"tests/schedulers/test_scheduler_sasolver.py" did not exist on "11f527ac0f67ec1d9e84d6a49bf6d12484032889"
utility.py 22.2 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
WenmuZhou's avatar
WenmuZhou committed
16
import os
WenmuZhou's avatar
WenmuZhou committed
17
import sys
LDOUBLEV's avatar
LDOUBLEV committed
18
19
import cv2
import numpy as np
LDOUBLEV's avatar
LDOUBLEV committed
20
21
import json
from PIL import Image, ImageDraw, ImageFont
22
import math
WenmuZhou's avatar
WenmuZhou committed
23
from paddle import inference
LDOUBLEV's avatar
LDOUBLEV committed
24
25
import time
from ppocr.utils.logging import get_logger
WenmuZhou's avatar
WenmuZhou committed
26

LDOUBLEV's avatar
LDOUBLEV committed
27

28
29
def str2bool(v):
    return v.lower() in ("true", "t", "1")
LDOUBLEV's avatar
LDOUBLEV committed
30
31


WenmuZhou's avatar
WenmuZhou committed
32
def init_args():
LDOUBLEV's avatar
LDOUBLEV committed
33
    parser = argparse.ArgumentParser()
WenmuZhou's avatar
WenmuZhou committed
34
    # params for prediction engine
LDOUBLEV's avatar
LDOUBLEV committed
35
36
37
    parser.add_argument("--use_gpu", type=str2bool, default=True)
    parser.add_argument("--ir_optim", type=str2bool, default=True)
    parser.add_argument("--use_tensorrt", type=str2bool, default=False)
LDOUBLEV's avatar
LDOUBLEV committed
38
    parser.add_argument("--min_subgraph_size", type=int, default=10)
LDOUBLEV's avatar
LDOUBLEV committed
39
    parser.add_argument("--precision", type=str, default="fp32")
40
    parser.add_argument("--gpu_mem", type=int, default=500)
LDOUBLEV's avatar
LDOUBLEV committed
41

WenmuZhou's avatar
WenmuZhou committed
42
    # params for text detector
LDOUBLEV's avatar
LDOUBLEV committed
43
44
45
    parser.add_argument("--image_dir", type=str)
    parser.add_argument("--det_algorithm", type=str, default='DB')
    parser.add_argument("--det_model_dir", type=str)
WenmuZhou's avatar
WenmuZhou committed
46
47
    parser.add_argument("--det_limit_side_len", type=float, default=960)
    parser.add_argument("--det_limit_type", type=str, default='max')
LDOUBLEV's avatar
LDOUBLEV committed
48

WenmuZhou's avatar
WenmuZhou committed
49
    # DB parmas
LDOUBLEV's avatar
LDOUBLEV committed
50
    parser.add_argument("--det_db_thresh", type=float, default=0.3)
LDOUBLEV's avatar
LDOUBLEV committed
51
52
    parser.add_argument("--det_db_box_thresh", type=float, default=0.6)
    parser.add_argument("--det_db_unclip_ratio", type=float, default=1.5)
LDOUBLEV's avatar
LDOUBLEV committed
53
    parser.add_argument("--max_batch_size", type=int, default=10)
littletomatodonkey's avatar
littletomatodonkey committed
54
    parser.add_argument("--use_dilation", type=str2bool, default=False)
littletomatodonkey's avatar
littletomatodonkey committed
55
    parser.add_argument("--det_db_score_mode", type=str, default="fast")
WenmuZhou's avatar
WenmuZhou committed
56
    # EAST parmas
LDOUBLEV's avatar
LDOUBLEV committed
57
58
59
60
    parser.add_argument("--det_east_score_thresh", type=float, default=0.8)
    parser.add_argument("--det_east_cover_thresh", type=float, default=0.1)
    parser.add_argument("--det_east_nms_thresh", type=float, default=0.2)

WenmuZhou's avatar
WenmuZhou committed
61
    # SAST parmas
licx's avatar
licx committed
62
63
    parser.add_argument("--det_sast_score_thresh", type=float, default=0.5)
    parser.add_argument("--det_sast_nms_thresh", type=float, default=0.2)
littletomatodonkey's avatar
littletomatodonkey committed
64
    parser.add_argument("--det_sast_polygon", type=str2bool, default=False)
licx's avatar
licx committed
65

