program.py 20.9 KB
Newer Older
MissPenguin's avatar
refine  
MissPenguin committed
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
LDOUBLEV's avatar
LDOUBLEV committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

WenmuZhou's avatar
WenmuZhou committed
19
import os
LDOUBLEV's avatar
LDOUBLEV committed
20
import sys
21
import platform
LDOUBLEV's avatar
LDOUBLEV committed
22
23
import yaml
import time
24
import datetime
WenmuZhou's avatar
WenmuZhou committed
25
26
27
28
29
import paddle
import paddle.distributed as dist
from tqdm import tqdm
from argparse import ArgumentParser, RawDescriptionHelpFormatter

LDOUBLEV's avatar
LDOUBLEV committed
30
31
from ppocr.utils.stats import TrainingStats
from ppocr.utils.save_load import save_model
32
from ppocr.utils.utility import print_dict, AverageMeter
dyning's avatar
dyning committed
33
from ppocr.utils.logging import get_logger
34
from ppocr.utils.loggers import VDLLogger, WandbLogger
LDOUBLEV's avatar
LDOUBLEV committed
35
from ppocr.utils import profiler
dyning's avatar
dyning committed
36
from ppocr.data import build_dataloader
LDOUBLEV's avatar
LDOUBLEV committed
37

dyning's avatar
dyning committed
38

LDOUBLEV's avatar
LDOUBLEV committed
39
40
41
42
43
44
45
class ArgsParser(ArgumentParser):
    def __init__(self):
        super(ArgsParser, self).__init__(
            formatter_class=RawDescriptionHelpFormatter)
        self.add_argument("-c", "--config", help="configuration file to use")
        self.add_argument(
            "-o", "--opt", nargs='+', help="set configuration options")
LDOUBLEV's avatar
LDOUBLEV committed
46
47
48
49
50
        self.add_argument(
            '-p',
            '--profiler_options',
            type=str,
            default=None,
51
52
            help='The option of profiler, which should be in format ' \
                 '\"key1=value1;key2=value2;key3=value3\".'
LDOUBLEV's avatar
LDOUBLEV committed
53
        )
LDOUBLEV's avatar
LDOUBLEV committed
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81

    def parse_args(self, argv=None):
        args = super(ArgsParser, self).parse_args(argv)
        assert args.config is not None, \
            "Please specify --config=configure_file_path."
        args.opt = self._parse_opt(args.opt)
        return args

    def _parse_opt(self, opts):
        config = {}
        if not opts:
            return config
        for s in opts:
            s = s.strip()
            k, v = s.split('=')
            config[k] = yaml.load(v, Loader=yaml.Loader)
        return config


def load_config(file_path):
    """
    Load config from yml/yaml file.
    Args:
        file_path (str): Path of the config file to be loaded.
    Returns: global config
    """
    _, ext = os.path.splitext(file_path)
    assert ext in ['.yml', '.yaml'], "only support yaml files for now"
82
83
    config = yaml.load(open(file_path, 'rb'), Loader=yaml.Loader)
    return config
LDOUBLEV's avatar
LDOUBLEV committed
84
85


86
def merge_config(config, opts):
LDOUBLEV's avatar
LDOUBLEV committed
87
88
89
90
91
92
    """
    Merge config into global config.
    Args:
        config (dict): Config to be merged.
    Returns: global config
    """
93
    for key, value in opts.items():
LDOUBLEV's avatar
LDOUBLEV committed
94
        if "." not in key:
95
96
            if isinstance(value, dict) and key in config:
                config[key].update(value)
LDOUBLEV's avatar
LDOUBLEV committed
97
            else:
98
                config[key] = value
LDOUBLEV's avatar
LDOUBLEV committed
99
100
        else:
            sub_keys = key.split('.')
tink2123's avatar
tink2123 committed
101
            assert (
102
                sub_keys[0] in config
103
104
            ), "the sub_keys can only be one of global_config: {}, but get: " \
               "{}, please check your running command".format(
105
106
                config.keys(), sub_keys[0])
            cur = config[sub_keys[0]]
LDOUBLEV's avatar
LDOUBLEV committed
107
108
109
110
111
            for idx, sub_key in enumerate(sub_keys[1:]):
                if idx == len(sub_keys) - 2:
                    cur[sub_key] = value
                else:
                    cur = cur[sub_key]
112
    return config
LDOUBLEV's avatar
LDOUBLEV committed
113
114
115
116
117
118
119
120
121
122
123
124
125
126


