program.py 16.1 KB
Newer Older
MissPenguin's avatar
refine  
MissPenguin committed
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
LDOUBLEV's avatar
LDOUBLEV committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

WenmuZhou's avatar
WenmuZhou committed
19
import os
LDOUBLEV's avatar
LDOUBLEV committed
20
import sys
21
import platform
LDOUBLEV's avatar
LDOUBLEV committed
22
23
import yaml
import time
WenmuZhou's avatar
WenmuZhou committed
24
25
26
27
28
29
import shutil
import paddle
import paddle.distributed as dist
from tqdm import tqdm
from argparse import ArgumentParser, RawDescriptionHelpFormatter

LDOUBLEV's avatar
LDOUBLEV committed
30
31
from ppocr.utils.stats import TrainingStats
from ppocr.utils.save_load import save_model
dyning's avatar
dyning committed
32
33
34
35
from ppocr.utils.utility import print_dict
from ppocr.utils.logging import get_logger
from ppocr.data import build_dataloader
import numpy as np
LDOUBLEV's avatar
LDOUBLEV committed
36

dyning's avatar
dyning committed
37

LDOUBLEV's avatar
LDOUBLEV committed
38
39
40
41
42
43
44
class ArgsParser(ArgumentParser):
    def __init__(self):
        super(ArgsParser, self).__init__(
            formatter_class=RawDescriptionHelpFormatter)
        self.add_argument("-c", "--config", help="configuration file to use")
        self.add_argument(
            "-o", "--opt", nargs='+', help="set configuration options")
LDOUBLEV's avatar
LDOUBLEV committed
45
46
47
48
49
50
51
        self.add_argument(
            '-p',
            '--profiler_options',
            type=str,
            default=None,
            help='The option of profiler, which should be in format \"key1=value1;key2=value2;key3=value3\".'
        )
LDOUBLEV's avatar
LDOUBLEV committed
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

    def parse_args(self, argv=None):
        args = super(ArgsParser, self).parse_args(argv)
        assert args.config is not None, \
            "Please specify --config=configure_file_path."
        args.opt = self._parse_opt(args.opt)
        return args

    def _parse_opt(self, opts):
        config = {}
        if not opts:
            return config
        for s in opts:
            s = s.strip()
            k, v = s.split('=')
            config[k] = yaml.load(v, Loader=yaml.Loader)
        return config


class AttrDict(dict):
    """Single level attribute dict, NOT recursive"""

    def __init__(self, **kwargs):
        super(AttrDict, self).__init__()
        super(AttrDict, self).update(kwargs)

    def __getattr__(self, key):
        if key in self:
            return self[key]
        raise AttributeError("object has no attribute '{}'".format(key))


global_config = AttrDict()

lyl120117's avatar
lyl120117 committed
86
87
default_config = {'Global': {'debug': False, }}

LDOUBLEV's avatar
LDOUBLEV committed
88
89
90
91
92
93
94
95

def load_config(file_path):
    """
    Load config from yml/yaml file.
    Args:
        file_path (str): Path of the config file to be loaded.
    Returns: global config
    """
lyl120117's avatar
lyl120117 committed
96
    merge_config(default_config)
LDOUBLEV's avatar
LDOUBLEV committed
97
98
    _, ext = os.path.splitext(file_path)
    assert ext in ['.yml', '.yaml'], "only support yaml files for now"
WenmuZhou's avatar
WenmuZhou committed
99
    merge_config(yaml.load(open(file_path, 'rb'), Loader=yaml.Loader))
LDOUBLEV's avatar
LDOUBLEV committed
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
    return global_config


