program.py 19.4 KB
Newer Older
MissPenguin's avatar
refine  
MissPenguin committed
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
LDOUBLEV's avatar
LDOUBLEV committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

WenmuZhou's avatar
WenmuZhou committed
19
import os
LDOUBLEV's avatar
LDOUBLEV committed
20
import sys
21
import platform
LDOUBLEV's avatar
LDOUBLEV committed
22
23
import yaml
import time
24
import datetime
WenmuZhou's avatar
WenmuZhou committed
25
26
27
28
29
import paddle
import paddle.distributed as dist
from tqdm import tqdm
from argparse import ArgumentParser, RawDescriptionHelpFormatter

LDOUBLEV's avatar
LDOUBLEV committed
30
31
from ppocr.utils.stats import TrainingStats
from ppocr.utils.save_load import save_model
32
from ppocr.utils.utility import print_dict, AverageMeter
dyning's avatar
dyning committed
33
from ppocr.utils.logging import get_logger
LDOUBLEV's avatar
LDOUBLEV committed
34
from ppocr.utils import profiler
dyning's avatar
dyning committed
35
from ppocr.data import build_dataloader
LDOUBLEV's avatar
LDOUBLEV committed
36

dyning's avatar
dyning committed
37

LDOUBLEV's avatar
LDOUBLEV committed
38
39
40
41
42
43
44
class ArgsParser(ArgumentParser):
    def __init__(self):
        super(ArgsParser, self).__init__(
            formatter_class=RawDescriptionHelpFormatter)
        self.add_argument("-c", "--config", help="configuration file to use")
        self.add_argument(
            "-o", "--opt", nargs='+', help="set configuration options")
LDOUBLEV's avatar
LDOUBLEV committed
45
46
47
48
49
        self.add_argument(
            '-p',
            '--profiler_options',
            type=str,
            default=None,
50
51
            help='The option of profiler, which should be in format ' \
                 '\"key1=value1;key2=value2;key3=value3\".'
LDOUBLEV's avatar
LDOUBLEV committed
52
        )
LDOUBLEV's avatar
LDOUBLEV committed
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

    def parse_args(self, argv=None):
        args = super(ArgsParser, self).parse_args(argv)
        assert args.config is not None, \
            "Please specify --config=configure_file_path."
        args.opt = self._parse_opt(args.opt)
        return args

    def _parse_opt(self, opts):
        config = {}
        if not opts:
            return config
        for s in opts:
            s = s.strip()
            k, v = s.split('=')
            config[k] = yaml.load(v, Loader=yaml.Loader)
        return config


def load_config(file_path):
    """
    Load config from yml/yaml file.
    Args:
        file_path (str): Path of the config file to be loaded.
    Returns: global config
    """
    _, ext = os.path.splitext(file_path)
    assert ext in ['.yml', '.yaml'], "only support yaml files for now"
81
82
    config = yaml.load(open(file_path, 'rb'), Loader=yaml.Loader)
    return config
LDOUBLEV's avatar
LDOUBLEV committed
83
84


85
def merge_config(config, opts):
LDOUBLEV's avatar
LDOUBLEV committed
86
87
88
89
90
91
    """
    Merge config into global config.
    Args:
        config (dict): Config to be merged.
    Returns: global config
    """
92
    for key, value in opts.items():
LDOUBLEV's avatar
LDOUBLEV committed
93
        if "." not in key:
94
95
            if isinstance(value, dict) and key in config:
                config[key].update(value)
LDOUBLEV's avatar
LDOUBLEV committed
96
            else:
97
                config[key] = value
LDOUBLEV's avatar
LDOUBLEV committed
98
99
        else:
            sub_keys = key.split('.')
tink2123's avatar
tink2123 committed
100
            assert (
101
                sub_keys[0] in config
102
103
            ), "the sub_keys can only be one of global_config: {}, but get: " \
               "{}, please check your running command".format(
104
105
                config.keys(), sub_keys[0])
            cur = config[sub_keys[0]]
LDOUBLEV's avatar
LDOUBLEV committed
106
107
108
109
110
            for idx, sub_key in enumerate(sub_keys[1:]):
                if idx == len(sub_keys) - 2:
                    cur[sub_key] = value
                else:
                    cur = cur[sub_key]
111
    return config
LDOUBLEV's avatar
LDOUBLEV committed
112
113
114
115
116
117
118
119
120
121
122
123
124
125