WenmuZhou's avatar
WenmuZhou committed
66
    # params for text recognizer
LDOUBLEV's avatar
LDOUBLEV committed
67
68
    parser.add_argument("--rec_algorithm", type=str, default='CRNN')
    parser.add_argument("--rec_model_dir", type=str)
tink2123's avatar
fix bug  
tink2123 committed
69
70
    parser.add_argument("--rec_image_shape", type=str, default="3, 32, 320")
    parser.add_argument("--rec_char_type", type=str, default='ch')
71
    parser.add_argument("--rec_batch_num", type=int, default=6)
tink2123's avatar
fix bug  
tink2123 committed
72
    parser.add_argument("--max_text_length", type=int, default=25)
LDOUBLEV's avatar
LDOUBLEV committed
73
74
75
76
    parser.add_argument(
        "--rec_char_dict_path",
        type=str,
        default="./ppocr/utils/ppocr_keys_v1.txt")
WenmuZhou's avatar
WenmuZhou committed
77
78
    parser.add_argument("--use_space_char", type=str2bool, default=True)
    parser.add_argument(
tink2123's avatar
tink2123 committed
79
        "--vis_font_path", type=str, default="./doc/fonts/simfang.ttf")
WenmuZhou's avatar
WenmuZhou committed
80
    parser.add_argument("--drop_score", type=float, default=0.5)
WenmuZhou's avatar
WenmuZhou committed
81

Jethong's avatar
Jethong committed
82
83
84
85
86
87
88
89
90
    # params for e2e
    parser.add_argument("--e2e_algorithm", type=str, default='PGNet')
    parser.add_argument("--e2e_model_dir", type=str)
    parser.add_argument("--e2e_limit_side_len", type=float, default=768)
    parser.add_argument("--e2e_limit_type", type=str, default='max')

    # PGNet parmas
    parser.add_argument("--e2e_pgnet_score_thresh", type=float, default=0.5)
    parser.add_argument(
Jethong's avatar
Jethong committed
91
        "--e2e_char_dict_path", type=str, default="./ppocr/utils/ic15_dict.txt")
Jethong's avatar
Jethong committed
92
    parser.add_argument("--e2e_pgnet_valid_set", type=str, default='totaltext')
littletomatodonkey's avatar
littletomatodonkey committed
93
    parser.add_argument("--e2e_pgnet_polygon", type=str2bool, default=True)
Jethong's avatar
Jethong committed
94
    parser.add_argument("--e2e_pgnet_mode", type=str, default='fast')
Jethong's avatar
Jethong committed
95

WenmuZhou's avatar
WenmuZhou committed
96
97
98
99
100
    # params for text classifier
    parser.add_argument("--use_angle_cls", type=str2bool, default=False)
    parser.add_argument("--cls_model_dir", type=str)
    parser.add_argument("--cls_image_shape", type=str, default="3, 48, 192")
    parser.add_argument("--label_list", type=list, default=['0', '180'])
101
    parser.add_argument("--cls_batch_num", type=int, default=6)
WenmuZhou's avatar
WenmuZhou committed
102
103
104
    parser.add_argument("--cls_thresh", type=float, default=0.9)

    parser.add_argument("--enable_mkldnn", type=str2bool, default=False)
LDOUBLEV's avatar
LDOUBLEV committed
105
    parser.add_argument("--cpu_threads", type=int, default=10)
WenmuZhou's avatar
WenmuZhou committed
106
    parser.add_argument("--use_pdserving", type=str2bool, default=False)
LDOUBLEV's avatar
LDOUBLEV committed
107
    parser.add_argument("--warmup", type=str2bool, default=True)
WenmuZhou's avatar
WenmuZhou committed
108

LDOUBLEV's avatar
LDOUBLEV committed
109
    # multi-process
littletomatodonkey's avatar
littletomatodonkey committed
110
    parser.add_argument("--use_mp", type=str2bool, default=False)
111
112
    parser.add_argument("--total_process_num", type=int, default=1)
    parser.add_argument("--process_id", type=int, default=0)
WenmuZhou's avatar
WenmuZhou committed
113

littletomatodonkey's avatar
littletomatodonkey committed
114
    parser.add_argument("--benchmark", type=str2bool, default=False)
LDOUBLEV's avatar
LDOUBLEV committed
115
    parser.add_argument("--save_log_path", type=str, default="./log_output/")
Double_V's avatar
Double_V committed
116

WenmuZhou's avatar
WenmuZhou committed
117
    parser.add_argument("--show_log", type=str2bool, default=True)
WenmuZhou's avatar
WenmuZhou committed
118
    return parser
WenmuZhou's avatar
WenmuZhou committed
119

