program.py 16.5 KB
Newer Older
MissPenguin's avatar
refine  
MissPenguin committed
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
LDOUBLEV's avatar
LDOUBLEV committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

WenmuZhou's avatar
WenmuZhou committed
19
import os
LDOUBLEV's avatar
LDOUBLEV committed
20
import sys
21
import platform
LDOUBLEV's avatar
LDOUBLEV committed
22
23
import yaml
import time
WenmuZhou's avatar
WenmuZhou committed
24
25
26
27
28
29
import shutil
import paddle
import paddle.distributed as dist
from tqdm import tqdm
from argparse import ArgumentParser, RawDescriptionHelpFormatter

LDOUBLEV's avatar
LDOUBLEV committed
30
31
from ppocr.utils.stats import TrainingStats
from ppocr.utils.save_load import save_model
dyning's avatar
dyning committed
32
33
from ppocr.utils.utility import print_dict
from ppocr.utils.logging import get_logger
LDOUBLEV's avatar
LDOUBLEV committed
34
from ppocr.utils import profiler
dyning's avatar
dyning committed
35
36
from ppocr.data import build_dataloader
import numpy as np
LDOUBLEV's avatar
LDOUBLEV committed
37

dyning's avatar
dyning committed
38

LDOUBLEV's avatar
LDOUBLEV committed
39
40
41
42
43
44
45
class ArgsParser(ArgumentParser):
    def __init__(self):
        super(ArgsParser, self).__init__(
            formatter_class=RawDescriptionHelpFormatter)
        self.add_argument("-c", "--config", help="configuration file to use")
        self.add_argument(
            "-o", "--opt", nargs='+', help="set configuration options")
LDOUBLEV's avatar
LDOUBLEV committed
46
47
48
49
50
51
52
        self.add_argument(
            '-p',
            '--profiler_options',
            type=str,
            default=None,
            help='The option of profiler, which should be in format \"key1=value1;key2=value2;key3=value3\".'
        )
LDOUBLEV's avatar
LDOUBLEV committed
53
54
55

    def parse_args(self, argv=None):
        args = super(ArgsParser, self).parse_args(argv)
LDOUBLEV's avatar
add kie  
LDOUBLEV committed
56
        # args.config = "/Users/hongyongjie/project/PaddleOCR/configs/kie/kie_unet_sdmgr.yml"
LDOUBLEV's avatar
LDOUBLEV committed
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
        assert args.config is not None, \
            "Please specify --config=configure_file_path."
        args.opt = self._parse_opt(args.opt)
        return args

    def _parse_opt(self, opts):
        config = {}
        if not opts:
            return config
        for s in opts:
            s = s.strip()
            k, v = s.split('=')
            config[k] = yaml.load(v, Loader=yaml.Loader)
        return config


class AttrDict(dict):
    """Single level attribute dict, NOT recursive"""

    def __init__(self, **kwargs):
        super(AttrDict, self).__init__()
        super(AttrDict, self).update(kwargs)

    def __getattr__(self, key):
        if key in self:
            return self[key]
        raise AttributeError("object has no attribute '{}'".format(key))


global_config = AttrDict()

lyl120117's avatar
lyl120117 committed
88
89
default_config = {'Global': {'debug': False, }}

LDOUBLEV's avatar
LDOUBLEV committed
90
91
92
93
94
95
96
97

def load_config(file_path):
    """
    Load config from yml/yaml file.
    Args:
        file_path (str): Path of the config file to be loaded.
    Returns: global config
    """
lyl120117's avatar
lyl120117 committed
98
    merge_config(default_config)
LDOUBLEV's avatar
LDOUBLEV committed
99
100
    _, ext = os.path.splitext(file_path)
    assert ext in ['.yml', '.yaml'], "only support yaml files for now"
WenmuZhou's avatar
WenmuZhou committed
101
    merge_config(yaml.load(open(file_path, 'rb'), Loader=yaml.Loader))
LDOUBLEV's avatar
LDOUBLEV committed
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
    return global_config


