"docker/release" did not exist on "6f3c5f1c23c25fa439a9f656afef0a0b3495ffac"
pipeline_utils.py 113 KB
Newer Older
1
# coding=utf-8
2
# Copyright 2025 The HuggingFace Inc. team.
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright (c) 2022, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
16
import fnmatch
17
18
19
import importlib
import inspect
import os
20
import re
21
import sys
22
23
from dataclasses import dataclass
from pathlib import Path
24
from typing import Any, Callable, Dict, List, Optional, Union, get_args, get_origin
25

26
import httpx
27
import numpy as np
Anh71me's avatar
Anh71me committed
28
import PIL.Image
29
import requests
30
import torch
31
from huggingface_hub import (
Marc Sun's avatar
Marc Sun committed
32
    DDUFEntry,
33
34
35
36
    ModelCard,
    create_repo,
    hf_hub_download,
    model_info,
Marc Sun's avatar
Marc Sun committed
37
    read_dduf_file,
38
39
    snapshot_download,
)
40
from huggingface_hub.utils import HfHubHTTPError, OfflineModeIsEnabled, validate_hf_hub_args
41
42
from packaging import version
from tqdm.auto import tqdm
43
from typing_extensions import Self
44

45
from .. import __version__
46
from ..configuration_utils import ConfigMixin
47
48
from ..models import AutoencoderKL
from ..models.attention_processor import FusedAttnProcessor2_0
49
from ..models.modeling_utils import _LOW_CPU_MEM_USAGE_DEFAULT, ModelMixin
50
from ..quantizers import PipelineQuantizationConfig
51
from ..quantizers.bitsandbytes.utils import _check_bnb_status
52
53
54
from ..schedulers.scheduling_utils import SCHEDULER_CONFIG_NAME
from ..utils import (
    CONFIG_NAME,
55
    DEPRECATED_REVISION_ARGS,
56
    BaseOutput,
57
    PushToHubMixin,
58
59
    _get_detailed_type,
    _is_valid_type,
60
    deprecate,
61
    is_accelerate_available,
62
    is_accelerate_version,
63
    is_hpu_available,
Mengqing Cao's avatar
Mengqing Cao committed
64
    is_torch_npu_available,
65
    is_torch_version,
66
    is_transformers_version,
67
    logging,
Patrick von Platen's avatar
Patrick von Platen committed
68
    numpy_to_pil,
69
)
70
from ..utils.hub_utils import _check_legacy_sharding_variant_format, load_or_create_model_card, populate_model_card
71
from ..utils.torch_utils import empty_device_cache, get_device, is_compiled_module
Mengqing Cao's avatar
Mengqing Cao committed
72
73
74
75
76


if is_torch_npu_available():
    import torch_npu  # noqa: F401

77
78
79
80
81
from .pipeline_loading_utils import (
    ALL_IMPORTABLE_CLASSES,
    CONNECTED_PIPES_KEYS,
    CUSTOM_PIPELINE_FILE_NAME,
    LOADABLE_CLASSES,
Marc Sun's avatar
Marc Sun committed
82
    _download_dduf_file,
83
    _fetch_class_library_tuple,
84
    _get_custom_components_and_folders,
85
    _get_custom_pipeline_class,
86
    _get_final_device_map,
87
    _get_ignore_patterns,
88
    _get_pipeline_class,
89
    _identify_model_variants,
Marc Sun's avatar
Marc Sun committed
90
    _maybe_raise_error_for_incorrect_transformers,
91
    _maybe_raise_warning_for_inpainting,
92
    _maybe_warn_for_wrong_component_in_quant_config,
93
    _resolve_custom_pipeline_and_cls,
94
    _unwrap_model,
95
    _update_init_kwargs_with_connected_pipeline,
96
    filter_model_files,
97
98
99
100
101
    load_sub_model,
    maybe_raise_or_warn,
    variant_compatible_siblings,
    warn_deprecated_model_variant,
)
102
103


104
105
106
107
if is_accelerate_available():
    import accelerate


108
109
110
LIBRARIES = []
for library in LOADABLE_CLASSES:
    LIBRARIES.append(library)
111

112
SUPPORTED_DEVICE_MAP = ["balanced"] + [get_device()]
113

114
115
116
117
118
119
120
121
122
123
logger = logging.get_logger(__name__)


@dataclass
class ImagePipelineOutput(BaseOutput):
    """
    Output class for image pipelines.