120

121
def parse_args():
WenmuZhou's avatar
WenmuZhou committed
122
    parser = init_args()
LDOUBLEV's avatar
LDOUBLEV committed
123
124
125
    return parser.parse_args()


WenmuZhou's avatar
WenmuZhou committed
126
127
128
129
130
def create_predictor(args, mode, logger):
    if mode == "det":
        model_dir = args.det_model_dir
    elif mode == 'cls':
        model_dir = args.cls_model_dir
Jethong's avatar
Jethong committed
131
    elif mode == 'rec':
WenmuZhou's avatar
WenmuZhou committed
132
        model_dir = args.rec_model_dir
WenmuZhou's avatar
WenmuZhou committed
133
134
    elif mode == 'table':
        model_dir = args.table_model_dir
Jethong's avatar
Jethong committed
135
136
    else:
        model_dir = args.e2e_model_dir
WenmuZhou's avatar
WenmuZhou committed
137
138
139
140

    if model_dir is None:
        logger.info("not find {} model file path {}".format(mode, model_dir))
        sys.exit(0)
WenmuZhou's avatar
WenmuZhou committed
141
142
    model_file_path = model_dir + "/inference.pdmodel"
    params_file_path = model_dir + "/inference.pdiparams"
WenmuZhou's avatar
WenmuZhou committed
143
    if not os.path.exists(model_file_path):
LDOUBLEV's avatar
LDOUBLEV committed
144
        raise ValueError("not find model file path {}".format(model_file_path))
WenmuZhou's avatar
WenmuZhou committed
145
    if not os.path.exists(params_file_path):
LDOUBLEV's avatar
LDOUBLEV committed
146
147
        raise ValueError("not find params file path {}".format(
            params_file_path))
WenmuZhou's avatar
WenmuZhou committed
148

WenmuZhou's avatar
WenmuZhou committed
149
    config = inference.Config(model_file_path, params_file_path)
WenmuZhou's avatar
WenmuZhou committed
150

LDOUBLEV's avatar
LDOUBLEV committed
151
152
153
154
155
156
157
158
159
160
    if hasattr(args, 'precision'):
        if args.precision == "fp16" and args.use_tensorrt:
            precision = inference.PrecisionType.Half
        elif args.precision == "int8":
            precision = inference.PrecisionType.Int8
        else:
            precision = inference.PrecisionType.Float32
    else:
        precision = inference.PrecisionType.Float32