def merge_config(config):
    """
    Merge config into global config.
    Args:
        config (dict): Config to be merged.
    Returns: global config
    """
    for key, value in config.items():
        if "." not in key:
            if isinstance(value, dict) and key in global_config:
                global_config[key].update(value)
            else:
                global_config[key] = value
        else:
            sub_keys = key.split('.')
tink2123's avatar
tink2123 committed
118
119
120
121
            assert (
                sub_keys[0] in global_config
            ), "the sub_keys can only be one of global_config: {}, but get: {}, please check your running command".format(
                global_config.keys(), sub_keys[0])
LDOUBLEV's avatar
LDOUBLEV committed
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
            cur = global_config[sub_keys[0]]
            for idx, sub_key in enumerate(sub_keys[1:]):
                if idx == len(sub_keys) - 2:
                    cur[sub_key] = value
                else:
                    cur = cur[sub_key]


def check_gpu(use_gpu):
    """
    Log error and exit when set use_gpu=true in paddlepaddle
    cpu version.
    """
    err = "Config use_gpu cannot be set as true while you are " \
          "using paddlepaddle cpu version ! \nPlease try: \n" \
          "\t1. Install paddlepaddle-gpu to run model on GPU \n" \
          "\t2. Set use_gpu as false in config file to run " \
          "model on CPU"

    try:
WenmuZhou's avatar
WenmuZhou committed
142
        if use_gpu and not paddle.is_compiled_with_cuda():
WenmuZhou's avatar
WenmuZhou committed
143
            print(err)
LDOUBLEV's avatar
LDOUBLEV committed
144
145
146
147
148
            sys.exit(1)
    except Exception as e:
        pass


WenmuZhou's avatar
WenmuZhou committed
149
def train(config,
dyning's avatar
dyning committed
150
151
152
          train_dataloader,
          valid_dataloader,
          device,
WenmuZhou's avatar
WenmuZhou committed
153
154
155
156
157
158
159
160
          model,
          loss_class,
          optimizer,
          lr_scheduler,
          post_process_class,
          eval_class,
          pre_best_model_dict,
          logger,
LDOUBLEV's avatar
LDOUBLEV committed
161
162
          vdl_writer=None,
          profiler_options=None):
WenmuZhou's avatar
WenmuZhou committed
163
164
    cal_metric_during_train = config['Global'].get('cal_metric_during_train',
                                                   False)
LDOUBLEV's avatar
LDOUBLEV committed
165
166
167
168
    log_smooth_window = config['Global']['log_smooth_window']
    epoch_num = config['Global']['epoch_num']
    print_batch_step = config['Global']['print_batch_step']
    eval_batch_step = config['Global']['eval_batch_step']
WenmuZhou's avatar
WenmuZhou committed
169

dyning's avatar
dyning committed
170
    global_step = 0
171
172
    if 'global_step' in pre_best_model_dict:
        global_step = pre_best_model_dict['global_step']
LDOUBLEV's avatar
LDOUBLEV committed
173
174
175
176
    start_eval_step = 0
    if type(eval_batch_step) == list and len(eval_batch_step) >= 2:
        start_eval_step = eval_batch_step[0]
        eval_batch_step = eval_batch_step[1]
WenmuZhou's avatar
WenmuZhou committed
177
178
179
180
181
        if len(valid_dataloader) == 0:
            logger.info(
                'No Images in eval dataset, evaluation during training will be disabled'
            )
            start_eval_step = 1e111
LDOUBLEV's avatar
LDOUBLEV committed
182
183
184
        logger.info(
            "During the training process, after the {}th iteration, an evaluation is run every {} iterations".
            format(start_eval_step, eval_batch_step))
LDOUBLEV's avatar
LDOUBLEV committed
185
186
    save_epoch_step = config['Global']['save_epoch_step']
    save_model_dir = config['Global']['save_model_dir']
187
188
    if not os.path.exists(save_model_dir):
        os.makedirs(save_model_dir)
WenmuZhou's avatar
WenmuZhou committed
189
190
191
192
    main_indicator = eval_class.main_indicator
    best_model_dict = {main_indicator: 0}
    best_model_dict.update(pre_best_model_dict)
    train_stats = TrainingStats(log_smooth_window, ['lr'])
tink2123's avatar
tink2123 committed
193
    model_average = False
WenmuZhou's avatar
WenmuZhou committed
194
195
    model.train()