def check_gpu(use_gpu):
    """
    Log error and exit when set use_gpu=true in paddlepaddle
    cpu version.
    """
    err = "Config use_gpu cannot be set as true while you are " \
          "using paddlepaddle cpu version ! \nPlease try: \n" \
          "\t1. Install paddlepaddle-gpu to run model on GPU \n" \
          "\t2. Set use_gpu as false in config file to run " \
          "model on CPU"

    try:
WenmuZhou's avatar
WenmuZhou committed
127
        if use_gpu and not paddle.is_compiled_with_cuda():
WenmuZhou's avatar
WenmuZhou committed
128
            print(err)
LDOUBLEV's avatar
LDOUBLEV committed
129
130
131
132
133
            sys.exit(1)
    except Exception as e:
        pass


134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
def check_xpu(use_xpu):
    """
    Log error and exit when set use_xpu=true in paddlepaddle
    cpu/gpu version.
    """
    err = "Config use_xpu cannot be set as true while you are " \
          "using paddlepaddle cpu/gpu version ! \nPlease try: \n" \
          "\t1. Install paddlepaddle-xpu to run model on XPU \n" \
          "\t2. Set use_xpu as false in config file to run " \
          "model on CPU/GPU"

    try:
        if use_xpu and not paddle.is_compiled_with_xpu():
            print(err)
            sys.exit(1)
    except Exception as e:
        pass


WenmuZhou's avatar
WenmuZhou committed
153
def train(config,
dyning's avatar
dyning committed
154
155
156
          train_dataloader,
          valid_dataloader,
          device,
WenmuZhou's avatar
WenmuZhou committed
157
158
159
160
161
162
163
164
          model,
          loss_class,
          optimizer,
          lr_scheduler,
          post_process_class,
          eval_class,
          pre_best_model_dict,
          logger,
165
          log_writer=None,
stephon's avatar
stephon committed
166
          scaler=None):
WenmuZhou's avatar
WenmuZhou committed
167
168
    cal_metric_during_train = config['Global'].get('cal_metric_during_train',
                                                   False)
169
    calc_epoch_interval = config['Global'].get('calc_epoch_interval', 1)
LDOUBLEV's avatar
LDOUBLEV committed
170
171
172
173
    log_smooth_window = config['Global']['log_smooth_window']
    epoch_num = config['Global']['epoch_num']
    print_batch_step = config['Global']['print_batch_step']
    eval_batch_step = config['Global']['eval_batch_step']
LDOUBLEV's avatar
LDOUBLEV committed
174
    profiler_options = config['profiler_options']
WenmuZhou's avatar
WenmuZhou committed
175

dyning's avatar
dyning committed
176
    global_step = 0
177
178
    if 'global_step' in pre_best_model_dict:
        global_step = pre_best_model_dict['global_step']
LDOUBLEV's avatar
LDOUBLEV committed
179
180
181
182
    start_eval_step = 0
    if type(eval_batch_step) == list and len(eval_batch_step) >= 2:
        start_eval_step = eval_batch_step[0]
        eval_batch_step = eval_batch_step[1]
WenmuZhou's avatar
WenmuZhou committed
183
184
        if len(valid_dataloader) == 0:
            logger.info(
185
186
                'No Images in eval dataset, evaluation during training ' \
                'will be disabled'
WenmuZhou's avatar
WenmuZhou committed
187
188
            )
            start_eval_step = 1e111
LDOUBLEV's avatar
LDOUBLEV committed
189
        logger.info(
190
191
            "During the training process, after the {}th iteration, " \
            "an evaluation is run every {} iterations".
LDOUBLEV's avatar
LDOUBLEV committed
192
            format(start_eval_step, eval_batch_step))
LDOUBLEV's avatar
LDOUBLEV committed
193
194
    save_epoch_step = config['Global']['save_epoch_step']
    save_model_dir = config['Global']['save_model_dir']
195
196
    if not os.path.exists(save_model_dir):
        os.makedirs(save_model_dir)
WenmuZhou's avatar
WenmuZhou committed
197
198
199
200
    main_indicator = eval_class.main_indicator
    best_model_dict = {main_indicator: 0}
    best_model_dict.update(pre_best_model_dict)
    train_stats = TrainingStats(log_smooth_window, ['lr'])
tink2123's avatar
tink2123 committed
201
    model_average = False
WenmuZhou's avatar
WenmuZhou committed
202
203
    model.train()