WenmuZhou's avatar
WenmuZhou committed
161
    if args.use_gpu:
162
163
164
165
166
        gpu_id = get_infer_gpuid()
        if gpu_id is None:
            raise ValueError(
                "Not found GPU in current device. Please check your device or set args.use_gpu as False"
            )
WenmuZhou's avatar
WenmuZhou committed
167
        config.enable_use_gpu(args.gpu_mem, 0)
LDOUBLEV's avatar
LDOUBLEV committed
168
169
        if args.use_tensorrt:
            config.enable_tensorrt_engine(
Double_V's avatar
Double_V committed
170
                precision_mode=precision,
LDOUBLEV's avatar
LDOUBLEV committed
171
                max_batch_size=args.max_batch_size,
LDOUBLEV's avatar
LDOUBLEV committed
172
173
                min_subgraph_size=args.min_subgraph_size)
            # skip the minmum trt subgraph
LDOUBLEV's avatar
LDOUBLEV committed
174
        if mode == "det":
LDOUBLEV's avatar
LDOUBLEV committed
175
176
            min_input_shape = {
                "x": [1, 3, 50, 50],
fengshuai03's avatar
fengshuai03 committed
177
178
                "conv2d_92.tmp_0": [1, 120, 20, 20],
                "conv2d_91.tmp_0": [1, 24, 10, 10],
LDOUBLEV's avatar
LDOUBLEV committed
179
                "conv2d_59.tmp_0": [1, 96, 20, 20],
fengshuai03's avatar
fengshuai03 committed
180
181
182
183
184
185
                "nearest_interp_v2_1.tmp_0": [1, 256, 10, 10],
                "nearest_interp_v2_2.tmp_0": [1, 256, 20, 20],
                "conv2d_124.tmp_0": [1, 256, 20, 20],
                "nearest_interp_v2_3.tmp_0": [1, 64, 20, 20],
                "nearest_interp_v2_4.tmp_0": [1, 64, 20, 20],
                "nearest_interp_v2_5.tmp_0": [1, 64, 20, 20],
LDOUBLEV's avatar
LDOUBLEV committed
186
                "elementwise_add_7": [1, 56, 2, 2],
fengshuai03's avatar
fengshuai03 committed
187
                "nearest_interp_v2_0.tmp_0": [1, 256, 2, 2]
LDOUBLEV's avatar
LDOUBLEV committed
188
189
190
            }
            max_input_shape = {
                "x": [1, 3, 2000, 2000],
fengshuai03's avatar
fengshuai03 committed
191
192
                "conv2d_92.tmp_0": [1, 120, 400, 400],
                "conv2d_91.tmp_0": [1, 24, 200, 200],
LDOUBLEV's avatar
LDOUBLEV committed
193
                "conv2d_59.tmp_0": [1, 96, 400, 400],
fengshuai03's avatar
fengshuai03 committed
194
                "nearest_interp_v2_1.tmp_0": [1, 256, 200, 200],
LDOUBLEV's avatar
LDOUBLEV committed
195
                "conv2d_124.tmp_0": [1, 256, 400, 400],
fengshuai03's avatar
fengshuai03 committed
196
197
198
199
                "nearest_interp_v2_2.tmp_0": [1, 256, 400, 400],
                "nearest_interp_v2_3.tmp_0": [1, 64, 400, 400],
                "nearest_interp_v2_4.tmp_0": [1, 64, 400, 400],
                "nearest_interp_v2_5.tmp_0": [1, 64, 400, 400],
LDOUBLEV's avatar
LDOUBLEV committed
200
                "elementwise_add_7": [1, 56, 400, 400],
fengshuai03's avatar
fengshuai03 committed
201
                "nearest_interp_v2_0.tmp_0": [1, 256, 400, 400]
LDOUBLEV's avatar
LDOUBLEV committed
202
203
204
            }
            opt_input_shape = {
                "x": [1, 3, 640, 640],
fengshuai03's avatar
fengshuai03 committed
205
206
                "conv2d_92.tmp_0": [1, 120, 160, 160],
                "conv2d_91.tmp_0": [1, 24, 80, 80],
LDOUBLEV's avatar
LDOUBLEV committed
207
                "conv2d_59.tmp_0": [1, 96, 160, 160],
fengshuai03's avatar
fengshuai03 committed
208
209
                "nearest_interp_v2_1.tmp_0": [1, 256, 80, 80],
                "nearest_interp_v2_2.tmp_0": [1, 256, 160, 160],
LDOUBLEV's avatar
LDOUBLEV committed
210
                "conv2d_124.tmp_0": [1, 256, 160, 160],
fengshuai03's avatar
fengshuai03 committed
211
212
213
                "nearest_interp_v2_3.tmp_0": [1, 64, 160, 160],
                "nearest_interp_v2_4.tmp_0": [1, 64, 160, 160],
                "nearest_interp_v2_5.tmp_0": [1, 64, 160, 160],
LDOUBLEV's avatar
LDOUBLEV committed
214
                "elementwise_add_7": [1, 56, 40, 40],
fengshuai03's avatar
fengshuai03 committed
215
                "nearest_interp_v2_0.tmp_0": [1, 256, 40, 40]
LDOUBLEV's avatar
LDOUBLEV committed
216
            }
fengshuai03's avatar
fengshuai03 committed
217
            min_pact_shape = {
littletomatodonkey's avatar
littletomatodonkey committed
218
219
220
221
                "nearest_interp_v2_26.tmp_0": [1, 256, 20, 20],
                "nearest_interp_v2_27.tmp_0": [1, 64, 20, 20],
                "nearest_interp_v2_28.tmp_0": [1, 64, 20, 20],
                "nearest_interp_v2_29.tmp_0": [1, 64, 20, 20]
fengshuai03's avatar
fengshuai03 committed
222
223
            }
            max_pact_shape = {
littletomatodonkey's avatar
littletomatodonkey committed
224
225
226
227
                "nearest_interp_v2_26.tmp_0": [1, 256, 400, 400],
                "nearest_interp_v2_27.tmp_0": [1, 64, 400, 400],
                "nearest_interp_v2_28.tmp_0": [1, 64, 400, 400],
                "nearest_interp_v2_29.tmp_0": [1, 64, 400, 400]
fengshuai03's avatar
fengshuai03 committed
228
229
            }
            opt_pact_shape = {
littletomatodonkey's avatar
littletomatodonkey committed
230
231
232
233
                "nearest_interp_v2_26.tmp_0": [1, 256, 160, 160],
                "nearest_interp_v2_27.tmp_0": [1, 64, 160, 160],
                "nearest_interp_v2_28.tmp_0": [1, 64, 160, 160],
                "nearest_interp_v2_29.tmp_0": [1, 64, 160, 160]
fengshuai03's avatar
fengshuai03 committed
234
235
236
237
            }
            min_input_shape.update(min_pact_shape)
            max_input_shape.update(max_pact_shape)
            opt_input_shape.update(opt_pact_shape)
LDOUBLEV's avatar
LDOUBLEV committed
238
239
240
241
242
243
244
245
        elif mode == "rec":
            min_input_shape = {"x": [args.rec_batch_num, 3, 32, 10]}
            max_input_shape = {"x": [args.rec_batch_num, 3, 32, 2000]}
            opt_input_shape = {"x": [args.rec_batch_num, 3, 32, 320]}
        elif mode == "cls":
            min_input_shape = {"x": [args.rec_batch_num, 3, 48, 10]}
            max_input_shape = {"x": [args.rec_batch_num, 3, 48, 2000]}
            opt_input_shape = {"x": [args.rec_batch_num, 3, 48, 320]}
LDOUBLEV's avatar
LDOUBLEV committed
246
247
248
249
        else:
            min_input_shape = {"x": [1, 3, 10, 10]}
            max_input_shape = {"x": [1, 3, 1000, 1000]}
            opt_input_shape = {"x": [1, 3, 500, 500]}
LDOUBLEV's avatar
LDOUBLEV committed
250
251
252
        config.set_trt_dynamic_shape_info(min_input_shape, max_input_shape,
                                          opt_input_shape)