def merge_config(config):
    """
    Merge config into global config.
    Args:
        config (dict): Config to be merged.
    Returns: global config
    """
    for key, value in config.items():
        if "." not in key:
            if isinstance(value, dict) and key in global_config:
                global_config[key].update(value)
            else:
                global_config[key] = value
        else:
            sub_keys = key.split('.')
tink2123's avatar
tink2123 committed
120
121
122
123
            assert (
                sub_keys[0] in global_config
            ), "the sub_keys can only be one of global_config: {}, but get: {}, please check your running command".format(
                global_config.keys(), sub_keys[0])
LDOUBLEV's avatar
LDOUBLEV committed
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
            cur = global_config[sub_keys[0]]
            for idx, sub_key in enumerate(sub_keys[1:]):
                if idx == len(sub_keys) - 2:
                    cur[sub_key] = value
                else:
                    cur = cur[sub_key]


def check_gpu(use_gpu):
    """
    Log error and exit when set use_gpu=true in paddlepaddle
    cpu version.
    """
    err = "Config use_gpu cannot be set as true while you are " \
          "using paddlepaddle cpu version ! \nPlease try: \n" \
          "\t1. Install paddlepaddle-gpu to run model on GPU \n" \
          "\t2. Set use_gpu as false in config file to run " \
          "model on CPU"

    try:
WenmuZhou's avatar
WenmuZhou committed
144
        if use_gpu and not paddle.is_compiled_with_cuda():
WenmuZhou's avatar
WenmuZhou committed
145
            print(err)
LDOUBLEV's avatar
LDOUBLEV committed
146
147
148
149
150
            sys.exit(1)
    except Exception as e:
        pass


WenmuZhou's avatar
WenmuZhou committed
151
def train(config,
dyning's avatar
dyning committed
152
153
154
          train_dataloader,
          valid_dataloader,
          device,
WenmuZhou's avatar
WenmuZhou committed
155
156
157
158
159
160
161
162
163
164
165
          model,
          loss_class,
          optimizer,
          lr_scheduler,
          post_process_class,
          eval_class,
          pre_best_model_dict,
          logger,
          vdl_writer=None):
    cal_metric_during_train = config['Global'].get('cal_metric_during_train',
                                                   False)
LDOUBLEV's avatar
LDOUBLEV committed
166
167
168
169
    log_smooth_window = config['Global']['log_smooth_window']
    epoch_num = config['Global']['epoch_num']
    print_batch_step = config['Global']['print_batch_step']
    eval_batch_step = config['Global']['eval_batch_step']
LDOUBLEV's avatar
LDOUBLEV committed
170
    profiler_options = config['profiler_options']
WenmuZhou's avatar
WenmuZhou committed
171

dyning's avatar
dyning committed
172
    global_step = 0
173
174
    if 'global_step' in pre_best_model_dict:
        global_step = pre_best_model_dict['global_step']
LDOUBLEV's avatar
LDOUBLEV committed
175
176
177
178
    start_eval_step = 0
    if type(eval_batch_step) == list and len(eval_batch_step) >= 2:
        start_eval_step = eval_batch_step[0]
        eval_batch_step = eval_batch_step[1]
WenmuZhou's avatar
WenmuZhou committed
179
180
181
182
183
        if len(valid_dataloader) == 0:
            logger.info(
                'No Images in eval dataset, evaluation during training will be disabled'
            )
            start_eval_step = 1e111
LDOUBLEV's avatar
LDOUBLEV committed
184
185
186
        logger.info(
            "During the training process, after the {}th iteration, an evaluation is run every {} iterations".
            format(start_eval_step, eval_batch_step))
LDOUBLEV's avatar
LDOUBLEV committed
187
188
    save_epoch_step = config['Global']['save_epoch_step']
    save_model_dir = config['Global']['save_model_dir']
189
190
    if not os.path.exists(save_model_dir):
        os.makedirs(save_model_dir)
WenmuZhou's avatar
WenmuZhou committed
191
192
193
194
    main_indicator = eval_class.main_indicator
    best_model_dict = {main_indicator: 0}
    best_model_dict.update(pre_best_model_dict)
    train_stats = TrainingStats(log_smooth_window, ['lr'])
tink2123's avatar
tink2123 committed
195
    model_average = False
WenmuZhou's avatar
WenmuZhou committed
196
197
    model.train()