tink2123's avatar
tink2123 committed
204
    use_srn = config['Architecture']['algorithm'] == "SRN"
tink2123's avatar
tink2123 committed
205
    extra_input = config['Architecture'][
LDOUBLEV's avatar
LDOUBLEV committed
206
        'algorithm'] in ["SRN", "NRTR", "SAR", "SEED"]
207
    try:
LDOUBLEV's avatar
fix bug  
LDOUBLEV committed
208
        model_type = config['Architecture']['model_type']
209
    except:
LDOUBLEV's avatar
fix bug  
LDOUBLEV committed
210
        model_type = None
tink2123's avatar
tink2123 committed
211
    algorithm = config['Architecture']['algorithm']
tink2123's avatar
tink2123 committed
212

213
214
215
216
    start_epoch = best_model_dict[
        'start_epoch'] if 'start_epoch' in best_model_dict else 1

    total_samples = 0
217
218
    train_reader_cost = 0.0
    train_batch_cost = 0.0
219
    reader_start = time.time()
220
    eta_meter = AverageMeter()
221
222
223

    max_iter = len(train_dataloader) - 1 if platform.system(
    ) == "Windows" else len(train_dataloader)
WenmuZhou's avatar
WenmuZhou committed
224

tink2123's avatar
tink2123 committed
225
    for epoch in range(start_epoch, epoch_num + 1):
226
227
228
229
230
        if train_dataloader.dataset.need_reset:
            train_dataloader = build_dataloader(
                config, 'Train', device, logger, seed=epoch)
            max_iter = len(train_dataloader) - 1 if platform.system(
            ) == "Windows" else len(train_dataloader)
WenmuZhou's avatar
WenmuZhou committed
231
        for idx, batch in enumerate(train_dataloader):
LDOUBLEV's avatar
LDOUBLEV committed
232
            profiler.add_profiler_step(profiler_options)
WenmuZhou's avatar
WenmuZhou committed
233
            train_reader_cost += time.time() - reader_start
Jane-Ding's avatar
Jane-Ding committed
234
            if idx >= max_iter:
WenmuZhou's avatar
WenmuZhou committed
235
236
237
                break
            lr = optimizer.get_lr()
            images = batch[0]
tink2123's avatar
tink2123 committed
238
            if use_srn:
tink2123's avatar
tink2123 committed
239
                model_average = True
stephon's avatar
stephon committed
240
241
242
243
244
245
246
247

            # use amp
            if scaler:
                with paddle.amp.auto_cast():
                    if model_type == 'table' or extra_input:
                        preds = model(images, data=batch[1:])
                    else:
                        preds = model(images)
tink2123's avatar
tink2123 committed
248
            else:
stephon's avatar
stephon committed
249
250
                if model_type == 'table' or extra_input:
                    preds = model(images, data=batch[1:])
251
                elif model_type in ["kie", 'vqa']:
LDOUBLEV's avatar
LDOUBLEV committed
252
                    preds = model(batch)
stephon's avatar
stephon committed
253
254
                else:
                    preds = model(images)
255

WenmuZhou's avatar
WenmuZhou committed
256
257
            loss = loss_class(preds, batch)
            avg_loss = loss['loss']
stephon's avatar
stephon committed
258
259
260
261
262
263
264
265

            if scaler:
                scaled_avg_loss = scaler.scale(avg_loss)
                scaled_avg_loss.backward()
                scaler.minimize(optimizer, scaled_avg_loss)
            else:
                avg_loss.backward()
                optimizer.step()
WenmuZhou's avatar
WenmuZhou committed
266
            optimizer.clear_grad()
WenmuZhou's avatar
WenmuZhou committed
267