WenmuZhou's avatar
WenmuZhou committed
253
254
    else:
        config.disable_gpu()
LDOUBLEV's avatar
LDOUBLEV committed
255
256
257
        if hasattr(args, "cpu_threads"):
            config.set_cpu_math_library_num_threads(args.cpu_threads)
        else:
WenmuZhou's avatar
WenmuZhou committed
258
            # default cpu threads as 10
LDOUBLEV's avatar
LDOUBLEV committed
259
            config.set_cpu_math_library_num_threads(10)
WenmuZhou's avatar
WenmuZhou committed
260
261
262
263
264
        if args.enable_mkldnn:
            # cache 10 different shapes for mkldnn to avoid memory leak
            config.set_mkldnn_cache_capacity(10)
            config.enable_mkldnn()

LDOUBLEV's avatar
LDOUBLEV committed
265
266
    # enable memory optim
    config.enable_memory_optim()
LDOUBLEV's avatar
LDOUBLEV committed
267
    #config.disable_glog_info()
WenmuZhou's avatar
WenmuZhou committed
268

WenmuZhou's avatar
WenmuZhou committed
269
    config.delete_pass("conv_transpose_eltwiseadd_bn_fuse_pass")
WenmuZhou's avatar
WenmuZhou committed
270
    if mode == 'table':
WenmuZhou's avatar
WenmuZhou committed
271
        config.delete_pass("fc_fuse_pass")  # not supported for table
WenmuZhou's avatar
WenmuZhou committed
272
    config.switch_use_feed_fetch_ops(False)
WenmuZhou's avatar
WenmuZhou committed
273
    config.switch_ir_optim(True)
274

WenmuZhou's avatar
WenmuZhou committed
275
276
    # create predictor
    predictor = inference.create_predictor(config)
WenmuZhou's avatar
WenmuZhou committed
277
278
    input_names = predictor.get_input_names()
    for name in input_names:
WenmuZhou's avatar
WenmuZhou committed
279
        input_tensor = predictor.get_input_handle(name)
WenmuZhou's avatar
WenmuZhou committed
280
281
282
    output_names = predictor.get_output_names()
    output_tensors = []
    for output_name in output_names:
WenmuZhou's avatar
WenmuZhou committed
283
        output_tensor = predictor.get_output_handle(output_name)
WenmuZhou's avatar
WenmuZhou committed
284
        output_tensors.append(output_tensor)
LDOUBLEV's avatar
LDOUBLEV committed
285
    return predictor, input_tensor, output_tensors, config
WenmuZhou's avatar
WenmuZhou committed
286
287