def check_gpu(use_gpu):
    """
    Log error and exit when set use_gpu=true in paddlepaddle
    cpu version.
    """
    err = "Config use_gpu cannot be set as true while you are " \
          "using paddlepaddle cpu version ! \nPlease try: \n" \
          "\t1. Install paddlepaddle-gpu to run model on GPU \n" \
          "\t2. Set use_gpu as false in config file to run " \
          "model on CPU"

    try:
WenmuZhou's avatar
WenmuZhou committed
126
        if use_gpu and not paddle.is_compiled_with_cuda():
WenmuZhou's avatar
WenmuZhou committed
127
            print(err)
LDOUBLEV's avatar
LDOUBLEV committed
128
129
130
131
132
            sys.exit(1)
    except Exception as e:
        pass


WenmuZhou's avatar
WenmuZhou committed
133
def train(config,
dyning's avatar
dyning committed
134
135
136
          train_dataloader,
          valid_dataloader,
          device,
WenmuZhou's avatar
WenmuZhou committed
137
138
139
140
141
142
143
144
          model,
          loss_class,
          optimizer,
          lr_scheduler,
          post_process_class,
          eval_class,
          pre_best_model_dict,
          logger,
stephon's avatar
stephon committed
145
146
          vdl_writer=None,
          scaler=None):
WenmuZhou's avatar
WenmuZhou committed
147
148
    cal_metric_during_train = config['Global'].get('cal_metric_during_train',
                                                   False)
LDOUBLEV's avatar
LDOUBLEV committed
149
150
151
152
    log_smooth_window = config['Global']['log_smooth_window']
    epoch_num = config['Global']['epoch_num']
    print_batch_step = config['Global']['print_batch_step']
    eval_batch_step = config['Global']['eval_batch_step']
LDOUBLEV's avatar
LDOUBLEV committed
153
    profiler_options = config['profiler_options']
WenmuZhou's avatar
WenmuZhou committed
154

dyning's avatar
dyning committed
155
    global_step = 0
156
157
    if 'global_step' in pre_best_model_dict:
        global_step = pre_best_model_dict['global_step']
LDOUBLEV's avatar
LDOUBLEV committed
158
159
160
161
    start_eval_step = 0
    if type(eval_batch_step) == list and len(eval_batch_step) >= 2:
        start_eval_step = eval_batch_step[0]
        eval_batch_step = eval_batch_step[1]
WenmuZhou's avatar
WenmuZhou committed
162
163
        if len(valid_dataloader) == 0:
            logger.info(
164
165
                'No Images in eval dataset, evaluation during training ' \
                'will be disabled'
WenmuZhou's avatar
WenmuZhou committed
166
167
            )
            start_eval_step = 1e111
LDOUBLEV's avatar
LDOUBLEV committed
168
        logger.info(
169
170
            "During the training process, after the {}th iteration, " \
            "an evaluation is run every {} iterations".
LDOUBLEV's avatar
LDOUBLEV committed
171
            format(start_eval_step, eval_batch_step))
LDOUBLEV's avatar
LDOUBLEV committed
172
173
    save_epoch_step = config['Global']['save_epoch_step']
    save_model_dir = config['Global']['save_model_dir']
174
175
    if not os.path.exists(save_model_dir):
        os.makedirs(save_model_dir)
WenmuZhou's avatar
WenmuZhou committed
176
177
178
179
    main_indicator = eval_class.main_indicator
    best_model_dict = {main_indicator: 0}
    best_model_dict.update(pre_best_model_dict)
    train_stats = TrainingStats(log_smooth_window, ['lr'])
tink2123's avatar
tink2123 committed
180
    model_average = False
WenmuZhou's avatar
WenmuZhou committed
181
182
    model.train()