268
269
270
271
272
273
274
275
276
277
            if cal_metric_during_train and epoch % calc_epoch_interval == 0:  # only rec and cls need
                batch = [item.numpy() for item in batch]
                if model_type in ['table', 'kie']:
                    eval_class(preds, batch)
                else:
                    post_result = post_process_class(preds, batch[1])
                    eval_class(post_result, batch)
                metric = eval_class.get_metric()
                train_stats.update(metric)

278
279
280
            train_batch_time = time.time() - reader_start
            train_batch_cost += train_batch_time
            eta_meter.update(train_batch_time)
281
            global_step += 1
WenmuZhou's avatar
WenmuZhou committed
282
            total_samples += len(images)
WenmuZhou's avatar
WenmuZhou committed
283

dyning's avatar
dyning committed
284
285
            if not isinstance(lr_scheduler, float):
                lr_scheduler.step()
WenmuZhou's avatar
WenmuZhou committed
286
287
288
289
290
291

            # logger and visualdl
            stats = {k: v.numpy().mean() for k, v in loss.items()}
            stats['lr'] = lr
            train_stats.update(stats)

292
293
            if log_writer is not None and dist.get_rank() == 0:
                log_writer.log_metrics(metrics=train_stats.get(), prefix="TRAIN", step=global_step)
WenmuZhou's avatar
WenmuZhou committed
294

295
296
297
            if dist.get_rank() == 0 and (
                (global_step > 0 and global_step % print_batch_step == 0) or
                (idx >= len(train_dataloader) - 1)):
WenmuZhou's avatar
WenmuZhou committed
298
                logs = train_stats.log()
LDOUBLEV's avatar
LDOUBLEV committed
299

300
301
302
303
304
                eta_sec = ((epoch_num + 1 - epoch) * \
                    len(train_dataloader) - idx - 1) * eta_meter.avg
                eta_sec_format = str(datetime.timedelta(seconds=int(eta_sec)))
                strs = 'epoch: [{}/{}], global_step: {}, {}, avg_reader_cost: ' \
                       '{:.5f} s, avg_batch_cost: {:.5f} s, avg_samples: {}, ' \
LDOUBLEV's avatar
LDOUBLEV committed
305
                       'ips: {:.5f} samples/s, eta: {}'.format(
306
307
308
309
310
                    epoch, epoch_num, global_step, logs,
                    train_reader_cost / print_batch_step,
                    train_batch_cost / print_batch_step,
                    total_samples / print_batch_step,
                    total_samples / train_batch_cost, eta_sec_format)
WenmuZhou's avatar
WenmuZhou committed
311
                logger.info(strs)
312

WenmuZhou's avatar
WenmuZhou committed
313
                total_samples = 0
314
315
                train_reader_cost = 0.0
                train_batch_cost = 0.0
WenmuZhou's avatar
WenmuZhou committed
316
317
            # eval
            if global_step > start_eval_step and \
318
319
                    (global_step - start_eval_step) % eval_batch_step == 0 \
                    and dist.get_rank() == 0:
tink2123's avatar
tink2123 committed
320
321
322
323
324
325
326
                if model_average:
                    Model_Average = paddle.incubate.optimizer.ModelAverage(
                        0.15,
                        parameters=model.parameters(),
                        min_average_window=10000,
                        max_average_window=15625)
                    Model_Average.apply()
tink2123's avatar
tink2123 committed
327
328
329
330
331
                cur_metric = eval(
                    model,
                    valid_dataloader,
                    post_process_class,
                    eval_class,
MissPenguin's avatar
refine  
MissPenguin committed
332
                    model_type,
tink2123's avatar
tink2123 committed
333
                    extra_input=extra_input)
LDOUBLEV's avatar
LDOUBLEV committed
334
335
336
                cur_metric_str = 'cur metric, {}'.format(', '.join(
                    ['{}: {}'.format(k, v) for k, v in cur_metric.items()]))
                logger.info(cur_metric_str)
WenmuZhou's avatar
WenmuZhou committed
337
338