tink2123's avatar
tink2123 committed
196
    use_srn = config['Architecture']['algorithm'] == "SRN"
Topdu's avatar
Topdu committed
197
    use_nrtr = config['Architecture']['algorithm'] == "NRTR"
andyjpaddle's avatar
andyjpaddle committed
198
    use_sar = config['Architecture']['algorithm'] == 'SAR'
199
    try:
LDOUBLEV's avatar
fix bug  
LDOUBLEV committed
200
        model_type = config['Architecture']['model_type']
201
    except:
LDOUBLEV's avatar
fix bug  
LDOUBLEV committed
202
        model_type = None
MissPenguin's avatar
refine  
MissPenguin committed
203

WenmuZhou's avatar
WenmuZhou committed
204
205
206
    if 'start_epoch' in best_model_dict:
        start_epoch = best_model_dict['start_epoch']
    else:
tink2123's avatar
tink2123 committed
207
        start_epoch = 1
WenmuZhou's avatar
WenmuZhou committed
208

tink2123's avatar
tink2123 committed
209
    for epoch in range(start_epoch, epoch_num + 1):
210
211
        train_dataloader = build_dataloader(
            config, 'Train', device, logger, seed=epoch)
WenmuZhou's avatar
WenmuZhou committed
212
213
214
215
        train_batch_cost = 0.0
        train_reader_cost = 0.0
        batch_sum = 0
        batch_start = time.time()
Jane-Ding's avatar
Jane-Ding committed
216
217
218
        max_iter = len(train_dataloader) - 1 if platform.system(
        ) == "Windows" else len(train_dataloader)
        for idx, batch in enumerate(train_dataloader):
LDOUBLEV's avatar
LDOUBLEV committed
219
            profiler.add_profiler_step(profiler_options)
WenmuZhou's avatar
WenmuZhou committed
220
            train_reader_cost += time.time() - batch_start
Jane-Ding's avatar
Jane-Ding committed
221
222
            if idx >= max_iter:
                break
WenmuZhou's avatar
WenmuZhou committed
223
224
            lr = optimizer.get_lr()
            images = batch[0]
tink2123's avatar
tink2123 committed
225
            if use_srn:
tink2123's avatar
tink2123 committed
226
                model_average = True
andyjpaddle's avatar
andyjpaddle committed
227
            if use_srn or model_type == 'table' or use_nrtr or use_sar:
MissPenguin's avatar
refine  
MissPenguin committed
228
229
230
                preds = model(images, data=batch[1:])
            else:
                preds = model(images)
WenmuZhou's avatar
WenmuZhou committed
231
232
            loss = loss_class(preds, batch)
            avg_loss = loss['loss']
dyning's avatar
dyning committed
233
            avg_loss.backward()
WenmuZhou's avatar
WenmuZhou committed
234
235
            optimizer.step()
            optimizer.clear_grad()
WenmuZhou's avatar
WenmuZhou committed
236
237
238
239

            train_batch_cost += time.time() - batch_start
            batch_sum += len(images)

dyning's avatar
dyning committed
240
241
            if not isinstance(lr_scheduler, float):
                lr_scheduler.step()
WenmuZhou's avatar
WenmuZhou committed
242
243
244
245
246
247

            # logger and visualdl
            stats = {k: v.numpy().mean() for k, v in loss.items()}
            stats['lr'] = lr
            train_stats.update(stats)