tink2123's avatar
tink2123 committed
198
    use_srn = config['Architecture']['algorithm'] == "SRN"
tink2123's avatar
tink2123 committed
199
200
    extra_input = config['Architecture'][
        'algorithm'] in ["SRN", "NRTR", "SAR", "SEED"]
201
    try:
LDOUBLEV's avatar
fix bug  
LDOUBLEV committed
202
        model_type = config['Architecture']['model_type']
203
    except:
LDOUBLEV's avatar
fix bug  
LDOUBLEV committed
204
        model_type = None
tink2123's avatar
tink2123 committed
205
    algorithm = config['Architecture']['algorithm']
tink2123's avatar
tink2123 committed
206

WenmuZhou's avatar
WenmuZhou committed
207
208
209
    if 'start_epoch' in best_model_dict:
        start_epoch = best_model_dict['start_epoch']
    else:
tink2123's avatar
tink2123 committed
210
        start_epoch = 1
WenmuZhou's avatar
WenmuZhou committed
211

tink2123's avatar
tink2123 committed
212
    for epoch in range(start_epoch, epoch_num + 1):
213
214
        train_dataloader = build_dataloader(
            config, 'Train', device, logger, seed=epoch)
WenmuZhou's avatar
WenmuZhou committed
215
216
217
218
        train_batch_cost = 0.0
        train_reader_cost = 0.0
        batch_sum = 0
        batch_start = time.time()
Jane-Ding's avatar
Jane-Ding committed
219
220
        max_iter = len(train_dataloader) - 1 if platform.system(
        ) == "Windows" else len(train_dataloader)
WenmuZhou's avatar
WenmuZhou committed
221
        for idx, batch in enumerate(train_dataloader):
LDOUBLEV's avatar
LDOUBLEV committed
222
            profiler.add_profiler_step(profiler_options)
WenmuZhou's avatar
WenmuZhou committed
223
            train_reader_cost += time.time() - batch_start
Jane-Ding's avatar
Jane-Ding committed
224
            if idx >= max_iter:
WenmuZhou's avatar
WenmuZhou committed
225
226
227
                break
            lr = optimizer.get_lr()
            images = batch[0]
tink2123's avatar
tink2123 committed
228
            if use_srn:
tink2123's avatar
tink2123 committed
229
                model_average = True
tink2123's avatar
tink2123 committed
230
            if model_type == 'table' or extra_input:
MissPenguin's avatar
refine  
MissPenguin committed
231
                preds = model(images, data=batch[1:])
tink2123's avatar
tink2123 committed
232
            else:
LDOUBLEV's avatar
add kie  
LDOUBLEV committed
233
                preds = model(batch)
WenmuZhou's avatar
WenmuZhou committed
234
235
            loss = loss_class(preds, batch)
            avg_loss = loss['loss']
dyning's avatar
dyning committed
236
            avg_loss.backward()
WenmuZhou's avatar
WenmuZhou committed
237
238
            optimizer.step()
            optimizer.clear_grad()
WenmuZhou's avatar
WenmuZhou committed
239
240
241
242

            train_batch_cost += time.time() - batch_start
            batch_sum += len(images)

dyning's avatar
dyning committed
243
244
            if not isinstance(lr_scheduler, float):
                lr_scheduler.step()
WenmuZhou's avatar
WenmuZhou committed
245
246
247
248
249
250

            # logger and visualdl
            stats = {k: v.numpy().mean() for k, v in loss.items()}
            stats['lr'] = lr
            train_stats.update(stats)