                # logger metric
339
340
341
                if log_writer is not None:
                    log_writer.log_metrics(metrics=cur_metric, prefix="EVAL", step=global_step)

LDOUBLEV's avatar
LDOUBLEV committed
342
                if cur_metric[main_indicator] >= best_model_dict[
WenmuZhou's avatar
WenmuZhou committed
343
                        main_indicator]:
LDOUBLEV's avatar
LDOUBLEV committed
344
                    best_model_dict.update(cur_metric)
WenmuZhou's avatar
WenmuZhou committed
345
346
347
348
349
350
                    best_model_dict['best_epoch'] = epoch
                    save_model(
                        model,
                        optimizer,
                        save_model_dir,
                        logger,
351
                        config,
WenmuZhou's avatar
WenmuZhou committed
352
353
354
                        is_best=True,
                        prefix='best_accuracy',
                        best_model_dict=best_model_dict,
355
356
                        epoch=epoch,
                        global_step=global_step)
LDOUBLEV's avatar
LDOUBLEV committed
357
                best_str = 'best metric, {}'.format(', '.join([
WenmuZhou's avatar
WenmuZhou committed
358
359
360
361
                    '{}: {}'.format(k, v) for k, v in best_model_dict.items()
                ]))
                logger.info(best_str)
                # logger best metric
362
363
364
365
366
367
368
                if log_writer is not None:
                    log_writer.log_metrics(metrics={
                        "best_{}".format(main_indicator): best_model_dict[main_indicator]
                    }, prefix="EVAL", step=global_step)

                    if isinstance(log_writer, WandbLogger):
                        log_writer.log_model(is_best=True, prefix="best_accuracy", metadata=best_model_dict)
369

WenmuZhou's avatar
WenmuZhou committed
370
            reader_start = time.time()
WenmuZhou's avatar
WenmuZhou committed
371
372
373
374
375
376
        if dist.get_rank() == 0:
            save_model(
                model,
                optimizer,
                save_model_dir,
                logger,
377
                config,
WenmuZhou's avatar
WenmuZhou committed
378
379
380
                is_best=False,
                prefix='latest',
                best_model_dict=best_model_dict,
381
382
                epoch=epoch,
                global_step=global_step)
383
384
385
386

            if isinstance(log_writer, WandbLogger):
                log_writer.log_model(is_best=False, prefix="latest")

WenmuZhou's avatar
WenmuZhou committed
387
388
389
390
391
392
        if dist.get_rank() == 0 and epoch > 0 and epoch % save_epoch_step == 0:
            save_model(
                model,
                optimizer,
                save_model_dir,
                logger,
393
                config,
WenmuZhou's avatar
WenmuZhou committed
394
395
396
                is_best=False,
                prefix='iter_epoch_{}'.format(epoch),
                best_model_dict=best_model_dict,
397
398
                epoch=epoch,
                global_step=global_step)
399
400
401
402
            
            if isinstance(log_writer, WandbLogger):
                log_writer.log_model(is_best=False, prefix='iter_epoch_{}'.format(epoch))

LDOUBLEV's avatar
LDOUBLEV committed
403
    best_str = 'best metric, {}'.format(', '.join(
WenmuZhou's avatar
WenmuZhou committed
404
405
        ['{}: {}'.format(k, v) for k, v in best_model_dict.items()]))
    logger.info(best_str)
406
407
    if dist.get_rank() == 0 and log_writer is not None:
        log_writer.close()
LDOUBLEV's avatar
LDOUBLEV committed
408
409
410
    return