tink2123's avatar
tink2123 committed
183
    use_srn = config['Architecture']['algorithm'] == "SRN"
tink2123's avatar
tink2123 committed
184
    extra_input = config['Architecture'][
LDOUBLEV's avatar
LDOUBLEV committed
185
        'algorithm'] in ["SRN", "NRTR", "SAR", "SEED"]
186
    try:
LDOUBLEV's avatar
fix bug  
LDOUBLEV committed
187
        model_type = config['Architecture']['model_type']
188
    except:
LDOUBLEV's avatar
fix bug  
LDOUBLEV committed
189
        model_type = None
tink2123's avatar
tink2123 committed
190
    algorithm = config['Architecture']['algorithm']
tink2123's avatar
tink2123 committed
191

192
193
194
195
    start_epoch = best_model_dict[
        'start_epoch'] if 'start_epoch' in best_model_dict else 1

    total_samples = 0
196
197
    train_reader_cost = 0.0
    train_batch_cost = 0.0
198
    reader_start = time.time()
199
    eta_meter = AverageMeter()
200
201
202

    max_iter = len(train_dataloader) - 1 if platform.system(
    ) == "Windows" else len(train_dataloader)
WenmuZhou's avatar
WenmuZhou committed
203

tink2123's avatar
tink2123 committed
204
    for epoch in range(start_epoch, epoch_num + 1):
205
206
207
208
209
        if train_dataloader.dataset.need_reset:
            train_dataloader = build_dataloader(
                config, 'Train', device, logger, seed=epoch)
            max_iter = len(train_dataloader) - 1 if platform.system(
            ) == "Windows" else len(train_dataloader)
WenmuZhou's avatar
WenmuZhou committed
210
        for idx, batch in enumerate(train_dataloader):
LDOUBLEV's avatar
LDOUBLEV committed
211
            profiler.add_profiler_step(profiler_options)
WenmuZhou's avatar
WenmuZhou committed
212
            train_reader_cost += time.time() - reader_start
Jane-Ding's avatar
Jane-Ding committed
213
            if idx >= max_iter:
WenmuZhou's avatar
WenmuZhou committed
214
215
216
                break
            lr = optimizer.get_lr()
            images = batch[0]
tink2123's avatar
tink2123 committed
217
            if use_srn:
tink2123's avatar
tink2123 committed
218
                model_average = True
stephon's avatar
stephon committed
219
220
221
222
223
224
225
226

            # use amp
            if scaler:
                with paddle.amp.auto_cast():
                    if model_type == 'table' or extra_input:
                        preds = model(images, data=batch[1:])
                    else:
                        preds = model(images)
tink2123's avatar
tink2123 committed
227
            else:
stephon's avatar
stephon committed
228
229
                if model_type == 'table' or extra_input:
                    preds = model(images, data=batch[1:])
230
                elif model_type in ["kie", 'vqa']:
LDOUBLEV's avatar
LDOUBLEV committed
231
                    preds = model(batch)
stephon's avatar
stephon committed
232
233
                else:
                    preds = model(images)
234

WenmuZhou's avatar
WenmuZhou committed
235
236
            loss = loss_class(preds, batch)
            avg_loss = loss['loss']
stephon's avatar
stephon committed
237
238
239
240
241
242
243
244

            if scaler:
                scaled_avg_loss = scaler.scale(avg_loss)
                scaled_avg_loss.backward()
                scaler.minimize(optimizer, scaled_avg_loss)
            else:
                avg_loss.backward()
                optimizer.step()
WenmuZhou's avatar
WenmuZhou committed
245
            optimizer.clear_grad()
WenmuZhou's avatar
WenmuZhou committed
246