LDOUBLEV's avatar
LDOUBLEV committed
248
            if cal_metric_during_train:  # only rec and cls need
WenmuZhou's avatar
WenmuZhou committed
249
                batch = [item.numpy() for item in batch]
MissPenguin's avatar
MissPenguin committed
250
251
252
253
254
                if model_type == 'table':
                    eval_class(preds, batch)
                else:
                    post_result = post_process_class(preds, batch[1])
                    eval_class(post_result, batch)
littletomatodonkey's avatar
fix doc  
littletomatodonkey committed
255
256
                metric = eval_class.get_metric()
                train_stats.update(metric)
WenmuZhou's avatar
WenmuZhou committed
257
258
259
260
261
262

            if vdl_writer is not None and dist.get_rank() == 0:
                for k, v in train_stats.get().items():
                    vdl_writer.add_scalar('TRAIN/{}'.format(k), v, global_step)
                vdl_writer.add_scalar('TRAIN/lr', lr, global_step)

263
264
265
            if dist.get_rank() == 0 and (
                (global_step > 0 and global_step % print_batch_step == 0) or
                (idx >= len(train_dataloader) - 1)):
WenmuZhou's avatar
WenmuZhou committed
266
                logs = train_stats.log()
WenmuZhou's avatar
WenmuZhou committed
267
                strs = 'epoch: [{}/{}], iter: {}, {}, reader_cost: {:.5f} s, batch_cost: {:.5f} s, samples: {}, ips: {:.5f}'.format(
WenmuZhou's avatar
WenmuZhou committed
268
269
270
                    epoch, epoch_num, global_step, logs, train_reader_cost /
                    print_batch_step, train_batch_cost / print_batch_step,
                    batch_sum, batch_sum / train_batch_cost)
WenmuZhou's avatar
WenmuZhou committed
271
                logger.info(strs)
WenmuZhou's avatar
WenmuZhou committed
272
273
274
                train_batch_cost = 0.0
                train_reader_cost = 0.0
                batch_sum = 0
WenmuZhou's avatar
WenmuZhou committed
275
276
277
            # eval
            if global_step > start_eval_step and \
                    (global_step - start_eval_step) % eval_batch_step == 0 and dist.get_rank() == 0:
tink2123's avatar
tink2123 committed
278
279
280
281
282
283
284
                if model_average:
                    Model_Average = paddle.incubate.optimizer.ModelAverage(
                        0.15,
                        parameters=model.parameters(),
                        min_average_window=10000,
                        max_average_window=15625)
                    Model_Average.apply()
tink2123's avatar
tink2123 committed
285
286
287
288
289
                cur_metric = eval(
                    model,
                    valid_dataloader,
                    post_process_class,
                    eval_class,
MissPenguin's avatar
refine  
MissPenguin committed
290
                    model_type,
andyjpaddle's avatar
andyjpaddle committed
291
292
                    use_srn=use_srn,
                    use_sar=use_sar)
LDOUBLEV's avatar
LDOUBLEV committed
293
294
295
                cur_metric_str = 'cur metric, {}'.format(', '.join(
                    ['{}: {}'.format(k, v) for k, v in cur_metric.items()]))
                logger.info(cur_metric_str)
WenmuZhou's avatar
WenmuZhou committed
296
297
298