LDOUBLEV's avatar
LDOUBLEV committed
288
289
290
291
292
293
294
295
296
297
298
299
300
301
def get_infer_gpuid():
    cmd = "nvidia-smi"
    res = os.popen(cmd).readlines()
    if len(res) == 0:
        return None
    cmd = "env | grep CUDA_VISIBLE_DEVICES"
    env_cuda = os.popen(cmd).readlines()
    if len(env_cuda) == 0:
        return 0
    else:
        gpu_id = env_cuda[0].strip().split("=")[1]
        return int(gpu_id[0])


Jethong's avatar
Jethong committed
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
def draw_e2e_res(dt_boxes, strs, img_path):
    src_im = cv2.imread(img_path)
    for box, str in zip(dt_boxes, strs):
        box = box.astype(np.int32).reshape((-1, 1, 2))
        cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
        cv2.putText(
            src_im,
            str,
            org=(int(box[0, 0, 0]), int(box[0, 0, 1])),
            fontFace=cv2.FONT_HERSHEY_COMPLEX,
            fontScale=0.7,
            color=(0, 255, 0),
            thickness=1)
    return src_im


LDOUBLEV's avatar
LDOUBLEV committed
318
def draw_text_det_res(dt_boxes, img_path):
LDOUBLEV's avatar
LDOUBLEV committed
319
320
321
322
    src_im = cv2.imread(img_path)
    for box in dt_boxes:
        box = np.array(box).astype(np.int32).reshape(-1, 2)
        cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
LDOUBLEV's avatar
LDOUBLEV committed
323
    return src_im
LDOUBLEV's avatar
LDOUBLEV committed
324
325


LDOUBLEV's avatar
LDOUBLEV committed
326
327
def resize_img(img, input_size=600):
    """
LDOUBLEV's avatar
LDOUBLEV committed
328
    resize img and limit the longest side of the image to input_size
LDOUBLEV's avatar
LDOUBLEV committed
329
330
331
332
333
    """
    img = np.array(img)
    im_shape = img.shape
    im_size_max = np.max(im_shape[0:2])
    im_scale = float(input_size) / float(im_size_max)
WenmuZhou's avatar
WenmuZhou committed
334
335
    img = cv2.resize(img, None, None, fx=im_scale, fy=im_scale)
    return img
LDOUBLEV's avatar
LDOUBLEV committed
336
337


WenmuZhou's avatar
WenmuZhou committed
338
339
340
341
342
def draw_ocr(image,
             boxes,
             txts=None,
             scores=None,
             drop_score=0.5,
LDOUBLEV's avatar
LDOUBLEV committed
343
             font_path="./doc/fonts/simfang.ttf"):
344
345
346
    """
    Visualize the results of OCR detection and recognition
    args:
LDOUBLEV's avatar
LDOUBLEV committed
347
        image(Image|array): RGB image
348
349
350
351
        boxes(list): boxes with shape(N, 4, 2)
        txts(list): the texts
        scores(list): txxs corresponding scores
        drop_score(float): only scores greater than drop_threshold will be visualized
WenmuZhou's avatar
WenmuZhou committed
352
        font_path: the path of font which is used to draw text
353
354
355
    return(array):
        the visualized img
    """
LDOUBLEV's avatar
LDOUBLEV committed
356
357
    if scores is None:
        scores = [1] * len(boxes)
WenmuZhou's avatar
WenmuZhou committed
358
359
360
361
    box_num = len(boxes)
    for i in range(box_num):
        if scores is not None and (scores[i] < drop_score or
                                   math.isnan(scores[i])):
LDOUBLEV's avatar
LDOUBLEV committed
362
            continue
WenmuZhou's avatar
WenmuZhou committed
363
        box = np.reshape(np.array(boxes[i]), [-1, 1, 2]).astype(np.int64)
LDOUBLEV's avatar
LDOUBLEV committed
364
        image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2)
WenmuZhou's avatar
WenmuZhou committed
365
    if txts is not None:
LDOUBLEV's avatar
LDOUBLEV committed
366
        img = np.array(resize_img(image, input_size=600))
367
        txt_img = text_visual(
WenmuZhou's avatar
WenmuZhou committed
368
369
370
371
372
373
            txts,
            scores,
            img_h=img.shape[0],
            img_w=600,
            threshold=drop_score,
            font_path=font_path)
374
        img = np.concatenate([np.array(img), np.array(txt_img)], axis=1)
LDOUBLEV's avatar
LDOUBLEV committed
375
376
        return img
    return image
377
378