247
248
249
            train_batch_time = time.time() - reader_start
            train_batch_cost += train_batch_time
            eta_meter.update(train_batch_time)
250
            global_step += 1
WenmuZhou's avatar
WenmuZhou committed
251
            total_samples += len(images)
WenmuZhou's avatar
WenmuZhou committed
252

dyning's avatar
dyning committed
253
254
            if not isinstance(lr_scheduler, float):
                lr_scheduler.step()
WenmuZhou's avatar
WenmuZhou committed
255
256
257
258
259
260

            # logger and visualdl
            stats = {k: v.numpy().mean() for k, v in loss.items()}
            stats['lr'] = lr
            train_stats.update(stats)

LDOUBLEV's avatar
LDOUBLEV committed
261
            if cal_metric_during_train:  # only rec and cls need
WenmuZhou's avatar
WenmuZhou committed
262
                batch = [item.numpy() for item in batch]
LDOUBLEV's avatar
LDOUBLEV committed
263
                if model_type in ['table', 'kie']:
MissPenguin's avatar
MissPenguin committed
264
265
266
267
                    eval_class(preds, batch)
                else:
                    post_result = post_process_class(preds, batch[1])
                    eval_class(post_result, batch)
littletomatodonkey's avatar
fix doc  
littletomatodonkey committed
268
269
                metric = eval_class.get_metric()
                train_stats.update(metric)
WenmuZhou's avatar
WenmuZhou committed
270
271
272
273
274
275

            if vdl_writer is not None and dist.get_rank() == 0:
                for k, v in train_stats.get().items():
                    vdl_writer.add_scalar('TRAIN/{}'.format(k), v, global_step)
                vdl_writer.add_scalar('TRAIN/lr', lr, global_step)

276
277
278
            if dist.get_rank() == 0 and (
                (global_step > 0 and global_step % print_batch_step == 0) or
                (idx >= len(train_dataloader) - 1)):
WenmuZhou's avatar
WenmuZhou committed
279
                logs = train_stats.log()
280
281
282
283
284
285
286
287
288
289
290
                eta_sec = ((epoch_num + 1 - epoch) * \
                    len(train_dataloader) - idx - 1) * eta_meter.avg
                eta_sec_format = str(datetime.timedelta(seconds=int(eta_sec)))
                strs = 'epoch: [{}/{}], global_step: {}, {}, avg_reader_cost: ' \
                       '{:.5f} s, avg_batch_cost: {:.5f} s, avg_samples: {}, ' \
                       'ips: {:.5f}, eta: {}'.format(
                    epoch, epoch_num, global_step, logs,
                    train_reader_cost / print_batch_step,
                    train_batch_cost / print_batch_step,
                    total_samples / print_batch_step,
                    total_samples / train_batch_cost, eta_sec_format)
WenmuZhou's avatar
WenmuZhou committed
291
                logger.info(strs)
292

WenmuZhou's avatar
WenmuZhou committed
293
                total_samples = 0
294
295
                train_reader_cost = 0.0
                train_batch_cost = 0.0
WenmuZhou's avatar
WenmuZhou committed
296
297
            # eval
            if global_step > start_eval_step and \
298
299
                    (global_step - start_eval_step) % eval_batch_step == 0 \
                    and dist.get_rank() == 0:
tink2123's avatar
tink2123 committed
300
301
302
303
304
305
306
                if model_average:
                    Model_Average = paddle.incubate.optimizer.ModelAverage(
                        0.15,
                        parameters=model.parameters(),
                        min_average_window=10000,
                        max_average_window=15625)
                    Model_Average.apply()
tink2123's avatar
tink2123 committed
307
308
309
310
311
                cur_metric = eval(
                    model,
                    valid_dataloader,
                    post_process_class,
                    eval_class,
MissPenguin's avatar
refine  
MissPenguin committed
312
                    model_type,
tink2123's avatar
tink2123 committed
313
                    extra_input=extra_input)
LDOUBLEV's avatar
LDOUBLEV committed
314
315
316
                cur_metric_str = 'cur metric, {}'.format(', '.join(
                    ['{}: {}'.format(k, v) for k, v in cur_metric.items()]))
                logger.info(cur_metric_str)
WenmuZhou's avatar
WenmuZhou committed
317
318
319