LDOUBLEV's avatar
LDOUBLEV committed
251
            if cal_metric_during_train:  # only rec and cls need
WenmuZhou's avatar
WenmuZhou committed
252
                batch = [item.numpy() for item in batch]
MissPenguin's avatar
MissPenguin committed
253
254
255
256
257
                if model_type == 'table':
                    eval_class(preds, batch)
                else:
                    post_result = post_process_class(preds, batch[1])
                    eval_class(post_result, batch)
littletomatodonkey's avatar
fix doc  
littletomatodonkey committed
258
259
                metric = eval_class.get_metric()
                train_stats.update(metric)
WenmuZhou's avatar
WenmuZhou committed
260
261
262
263
264
265

            if vdl_writer is not None and dist.get_rank() == 0:
                for k, v in train_stats.get().items():
                    vdl_writer.add_scalar('TRAIN/{}'.format(k), v, global_step)
                vdl_writer.add_scalar('TRAIN/lr', lr, global_step)

266
267
268
            if dist.get_rank() == 0 and (
                (global_step > 0 and global_step % print_batch_step == 0) or
                (idx >= len(train_dataloader) - 1)):
WenmuZhou's avatar
WenmuZhou committed
269
                logs = train_stats.log()
WenmuZhou's avatar
WenmuZhou committed
270
                strs = 'epoch: [{}/{}], iter: {}, {}, reader_cost: {:.5f} s, batch_cost: {:.5f} s, samples: {}, ips: {:.5f}'.format(
WenmuZhou's avatar
WenmuZhou committed
271
272
273
                    epoch, epoch_num, global_step, logs, train_reader_cost /
                    print_batch_step, train_batch_cost / print_batch_step,
                    batch_sum, batch_sum / train_batch_cost)
WenmuZhou's avatar
WenmuZhou committed
274
                logger.info(strs)
WenmuZhou's avatar
WenmuZhou committed
275
276
277
                train_batch_cost = 0.0
                train_reader_cost = 0.0
                batch_sum = 0
WenmuZhou's avatar
WenmuZhou committed
278
279
280
            # eval
            if global_step > start_eval_step and \
                    (global_step - start_eval_step) % eval_batch_step == 0 and dist.get_rank() == 0:
tink2123's avatar
tink2123 committed
281
282
283
284
285
286
287
                if model_average:
                    Model_Average = paddle.incubate.optimizer.ModelAverage(
                        0.15,
                        parameters=model.parameters(),
                        min_average_window=10000,
                        max_average_window=15625)
                    Model_Average.apply()
tink2123's avatar
tink2123 committed
288
289
290
291
292
                cur_metric = eval(
                    model,
                    valid_dataloader,
                    post_process_class,
                    eval_class,
MissPenguin's avatar
refine  
MissPenguin committed
293
                    model_type,
tink2123's avatar
tink2123 committed
294
                    extra_input=extra_input)
LDOUBLEV's avatar
LDOUBLEV committed
295
296
297
                cur_metric_str = 'cur metric, {}'.format(', '.join(
                    ['{}: {}'.format(k, v) for k, v in cur_metric.items()]))
                logger.info(cur_metric_str)
WenmuZhou's avatar
WenmuZhou committed
298
299
300

