat[idx_time]) / (char_center[index][1] + 1)
                    char_center[index][1] += 1
                else:
                    char_center[index] = [feat[idx_time], 1]
    return char_center


def get_center(model, eval_dataloader, post_process_class):
    pbar = tqdm(total=len(eval_dataloader), desc='get center:')
    max_iter = len(eval_dataloader) - 1 if platform.system(
    ) == "Windows" else len(eval_dataloader)
    char_center = dict()
    for idx, batch in enumerate(eval_dataloader):
        if idx >= max_iter:
            break
        images = batch[0]
        start = time.time()
        preds = model(images)

        batch = [item.numpy() for item in batch]
        # Obtain usable results from post-processing methods
        post_result = post_process_class(preds, batch[1])

        #update char_center
        char_center = update_center(char_center, post_result, preds)
        pbar.update(1)

    pbar.close()
    for key in char_center.keys():
        char_center[key] = char_center[key][0]
    return char_center


510
def preprocess(is_train=False):
licx's avatar
licx committed
511
    FLAGS = ArgsParser().parse_args()
LDOUBLEV's avatar
LDOUBLEV committed
512
    profiler_options = FLAGS.profiler_options
licx's avatar
licx committed
513
    config = load_config(FLAGS.config)
514
    config = merge_config(config, FLAGS.opt)
LDOUBLEV's avatar
LDOUBLEV committed
515
    profile_dic = {"profiler_options": FLAGS.profiler_options}
516
    config = merge_config(config, profile_dic)
licx's avatar
licx committed
517

518
519
520
521
522
523
524
525
526
527
528
    if is_train:
        # save_config
        save_model_dir = config['Global']['save_model_dir']
        os.makedirs(save_model_dir, exist_ok=True)
        with open(os.path.join(save_model_dir, 'config.yml'), 'w') as f:
            yaml.dump(
                dict(config), f, default_flow_style=False, sort_keys=False)
        log_file = '{}/train.log'.format(save_model_dir)
    else:
        log_file = None
    logger = get_logger(name='root', log_file=log_file)
licx's avatar
licx committed
529
530
531
532
533

    # check if set use_gpu=True in paddlepaddle cpu version
    use_gpu = config['Global']['use_gpu']
    check_gpu(use_gpu)

534
535
536
537
538
539
    # check if set use_xpu=True in paddlepaddle cpu/gpu version
    use_xpu = False
    if 'use_xpu' in config['Global']:
        use_xpu = config['Global']['use_xpu']
    check_xpu(use_xpu)

WenmuZhou's avatar
WenmuZhou committed
540
541
    alg = config['Architecture']['algorithm']
    assert alg in [
Jethong's avatar
Jethong committed
542
        'EAST', 'DB', 'SAST', 'Rosetta', 'CRNN', 'STARNet', 'RARE', 'SRN',
tink2123's avatar
tink2123 committed
543
        'CLS', 'PGNet', 'Distillation', 'NRTR', 'TableAttn', 'SAR', 'PSE',
544
        'SEED', 'SDMGR', 'LayoutXLM', 'LayoutLM', 'PREN', 'FCE'
WenmuZhou's avatar
WenmuZhou committed
545
    ]
licx's avatar
licx committed
546

547
548
549
550
551
    device = 'cpu'
    if use_gpu:
        device = 'gpu:{}'.format(dist.ParallelEnv().dev_id)
    if use_xpu:
        device = 'xpu'
WenmuZhou's avatar
WenmuZhou committed
552
    device = paddle.set_device(device)
dyning's avatar
dyning committed
553

dyning's avatar
dyning committed
554
    config['Global']['distributed'] = dist.get_world_size() != 1
555

littletomatodonkey's avatar
littletomatodonkey committed
556
    if config['Global']['use_visualdl'] and dist.get_rank() == 0:
dyning's avatar
dyning committed
557
        from visualdl import LogWriter
LDOUBLEV's avatar
fix bug  
LDOUBLEV committed
558
        save_model_dir = config['Global']['save_model_dir']
dyning's avatar
dyning committed
559
560
561
562
563
564
565
566
567
        vdl_writer_path = '{}/vdl/'.format(save_model_dir)
        os.makedirs(vdl_writer_path, exist_ok=True)
        vdl_writer = LogWriter(logdir=vdl_writer_path)
    else:
        vdl_writer = None
    print_dict(config, logger)
    logger.info('train with paddle {} and device {}'.format(paddle.__version__,
                                                            device))
    return config, device, logger, vdl_writer