                # logger metric
                if vdl_writer is not None:
LDOUBLEV's avatar
LDOUBLEV committed
299
                    for k, v in cur_metric.items():
WenmuZhou's avatar
WenmuZhou committed
300
301
                        if isinstance(v, (float, int)):
                            vdl_writer.add_scalar('EVAL/{}'.format(k),
LDOUBLEV's avatar
LDOUBLEV committed
302
303
                                                  cur_metric[k], global_step)
                if cur_metric[main_indicator] >= best_model_dict[
WenmuZhou's avatar
WenmuZhou committed
304
                        main_indicator]:
LDOUBLEV's avatar
LDOUBLEV committed
305
                    best_model_dict.update(cur_metric)
WenmuZhou's avatar
WenmuZhou committed
306
307
308
309
310
311
312
313
314
                    best_model_dict['best_epoch'] = epoch
                    save_model(
                        model,
                        optimizer,
                        save_model_dir,
                        logger,
                        is_best=True,
                        prefix='best_accuracy',
                        best_model_dict=best_model_dict,
315
316
                        epoch=epoch,
                        global_step=global_step)
LDOUBLEV's avatar
LDOUBLEV committed
317
                best_str = 'best metric, {}'.format(', '.join([
WenmuZhou's avatar
WenmuZhou committed
318
319
320
321
322
323
324
325
326
                    '{}: {}'.format(k, v) for k, v in best_model_dict.items()
                ]))
                logger.info(best_str)
                # logger best metric
                if vdl_writer is not None:
                    vdl_writer.add_scalar('EVAL/best_{}'.format(main_indicator),
                                          best_model_dict[main_indicator],
                                          global_step)
            global_step += 1
tink2123's avatar
tink2123 committed
327
            optimizer.clear_grad()
328
            batch_start = time.time()
WenmuZhou's avatar
WenmuZhou committed
329
330
331
332
333
334
335
336
337
        if dist.get_rank() == 0:
            save_model(
                model,
                optimizer,
                save_model_dir,
                logger,
                is_best=False,
                prefix='latest',
                best_model_dict=best_model_dict,
338
339
                epoch=epoch,
                global_step=global_step)
WenmuZhou's avatar
WenmuZhou committed
340
341
342
343
344
345
346
347
348
        if dist.get_rank() == 0 and epoch > 0 and epoch % save_epoch_step == 0:
            save_model(
                model,
                optimizer,
                save_model_dir,
                logger,
                is_best=False,
                prefix='iter_epoch_{}'.format(epoch),
                best_model_dict=best_model_dict,
349
350
                epoch=epoch,
                global_step=global_step)
LDOUBLEV's avatar
LDOUBLEV committed
351
    best_str = 'best metric, {}'.format(', '.join(
WenmuZhou's avatar
WenmuZhou committed
352
353
354
355
        ['{}: {}'.format(k, v) for k, v in best_model_dict.items()]))
    logger.info(best_str)
    if dist.get_rank() == 0 and vdl_writer is not None:
        vdl_writer.close()
LDOUBLEV's avatar
LDOUBLEV committed
356
357
358
    return


MissPenguin's avatar
refine  
MissPenguin committed
359
360
361
362
def eval(model,
         valid_dataloader,
         post_process_class,
         eval_class,
LDOUBLEV's avatar
LDOUBLEV committed
363
         model_type=None,
andyjpaddle's avatar
andyjpaddle committed
364
365
         use_srn=False,
         use_sar=False):
WenmuZhou's avatar
WenmuZhou committed
366
367
368
369
    model.eval()
    with paddle.no_grad():
        total_frame = 0.0
        total_time = 0.0
WenmuZhou's avatar
fix bug  
WenmuZhou committed
370
        pbar = tqdm(total=len(valid_dataloader), desc='eval model:')
371
372
        max_iter = len(valid_dataloader) - 1 if platform.system(
        ) == "Windows" else len(valid_dataloader)
WenmuZhou's avatar
WenmuZhou committed
373
        for idx, batch in enumerate(valid_dataloader):
374
            if idx >= max_iter:
WenmuZhou's avatar
WenmuZhou committed
375
                break
WenmuZhou's avatar
fix bug  
WenmuZhou committed
376
            images = batch[0]
WenmuZhou's avatar
WenmuZhou committed
377
            start = time.time()
andyjpaddle's avatar
andyjpaddle committed
378
            if use_srn or model_type == 'table' or use_sar:
MissPenguin's avatar
refine  
MissPenguin committed
379
380
381
                preds = model(images, data=batch[1:])
            else:
                preds = model(images)
WenmuZhou's avatar
WenmuZhou committed
382
383
384
385
            batch = [item.numpy() for item in batch]
            # Obtain usable results from post-processing methods
            total_time += time.time() - start
            # Evaluate the results of the current batch
MissPenguin's avatar
MissPenguin committed
386
387
388
389
390
            if model_type == 'table':
                eval_class(preds, batch)
            else:
                post_result = post_process_class(preds, batch[1])
                eval_class(post_result, batch)
WenmuZhou's avatar
fix bug  
WenmuZhou committed
391
            pbar.update(1)
WenmuZhou's avatar
WenmuZhou committed
392
            total_frame += len(images)
LDOUBLEV's avatar
LDOUBLEV committed
393
394
        # Get final metric,eg. acc or hmean
        metric = eval_class.get_metric()
dyning's avatar
dyning committed
395