                # logger metric
                if vdl_writer is not None:
LDOUBLEV's avatar
LDOUBLEV committed
301
                    for k, v in cur_metric.items():
WenmuZhou's avatar
WenmuZhou committed
302
303
                        if isinstance(v, (float, int)):
                            vdl_writer.add_scalar('EVAL/{}'.format(k),
LDOUBLEV's avatar
LDOUBLEV committed
304
305
                                                  cur_metric[k], global_step)
                if cur_metric[main_indicator] >= best_model_dict[
WenmuZhou's avatar
WenmuZhou committed
306
                        main_indicator]:
LDOUBLEV's avatar
LDOUBLEV committed
307
                    best_model_dict.update(cur_metric)
WenmuZhou's avatar
WenmuZhou committed
308
309
310
311
312
313
314
315
316
                    best_model_dict['best_epoch'] = epoch
                    save_model(
                        model,
                        optimizer,
                        save_model_dir,
                        logger,
                        is_best=True,
                        prefix='best_accuracy',
                        best_model_dict=best_model_dict,
317
318
                        epoch=epoch,
                        global_step=global_step)
LDOUBLEV's avatar
LDOUBLEV committed
319
                best_str = 'best metric, {}'.format(', '.join([
WenmuZhou's avatar
WenmuZhou committed
320
321
322
323
324
325
326
327
328
                    '{}: {}'.format(k, v) for k, v in best_model_dict.items()
                ]))
                logger.info(best_str)
                # logger best metric
                if vdl_writer is not None:
                    vdl_writer.add_scalar('EVAL/best_{}'.format(main_indicator),
                                          best_model_dict[main_indicator],
                                          global_step)
            global_step += 1
tink2123's avatar
tink2123 committed
329
            optimizer.clear_grad()
330
            batch_start = time.time()
WenmuZhou's avatar
WenmuZhou committed
331
332
333
334
335
336
337
338
339
        if dist.get_rank() == 0:
            save_model(
                model,
                optimizer,
                save_model_dir,
                logger,
                is_best=False,
                prefix='latest',
                best_model_dict=best_model_dict,
340
341
                epoch=epoch,
                global_step=global_step)
WenmuZhou's avatar
WenmuZhou committed
342
343
344
345
346
347
348
349
350
        if dist.get_rank() == 0 and epoch > 0 and epoch % save_epoch_step == 0:
            save_model(
                model,
                optimizer,
                save_model_dir,
                logger,
                is_best=False,
                prefix='iter_epoch_{}'.format(epoch),
                best_model_dict=best_model_dict,
351
352
                epoch=epoch,
                global_step=global_step)
LDOUBLEV's avatar
LDOUBLEV committed
353
    best_str = 'best metric, {}'.format(', '.join(
WenmuZhou's avatar
WenmuZhou committed
354
355
356
357
        ['{}: {}'.format(k, v) for k, v in best_model_dict.items()]))
    logger.info(best_str)
    if dist.get_rank() == 0 and vdl_writer is not None:
        vdl_writer.close()
LDOUBLEV's avatar
LDOUBLEV committed
358
359
360
    return


MissPenguin's avatar
refine  
MissPenguin committed
361
362
363
364
def eval(model,
         valid_dataloader,
         post_process_class,
         eval_class,
LDOUBLEV's avatar
LDOUBLEV committed
365
         model_type=None,
tink2123's avatar
tink2123 committed
366
         extra_input=False):
WenmuZhou's avatar
WenmuZhou committed
367
368
369
370
    model.eval()
    with paddle.no_grad():
        total_frame = 0.0
        total_time = 0.0
WenmuZhou's avatar
fix bug  
WenmuZhou committed
371
        pbar = tqdm(total=len(valid_dataloader), desc='eval model:')
372
373
        max_iter = len(valid_dataloader) - 1 if platform.system(
        ) == "Windows" else len(valid_dataloader)
WenmuZhou's avatar
WenmuZhou committed
374
        for idx, batch in enumerate(valid_dataloader):
375
            if idx >= max_iter:
WenmuZhou's avatar
WenmuZhou committed
376
                break
WenmuZhou's avatar
fix bug  
WenmuZhou committed
377
            images = batch[0]
WenmuZhou's avatar
WenmuZhou committed
378
            start = time.time()
tink2123's avatar
tink2123 committed
379
            if model_type == 'table' or extra_input:
MissPenguin's avatar
refine  
MissPenguin committed
380
                preds = model(images, data=batch[1:])
xiaoting's avatar
xiaoting committed
381
            else:
LDOUBLEV's avatar
add kie  
LDOUBLEV committed
382
                preds = model(batch)
WenmuZhou's avatar
WenmuZhou committed
383
384
385
386
            batch = [item.numpy() for item in batch]
            # Obtain usable results from post-processing methods
            total_time += time.time() - start
            # Evaluate the results of the current batch
MissPenguin's avatar
MissPenguin committed
387
388
389
390
391
            if model_type == 'table':
                eval_class(preds, batch)
            else:
                post_result = post_process_class(preds, batch[1])
                eval_class(post_result, batch)
LDOUBLEV's avatar
LDOUBLEV committed
392