WenmuZhou's avatar
WenmuZhou committed
379
380
381
382
383
384
def draw_ocr_box_txt(image,
                     boxes,
                     txts,
                     scores=None,
                     drop_score=0.5,
                     font_path="./doc/simfang.ttf"):
385
386
387
    h, w = image.height, image.width
    img_left = image.copy()
    img_right = Image.new('RGB', (w, h), (255, 255, 255))
388
389

    import random
LDOUBLEV's avatar
LDOUBLEV committed
390

391
392
393
    random.seed(0)
    draw_left = ImageDraw.Draw(img_left)
    draw_right = ImageDraw.Draw(img_right)
WenmuZhou's avatar
WenmuZhou committed
394
395
396
    for idx, (box, txt) in enumerate(zip(boxes, txts)):
        if scores is not None and scores[idx] < drop_score:
            continue
tink2123's avatar
tink2123 committed
397
398
        color = (random.randint(0, 255), random.randint(0, 255),
                 random.randint(0, 255))
399
        draw_left.polygon(box, fill=color)
tink2123's avatar
tink2123 committed
400
401
402
403
404
405
406
407
408
409
        draw_right.polygon(
            [
                box[0][0], box[0][1], box[1][0], box[1][1], box[2][0],
                box[2][1], box[3][0], box[3][1]
            ],
            outline=color)
        box_height = math.sqrt((box[0][0] - box[3][0])**2 + (box[0][1] - box[3][
            1])**2)
        box_width = math.sqrt((box[0][0] - box[1][0])**2 + (box[0][1] - box[1][
            1])**2)
410
411
        if box_height > 2 * box_width:
            font_size = max(int(box_width * 0.9), 10)
WenmuZhou's avatar
WenmuZhou committed
412
            font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
413
414
415
            cur_y = box[0][1]
            for c in txt:
                char_size = font.getsize(c)
tink2123's avatar
tink2123 committed
416
417
                draw_right.text(
                    (box[0][0] + 3, cur_y), c, fill=(0, 0, 0), font=font)
418
419
420
                cur_y += char_size[1]
        else:
            font_size = max(int(box_height * 0.8), 10)
WenmuZhou's avatar
WenmuZhou committed
421
            font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
tink2123's avatar
tink2123 committed
422
423
            draw_right.text(
                [box[0][0], box[0][1]], txt, fill=(0, 0, 0), font=font)
424
425
426
427
    img_left = Image.blend(image, img_left, 0.5)
    img_show = Image.new('RGB', (w * 2, h), (255, 255, 255))
    img_show.paste(img_left, (0, 0, w, h))
    img_show.paste(img_right, (w, 0, w * 2, h))
428
429
430
    return np.array(img_show)


431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
def str_count(s):
    """
    Count the number of Chinese characters,
    a single English character and a single number
    equal to half the length of Chinese characters.
    args:
        s(string): the input of string
    return(int):
        the number of Chinese characters
    """
    import string
    count_zh = count_pu = 0
    s_len = len(s)
    en_dg_count = 0
    for c in s:
        if c in string.ascii_letters or c.isdigit() or c.isspace():
            en_dg_count += 1
        elif c.isalpha():
            count_zh += 1
        else:
            count_pu += 1
    return s_len - math.ceil(en_dg_count / 2)


WenmuZhou's avatar
WenmuZhou committed
455
456
457
458
459
460
def text_visual(texts,
                scores,
                img_h=400,
                img_w=600,
                threshold=0.,
                font_path="./doc/simfang.ttf"):
461
462
463
464
465
466
467
    """
    create new blank img and draw txt on it
    args:
        texts(list): the text will be draw
        scores(list|None): corresponding score of each txt
        img_h(int): the height of blank img
        img_w(int): the width of blank img
WenmuZhou's avatar
WenmuZhou committed
468
        font_path: the path of font which is used to draw text
469
470
471
472
473
474
475
476
477
    return(array):
    """
    if scores is not None:
        assert len(texts) == len(
            scores), "The number of txts and corresponding scores must match"

    def create_blank_img():
        blank_img = np.ones(shape=[img_h, img_w], dtype=np.int8) * 255
        blank_img[:, img_w - 1:] = 0
LDOUBLEV's avatar
LDOUBLEV committed
478
479
        blank_img = Image.fromarray(blank_img).convert("RGB")
        draw_txt = ImageDraw.Draw(blank_img)
480
        return blank_img, draw_txt
LDOUBLEV's avatar
LDOUBLEV committed
481