WenmuZhou's avatar
fix bug  
WenmuZhou committed
396
    pbar.close()
WenmuZhou's avatar
WenmuZhou committed
397
    model.train()
LDOUBLEV's avatar
LDOUBLEV committed
398
399
    metric['fps'] = total_frame / total_time
    return metric
licx's avatar
licx committed
400

tink2123's avatar
tink2123 committed
401

402
def preprocess(is_train=False):
licx's avatar
licx committed
403
    FLAGS = ArgsParser().parse_args()
LDOUBLEV's avatar
LDOUBLEV committed
404
    profiler_options = FLAGS.profiler_options
licx's avatar
licx committed
405
406
407
408
409
410
411
    config = load_config(FLAGS.config)
    merge_config(FLAGS.opt)

    # check if set use_gpu=True in paddlepaddle cpu version
    use_gpu = config['Global']['use_gpu']
    check_gpu(use_gpu)

WenmuZhou's avatar
WenmuZhou committed
412
413
    alg = config['Architecture']['algorithm']
    assert alg in [
Jethong's avatar
Jethong committed
414
        'EAST', 'DB', 'SAST', 'Rosetta', 'CRNN', 'STARNet', 'RARE', 'SRN',
WenmuZhou's avatar
WenmuZhou committed
415
        'CLS', 'PGNet', 'Distillation', 'NRTR', 'TableAttn', 'SAR', 'PSE'
WenmuZhou's avatar
WenmuZhou committed
416
    ]
licx's avatar
licx committed
417

WenmuZhou's avatar
WenmuZhou committed
418
419
    device = 'gpu:{}'.format(dist.ParallelEnv().dev_id) if use_gpu else 'cpu'
    device = paddle.set_device(device)
dyning's avatar
dyning committed
420

dyning's avatar
dyning committed
421
    config['Global']['distributed'] = dist.get_world_size() != 1
422
423
424
425
426
427
428
429
430
431
432
    if is_train:
        # save_config
        save_model_dir = config['Global']['save_model_dir']
        os.makedirs(save_model_dir, exist_ok=True)
        with open(os.path.join(save_model_dir, 'config.yml'), 'w') as f:
            yaml.dump(
                dict(config), f, default_flow_style=False, sort_keys=False)
        log_file = '{}/train.log'.format(save_model_dir)
    else:
        log_file = None
    logger = get_logger(name='root', log_file=log_file)
dyning's avatar
dyning committed
433
434
    if config['Global']['use_visualdl']:
        from visualdl import LogWriter
LDOUBLEV's avatar
fix bug  
LDOUBLEV committed
435
        save_model_dir = config['Global']['save_model_dir']
dyning's avatar
dyning committed
436
437
438
439
440
441
442
443
        vdl_writer_path = '{}/vdl/'.format(save_model_dir)
        os.makedirs(vdl_writer_path, exist_ok=True)
        vdl_writer = LogWriter(logdir=vdl_writer_path)
    else:
        vdl_writer = None
    print_dict(config, logger)
    logger.info('train with paddle {} and device {}'.format(paddle.__version__,
                                                            device))
LDOUBLEV's avatar
LDOUBLEV committed
444
    return config, device, logger, vdl_writer, profiler_options