                # logger metric
                if vdl_writer is not None:
LDOUBLEV's avatar
LDOUBLEV committed
320
                    for k, v in cur_metric.items():
WenmuZhou's avatar
WenmuZhou committed
321
322
                        if isinstance(v, (float, int)):
                            vdl_writer.add_scalar('EVAL/{}'.format(k),
LDOUBLEV's avatar
LDOUBLEV committed
323
324
                                                  cur_metric[k], global_step)
                if cur_metric[main_indicator] >= best_model_dict[
WenmuZhou's avatar
WenmuZhou committed
325
                        main_indicator]:
LDOUBLEV's avatar
LDOUBLEV committed
326
                    best_model_dict.update(cur_metric)
WenmuZhou's avatar
WenmuZhou committed
327
328
329
330
331
332
                    best_model_dict['best_epoch'] = epoch
                    save_model(
                        model,
                        optimizer,
                        save_model_dir,
                        logger,
333
                        config,
WenmuZhou's avatar
WenmuZhou committed
334
335
336
                        is_best=True,
                        prefix='best_accuracy',
                        best_model_dict=best_model_dict,
337
338
                        epoch=epoch,
                        global_step=global_step)
LDOUBLEV's avatar
LDOUBLEV committed
339
                best_str = 'best metric, {}'.format(', '.join([
WenmuZhou's avatar
WenmuZhou committed
340
341
342
343
344
345
346
347
                    '{}: {}'.format(k, v) for k, v in best_model_dict.items()
                ]))
                logger.info(best_str)
                # logger best metric
                if vdl_writer is not None:
                    vdl_writer.add_scalar('EVAL/best_{}'.format(main_indicator),
                                          best_model_dict[main_indicator],
                                          global_step)
348

WenmuZhou's avatar
WenmuZhou committed
349
            reader_start = time.time()
WenmuZhou's avatar
WenmuZhou committed
350
351
352
353
354
355
        if dist.get_rank() == 0:
            save_model(
                model,
                optimizer,
                save_model_dir,
                logger,
356
                config,
WenmuZhou's avatar
WenmuZhou committed
357
358
359
                is_best=False,
                prefix='latest',
                best_model_dict=best_model_dict,
360
361
                epoch=epoch,
                global_step=global_step)
WenmuZhou's avatar
WenmuZhou committed
362
363
364
365
366
367
        if dist.get_rank() == 0 and epoch > 0 and epoch % save_epoch_step == 0:
            save_model(
                model,
                optimizer,
                save_model_dir,
                logger,
368
                config,
WenmuZhou's avatar
WenmuZhou committed
369
370
371
                is_best=False,
                prefix='iter_epoch_{}'.format(epoch),
                best_model_dict=best_model_dict,
372
373
                epoch=epoch,
                global_step=global_step)
LDOUBLEV's avatar
LDOUBLEV committed
374
    best_str = 'best metric, {}'.format(', '.join(
WenmuZhou's avatar
WenmuZhou committed
375
376
377
378
        ['{}: {}'.format(k, v) for k, v in best_model_dict.items()]))
    logger.info(best_str)
    if dist.get_rank() == 0 and vdl_writer is not None:
        vdl_writer.close()
LDOUBLEV's avatar
LDOUBLEV committed
379
380
381
    return