482
483
484
485
    blank_img, draw_txt = create_blank_img()

    font_size = 20
    txt_color = (0, 0, 0)
WenmuZhou's avatar
WenmuZhou committed
486
    font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
487
488
489

    gap = font_size + 5
    txt_img_list = []
LDOUBLEV's avatar
LDOUBLEV committed
490
    count, index = 1, 0
491
492
    for idx, txt in enumerate(texts):
        index += 1
LDOUBLEV's avatar
LDOUBLEV committed
493
        if scores[idx] < threshold or math.isnan(scores[idx]):
494
495
496
497
498
499
500
501
502
503
504
            index -= 1
            continue
        first_line = True
        while str_count(txt) >= img_w // font_size - 4:
            tmp = txt
            txt = tmp[:img_w // font_size - 4]
            if first_line:
                new_txt = str(index) + ': ' + txt
                first_line = False
            else:
                new_txt = '    ' + txt
LDOUBLEV's avatar
LDOUBLEV committed
505
            draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
506
507
508
509
510
            txt = tmp[img_w // font_size - 4:]
            if count >= img_h // gap - 1:
                txt_img_list.append(np.array(blank_img))
                blank_img, draw_txt = create_blank_img()
                count = 0
LDOUBLEV's avatar
LDOUBLEV committed
511
            count += 1
512
513
514
        if first_line:
            new_txt = str(index) + ': ' + txt + '   ' + '%.3f' % (scores[idx])
        else:
LDOUBLEV's avatar
LDOUBLEV committed
515
            new_txt = "  " + txt + "  " + '%.3f' % (scores[idx])
LDOUBLEV's avatar
LDOUBLEV committed
516
        draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
517
        # whether add new blank img or not
LDOUBLEV's avatar
LDOUBLEV committed
518
        if count >= img_h // gap - 1 and idx + 1 < len(texts):
519
520
521
            txt_img_list.append(np.array(blank_img))
            blank_img, draw_txt = create_blank_img()
            count = 0
LDOUBLEV's avatar
LDOUBLEV committed
522
        count += 1
523
524
525
526
527
528
    txt_img_list.append(np.array(blank_img))
    if len(txt_img_list) == 1:
        blank_img = np.array(txt_img_list[0])
    else:
        blank_img = np.concatenate(txt_img_list, axis=1)
    return np.array(blank_img)
LDOUBLEV's avatar
LDOUBLEV committed
529
530


dyning's avatar
dyning committed
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
def base64_to_cv2(b64str):
    import base64
    data = base64.b64decode(b64str.encode('utf8'))
    data = np.fromstring(data, np.uint8)
    data = cv2.imdecode(data, cv2.IMREAD_COLOR)
    return data


def draw_boxes(image, boxes, scores=None, drop_score=0.5):
    if scores is None:
        scores = [1] * len(boxes)
    for (box, score) in zip(boxes, scores):
        if score < drop_score:
            continue
        box = np.reshape(np.array(box), [-1, 1, 2]).astype(np.int64)
        image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2)
    return image


WenmuZhou's avatar
WenmuZhou committed
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
def get_rotate_crop_image(img, points):
    '''
    img_height, img_width = img.shape[0:2]
    left = int(np.min(points[:, 0]))
    right = int(np.max(points[:, 0]))
    top = int(np.min(points[:, 1]))
    bottom = int(np.max(points[:, 1]))
    img_crop = img[top:bottom, left:right, :].copy()
    points[:, 0] = points[:, 0] - left
    points[:, 1] = points[:, 1] - top
    '''
    assert len(points) == 4, "shape of points must be 4*2"
    img_crop_width = int(
        max(
            np.linalg.norm(points[0] - points[1]),
            np.linalg.norm(points[2] - points[3])))
    img_crop_height = int(
        max(
            np.linalg.norm(points[0] - points[3]),
            np.linalg.norm(points[1] - points[2])))
    pts_std = np.float32([[0, 0], [img_crop_width, 0],
                          [img_crop_width, img_crop_height],
                          [0, img_crop_height]])
    M = cv2.getPerspectiveTransform(points, pts_std)
    dst_img = cv2.warpPerspective(
        img,
        M, (img_crop_width, img_crop_height),
        borderMode=cv2.BORDER_REPLICATE,
        flags=cv2.INTER_CUBIC)
    dst_img_height, dst_img_width = dst_img.shape[0:2]
    if dst_img_height * 1.0 / dst_img_width >= 1.5:
        dst_img = np.rot90(dst_img)
    return dst_img


LDOUBLEV's avatar
LDOUBLEV committed
585
if __name__ == '__main__':
LDOUBLEV's avatar
LDOUBLEV committed
586
    pass