MissPenguin's avatar
refine  
MissPenguin committed
411
412
413
414
def eval(model,
         valid_dataloader,
         post_process_class,
         eval_class,
LDOUBLEV's avatar
LDOUBLEV committed
415
         model_type=None,
tink2123's avatar
tink2123 committed
416
         extra_input=False):
WenmuZhou's avatar
WenmuZhou committed
417
418
419
420
    model.eval()
    with paddle.no_grad():
        total_frame = 0.0
        total_time = 0.0
WenmuZhou's avatar
WenmuZhou committed
421
422
423
424
425
        pbar = tqdm(
            total=len(valid_dataloader),
            desc='eval model:',
            position=0,
            leave=True)
426
427
        max_iter = len(valid_dataloader) - 1 if platform.system(
        ) == "Windows" else len(valid_dataloader)
WenmuZhou's avatar
WenmuZhou committed
428
        for idx, batch in enumerate(valid_dataloader):
429
            if idx >= max_iter:
WenmuZhou's avatar
WenmuZhou committed
430
                break
WenmuZhou's avatar
fix bug  
WenmuZhou committed
431
            images = batch[0]
WenmuZhou's avatar
WenmuZhou committed
432
            start = time.time()
tink2123's avatar
tink2123 committed
433
            if model_type == 'table' or extra_input:
MissPenguin's avatar
refine  
MissPenguin committed
434
                preds = model(images, data=batch[1:])
435
            elif model_type in ["kie", 'vqa']:
LDOUBLEV's avatar
LDOUBLEV committed
436
                preds = model(batch)
xiaoting's avatar
xiaoting committed
437
            else:
LDOUBLEV's avatar
LDOUBLEV committed
438
                preds = model(images)
439
440
441
442
443
444
445

            batch_numpy = []
            for item in batch:
                if isinstance(item, paddle.Tensor):
                    batch_numpy.append(item.numpy())
                else:
                    batch_numpy.append(item)
WenmuZhou's avatar
WenmuZhou committed
446
447
448
            # Obtain usable results from post-processing methods
            total_time += time.time() - start
            # Evaluate the results of the current batch
LDOUBLEV's avatar
LDOUBLEV committed
449
            if model_type in ['table', 'kie']:
450
451
452
453
                eval_class(preds, batch_numpy)
            elif model_type in ['vqa']:
                post_result = post_process_class(preds, batch_numpy)
                eval_class(post_result, batch_numpy)
MissPenguin's avatar
MissPenguin committed
454
            else:
455
456
                post_result = post_process_class(preds, batch_numpy[1])
                eval_class(post_result, batch_numpy)
LDOUBLEV's avatar
LDOUBLEV committed
457

WenmuZhou's avatar
fix bug  
WenmuZhou committed
458
            pbar.update(1)
WenmuZhou's avatar
WenmuZhou committed
459
            total_frame += len(images)
LDOUBLEV's avatar
LDOUBLEV committed
460
461
        # Get final metric,eg. acc or hmean
        metric = eval_class.get_metric()
dyning's avatar
dyning committed
462

WenmuZhou's avatar
fix bug  
WenmuZhou committed
463
    pbar.close()
WenmuZhou's avatar
WenmuZhou committed
464
    model.train()
LDOUBLEV's avatar
LDOUBLEV committed
465
466
    metric['fps'] = total_frame / total_time
    return metric
licx's avatar
licx committed
467

tink2123's avatar
tink2123 committed
468

Bin Lu's avatar
Bin Lu committed
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
def update_center(char_center, post_result, preds):
    result, label = post_result
    feats, logits = preds
    logits = paddle.argmax(logits, axis=-1)
    feats = feats.numpy()
    logits = logits.numpy()

    for idx_sample in range(len(label)):
        if result[idx_sample][0] == label[idx_sample][0]:
            feat = feats[idx_sample]
            logit = logits[idx_sample]
            for idx_time in range(len(logit)):
                index = logit[idx_time]
                if index in char_center.keys():
                    char_center[index][0] = (
                        char_center[index][0] * char_center[index][1] +
                        feat[idx_time]) / (char_center[index][1] + 1)
                    char_center[index][1] += 1
                else:
                    char_center[index] = [feat[idx_time], 1]
    return char_center


def get_center(model, eval_dataloader, post_process_class):
    pbar = tqdm(total=len(eval_dataloader), desc='get center:')
    max_iter = len(eval_dataloader) - 1 if platform.system(
    ) == "Windows" else len(eval_dataloader)
    char_center = dict()
    for idx, batch in enumerate(eval_dataloader):
        if idx >= max_iter:
            break
        images = batch[0]
        start = time.time()
        preds = model(images)

        batch = [item.numpy() for item in batch]
        # Obtain usable results from post-processing methods
        post_result = post_process_class(preds, batch[1])