WenmuZhou's avatar
fix bug  
WenmuZhou committed
393
            pbar.update(1)
WenmuZhou's avatar
WenmuZhou committed
394
            total_frame += len(images)
LDOUBLEV's avatar
LDOUBLEV committed
395
396
        # Get final metric,eg. acc or hmean
        metric = eval_class.get_metric()
dyning's avatar
dyning committed
397

WenmuZhou's avatar
fix bug  
WenmuZhou committed
398
    pbar.close()
WenmuZhou's avatar
WenmuZhou committed
399
    model.train()
LDOUBLEV's avatar
LDOUBLEV committed
400
401
    metric['fps'] = total_frame / total_time
    return metric
licx's avatar
licx committed
402

tink2123's avatar
tink2123 committed
403

404
def preprocess(is_train=False):
licx's avatar
licx committed
405
    FLAGS = ArgsParser().parse_args()
LDOUBLEV's avatar
LDOUBLEV committed
406
    profiler_options = FLAGS.profiler_options
licx's avatar
licx committed
407
408
    config = load_config(FLAGS.config)
    merge_config(FLAGS.opt)
LDOUBLEV's avatar
LDOUBLEV committed
409
410
    profile_dic = {"profiler_options": FLAGS.profiler_options}
    merge_config(profile_dic)
licx's avatar
licx committed
411

412
413
414
415
416
417
418
419
420
421
422
    if is_train:
        # save_config
        save_model_dir = config['Global']['save_model_dir']
        os.makedirs(save_model_dir, exist_ok=True)
        with open(os.path.join(save_model_dir, 'config.yml'), 'w') as f:
            yaml.dump(
                dict(config), f, default_flow_style=False, sort_keys=False)
        log_file = '{}/train.log'.format(save_model_dir)
    else:
        log_file = None
    logger = get_logger(name='root', log_file=log_file)
licx's avatar
licx committed
423
424
425
426
427

    # check if set use_gpu=True in paddlepaddle cpu version
    use_gpu = config['Global']['use_gpu']
    check_gpu(use_gpu)

WenmuZhou's avatar
WenmuZhou committed
428
429
    alg = config['Architecture']['algorithm']
    assert alg in [
Jethong's avatar
Jethong committed
430
        'EAST', 'DB', 'SAST', 'Rosetta', 'CRNN', 'STARNet', 'RARE', 'SRN',
tink2123's avatar
tink2123 committed
431
        'CLS', 'PGNet', 'Distillation', 'NRTR', 'TableAttn', 'SAR', 'PSE',
LDOUBLEV's avatar
LDOUBLEV committed
432
        'SEED', 'SDMGR'
WenmuZhou's avatar
WenmuZhou committed
433
    ]
434
435
436
437
438
    windows_not_support_list = ['PSE']
    if platform.system() == "Windows" and alg in windows_not_support_list:
        logger.warning('{} is not support in Windows now'.format(
            windows_not_support_list))
        sys.exit()
licx's avatar
licx committed
439

WenmuZhou's avatar
WenmuZhou committed
440
441
    device = 'gpu:{}'.format(dist.ParallelEnv().dev_id) if use_gpu else 'cpu'
    device = paddle.set_device(device)
dyning's avatar
dyning committed
442

dyning's avatar
dyning committed
443
    config['Global']['distributed'] = dist.get_world_size() != 1
444

dyning's avatar
dyning committed
445
446
    if config['Global']['use_visualdl']:
        from visualdl import LogWriter
LDOUBLEV's avatar
fix bug  
LDOUBLEV committed
447
        save_model_dir = config['Global']['save_model_dir']
dyning's avatar
dyning committed
448
449
450
451
452
453
454
455
456
        vdl_writer_path = '{}/vdl/'.format(save_model_dir)
        os.makedirs(vdl_writer_path, exist_ok=True)
        vdl_writer = LogWriter(logdir=vdl_writer_path)
    else:
        vdl_writer = None
    print_dict(config, logger)
    logger.info('train with paddle {} and device {}'.format(paddle.__version__,
                                                            device))
    return config, device, logger, vdl_writer