MissPenguin's avatar
refine  
MissPenguin committed
382
383
384
385
def eval(model,
         valid_dataloader,
         post_process_class,
         eval_class,
LDOUBLEV's avatar
LDOUBLEV committed
386
         model_type=None,
tink2123's avatar
tink2123 committed
387
         extra_input=False):
WenmuZhou's avatar
WenmuZhou committed
388
389
390
391
    model.eval()
    with paddle.no_grad():
        total_frame = 0.0
        total_time = 0.0
WenmuZhou's avatar
WenmuZhou committed
392
393
394
395
396
        pbar = tqdm(
            total=len(valid_dataloader),
            desc='eval model:',
            position=0,
            leave=True)
397
398
        max_iter = len(valid_dataloader) - 1 if platform.system(
        ) == "Windows" else len(valid_dataloader)
WenmuZhou's avatar
WenmuZhou committed
399
        for idx, batch in enumerate(valid_dataloader):
400
            if idx >= max_iter:
WenmuZhou's avatar
WenmuZhou committed
401
                break
WenmuZhou's avatar
fix bug  
WenmuZhou committed
402
            images = batch[0]
WenmuZhou's avatar
WenmuZhou committed
403
            start = time.time()
tink2123's avatar
tink2123 committed
404
            if model_type == 'table' or extra_input:
MissPenguin's avatar
refine  
MissPenguin committed
405
                preds = model(images, data=batch[1:])
406
            elif model_type in ["kie", 'vqa']:
LDOUBLEV's avatar
LDOUBLEV committed
407
                preds = model(batch)
xiaoting's avatar
xiaoting committed
408
            else:
LDOUBLEV's avatar
LDOUBLEV committed
409
                preds = model(images)
410
411
412
413
414
415
416

            batch_numpy = []
            for item in batch:
                if isinstance(item, paddle.Tensor):
                    batch_numpy.append(item.numpy())
                else:
                    batch_numpy.append(item)
WenmuZhou's avatar
WenmuZhou committed
417
418
419
            # Obtain usable results from post-processing methods
            total_time += time.time() - start
            # Evaluate the results of the current batch
LDOUBLEV's avatar
LDOUBLEV committed
420
            if model_type in ['table', 'kie']:
421
422
423
424
                eval_class(preds, batch_numpy)
            elif model_type in ['vqa']:
                post_result = post_process_class(preds, batch_numpy)
                eval_class(post_result, batch_numpy)
MissPenguin's avatar
MissPenguin committed
425
            else:
426
427
                post_result = post_process_class(preds, batch_numpy[1])
                eval_class(post_result, batch_numpy)
LDOUBLEV's avatar
LDOUBLEV committed
428

WenmuZhou's avatar
fix bug  
WenmuZhou committed
429
            pbar.update(1)
WenmuZhou's avatar
WenmuZhou committed
430
            total_frame += len(images)
LDOUBLEV's avatar
LDOUBLEV committed
431
432
        # Get final metric,eg. acc or hmean
        metric = eval_class.get_metric()
dyning's avatar
dyning committed
433

WenmuZhou's avatar
fix bug  
WenmuZhou committed
434
    pbar.close()
WenmuZhou's avatar
WenmuZhou committed
435
    model.train()
LDOUBLEV's avatar
LDOUBLEV committed
436
437
    metric['fps'] = total_frame / total_time
    return metric
licx's avatar
licx committed
438

tink2123's avatar
tink2123 committed
439

Bin Lu's avatar
Bin Lu committed
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
def update_center(char_center, post_result, preds):
    result, label = post_result
    feats, logits = preds
    logits = paddle.argmax(logits, axis=-1)
    feats = feats.numpy()
    logits = logits.numpy()

    for idx_sample in range(len(label)):
        if result[idx_sample][0] == label[idx_sample][0]:
            feat = feats[idx_sample]
            logit = logits[idx_sample]
            for idx_time in range(len(logit)):
                index = logit[idx_time]
                if index in char_center.keys():
                    char_center[index][0] = (
                        char_center[index][0] * char_center[index][1] +
                        feat[idx_time]) / (char_center[index][1] + 1)
                    char_center[index][1] += 1
                else:
                    char_center[index] = [feat[idx_time], 1]
    return char_center


def get_center(model, eval_dataloader, post_process_class):
    pbar = tqdm(total=len(eval_dataloader), desc='get center:')
    max_iter = len(eval_dataloader) - 1 if platform.system(
    ) == "Windows" else len(eval_dataloader)
    char_center = dict()
    for idx, batch in enumerate(eval_dataloader):
        if idx >= max_iter:
            break
        images = batch[0]
        start = time.time()
        preds = model(images)

        batch = [item.numpy() for item in batch]
        # Obtain usable results from post-processing methods
        post_result = post_process_class(preds, batch[1])