        #update char_center
        char_center = update_center(char_center, post_result, preds)
        pbar.update(1)

    pbar.close()
    for key in char_center.keys():
        char_center[key] = char_center[key][0]
    return char_center


518
def preprocess(is_train=False):
licx's avatar
licx committed
519
    FLAGS = ArgsParser().parse_args()
LDOUBLEV's avatar
LDOUBLEV committed
520
    profiler_options = FLAGS.profiler_options
licx's avatar
licx committed
521
    config = load_config(FLAGS.config)
522
    config = merge_config(config, FLAGS.opt)
LDOUBLEV's avatar
LDOUBLEV committed
523
    profile_dic = {"profiler_options": FLAGS.profiler_options}
524
    config = merge_config(config, profile_dic)
licx's avatar
licx committed
525

526
527
528
529
530
531
532
533
534
535
    if is_train:
        # save_config
        save_model_dir = config['Global']['save_model_dir']
        os.makedirs(save_model_dir, exist_ok=True)
        with open(os.path.join(save_model_dir, 'config.yml'), 'w') as f:
            yaml.dump(
                dict(config), f, default_flow_style=False, sort_keys=False)
        log_file = '{}/train.log'.format(save_model_dir)
    else:
        log_file = None
zhoujun's avatar
zhoujun committed
536
    logger = get_logger(log_file=log_file)
licx's avatar
licx committed
537
538
539
540
541

    # check if set use_gpu=True in paddlepaddle cpu version
    use_gpu = config['Global']['use_gpu']
    check_gpu(use_gpu)

542
543
544
545
546
547
    # check if set use_xpu=True in paddlepaddle cpu/gpu version
    use_xpu = False
    if 'use_xpu' in config['Global']:
        use_xpu = config['Global']['use_xpu']
    check_xpu(use_xpu)

WenmuZhou's avatar
WenmuZhou committed
548
549
    alg = config['Architecture']['algorithm']
    assert alg in [
Jethong's avatar
Jethong committed
550
        'EAST', 'DB', 'SAST', 'Rosetta', 'CRNN', 'STARNet', 'RARE', 'SRN',
tink2123's avatar
tink2123 committed
551
        'CLS', 'PGNet', 'Distillation', 'NRTR', 'TableAttn', 'SAR', 'PSE',
552
        'SEED', 'SDMGR', 'LayoutXLM', 'LayoutLM', 'PREN', 'FCE'
WenmuZhou's avatar
WenmuZhou committed
553
    ]
licx's avatar
licx committed
554

555
556
557
558
559
    device = 'cpu'
    if use_gpu:
        device = 'gpu:{}'.format(dist.ParallelEnv().dev_id)
    if use_xpu:
        device = 'xpu'
WenmuZhou's avatar
WenmuZhou committed
560
    device = paddle.set_device(device)
dyning's avatar
dyning committed
561

dyning's avatar
dyning committed
562
    config['Global']['distributed'] = dist.get_world_size() != 1
563

564
    if "use_visualdl" in config['Global'] and config['Global']['use_visualdl'] and dist.get_rank() == 0:
LDOUBLEV's avatar
fix bug  
LDOUBLEV committed
565
        save_model_dir = config['Global']['save_model_dir']
dyning's avatar
dyning committed
566
        vdl_writer_path = '{}/vdl/'.format(save_model_dir)
567
568
569
570
571
572
573
574
575
576
        log_writer = VDLLogger(save_model_dir)
    elif ("use_wandb" in config['Global'] and config['Global']['use_wandb']) or "wandb" in config:
        save_dir = config['Global']['save_model_dir']
        wandb_writer_path = "{}/wandb".format(save_dir)
        if "wandb" in config:
            wandb_params = config['wandb']
        else:
            wandb_params = dict()
        wandb_params.update({'save_dir': save_model_dir})
        log_writer = WandbLogger(**wandb_params, config=config)
dyning's avatar
dyning committed
577
    else:
578
        log_writer = None
dyning's avatar
dyning committed
579
580
581
    print_dict(config, logger)
    logger.info('train with paddle {} and device {}'.format(paddle.__version__,
                                                            device))
582
    return config, device, logger, log_writer