        #update char_center
        char_center = update_center(char_center, post_result, preds)
        pbar.update(1)

    pbar.close()
    for key in char_center.keys():
        char_center[key] = char_center[key][0]
    return char_center


489
def preprocess(is_train=False):
licx's avatar
licx committed
490
    FLAGS = ArgsParser().parse_args()
LDOUBLEV's avatar
LDOUBLEV committed
491
    profiler_options = FLAGS.profiler_options
licx's avatar
licx committed
492
    config = load_config(FLAGS.config)
493
    config = merge_config(config, FLAGS.opt)
LDOUBLEV's avatar
LDOUBLEV committed
494
    profile_dic = {"profiler_options": FLAGS.profiler_options}
495
    config = merge_config(config, profile_dic)
licx's avatar
licx committed
496

497
498
499
500
501
502
503
504
505
506
507
    if is_train:
        # save_config
        save_model_dir = config['Global']['save_model_dir']
        os.makedirs(save_model_dir, exist_ok=True)
        with open(os.path.join(save_model_dir, 'config.yml'), 'w') as f:
            yaml.dump(
                dict(config), f, default_flow_style=False, sort_keys=False)
        log_file = '{}/train.log'.format(save_model_dir)
    else:
        log_file = None
    logger = get_logger(name='root', log_file=log_file)
licx's avatar
licx committed
508
509
510
511
512

    # check if set use_gpu=True in paddlepaddle cpu version
    use_gpu = config['Global']['use_gpu']
    check_gpu(use_gpu)

WenmuZhou's avatar
WenmuZhou committed
513
514
    alg = config['Architecture']['algorithm']
    assert alg in [
Jethong's avatar
Jethong committed
515
        'EAST', 'DB', 'SAST', 'Rosetta', 'CRNN', 'STARNet', 'RARE', 'SRN',
tink2123's avatar
tink2123 committed
516
        'CLS', 'PGNet', 'Distillation', 'NRTR', 'TableAttn', 'SAR', 'PSE',
517
        'SEED', 'SDMGR', 'LayoutXLM', 'LayoutLM'
WenmuZhou's avatar
WenmuZhou committed
518
    ]
licx's avatar
licx committed
519

WenmuZhou's avatar
WenmuZhou committed
520
521
    device = 'gpu:{}'.format(dist.ParallelEnv().dev_id) if use_gpu else 'cpu'
    device = paddle.set_device(device)
dyning's avatar
dyning committed
522

dyning's avatar
dyning committed
523
    config['Global']['distributed'] = dist.get_world_size() != 1
524

littletomatodonkey's avatar
littletomatodonkey committed
525
    if config['Global']['use_visualdl'] and dist.get_rank() == 0:
dyning's avatar
dyning committed
526
        from visualdl import LogWriter
LDOUBLEV's avatar
fix bug  
LDOUBLEV committed
527
        save_model_dir = config['Global']['save_model_dir']
dyning's avatar
dyning committed
528
529
530
531
532
533
534
535
536
        vdl_writer_path = '{}/vdl/'.format(save_model_dir)
        os.makedirs(vdl_writer_path, exist_ok=True)
        vdl_writer = LogWriter(logdir=vdl_writer_path)
    else:
        vdl_writer = None
    print_dict(config, logger)
    logger.info('train with paddle {} and device {}'.format(paddle.__version__,
                                                            device))
    return config, device, logger, vdl_writer