    Args:
        images (`List[PIL.Image.Image]` or `np.ndarray`)
Steven Liu's avatar
Steven Liu committed
124
125
            List of denoised PIL images of length `batch_size` or NumPy array of shape `(batch_size, height, width,
            num_channels)`.
126
127
128
129
130
131
132
133
134
135
136
137
    """

    images: Union[List[PIL.Image.Image], np.ndarray]


@dataclass
class AudioPipelineOutput(BaseOutput):
    """
    Output class for audio pipelines.

    Args:
        audios (`np.ndarray`)
Steven Liu's avatar
Steven Liu committed
138
            List of denoised audio samples of a NumPy array of shape `(batch_size, num_channels, sample_rate)`.
139
140
141
142
143
    """

    audios: np.ndarray


144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
class DeprecatedPipelineMixin:
    """
    A mixin that can be used to mark a pipeline as deprecated.

    Pipelines inheriting from this mixin will raise a warning when instantiated, indicating that they are deprecated
    and won't receive updates past the specified version. Tests will be skipped for pipelines that inherit from this
    mixin.

    Example usage:
    ```python
    class MyDeprecatedPipeline(DeprecatedPipelineMixin, DiffusionPipeline):
        _last_supported_version = "0.20.0"

        def __init__(self, *args, **kwargs):
            super().__init__(*args, **kwargs)
    ```
    """

    # Override this in the inheriting class to specify the last version that will support this pipeline
    _last_supported_version = None

    def __init__(self, *args, **kwargs):
        # Get the class name for the warning message
        class_name = self.__class__.__name__

        # Get the last supported version or use the current version if not specified
        version_info = getattr(self.__class__, "_last_supported_version", __version__)

        # Raise a warning that this pipeline is deprecated
        logger.warning(
            f"The {class_name} has been deprecated and will not receive bug fixes or feature updates after Diffusers version {version_info}. "
        )

        # Call the parent class's __init__ method
        super().__init__(*args, **kwargs)


181
class DiffusionPipeline(ConfigMixin, PushToHubMixin):
182
    r"""
Steven Liu's avatar
Steven Liu committed
183
    Base class for all pipelines.
184

Steven Liu's avatar
Steven Liu committed
185
186
    [`DiffusionPipeline`] stores all components (models, schedulers, and processors) for diffusion pipelines and
    provides methods for loading, downloading and saving models. It also includes methods to:
187
188

        - move all PyTorch modules to the device of your choice
189
        - enable/disable the progress bar for the denoising iteration
190
191
192

    Class attributes:

Steven Liu's avatar
Steven Liu committed
193
194
        - **config_name** (`str`) -- The configuration filename that stores the class and module names of all the
          diffusion pipeline's components.
195
        - **_optional_components** (`List[str]`) -- List of all optional components that don't have to be passed to the
Steven Liu's avatar
Steven Liu committed
196
          pipeline to function (should be overridden by subclasses).
197
    """
198

199
    config_name = "model_index.json"
200
    model_cpu_offload_seq = None
201
    hf_device_map = None
202
    _optional_components = []
203
    _exclude_from_cpu_offload = []
204
    _load_connected_pipes = False
205
    _is_onnx = False
206
207
208
209

    def register_modules(self, **kwargs):
        for name, module in kwargs.items():
            # retrieve library
210
            if module is None or isinstance(module, (tuple, list)) and module[0] is None:
211
212
                register_dict = {name: (None, None)}
            else:
213
                library, class_name = _fetch_class_library_tuple(module)
214
215
216
217
218
219
220
221
                register_dict = {name: (library, class_name)}

            # save model index config
            self.register_to_config(**register_dict)

            # set models
            setattr(self, name, module)

222
    def __setattr__(self, name: str, value: Any):
223
        if name in self.__dict__ and hasattr(self.config, name):
224
225
            # We need to overwrite the config if name exists in config
            if isinstance(getattr(self.config, name), (tuple, list)):
226
                if value is not None and self.config[name][0] is not None:
227
                    class_library_tuple = _fetch_class_library_tuple(value)
228
229
230
231
232
233
234
235
236
                else:
                    class_library_tuple = (None, None)

                self.register_to_config(**{name: class_library_tuple})
            else:
                self.register_to_config(**{name: value})

        super().__setattr__(name, value)

237
238
239
    def save_pretrained(
        self,
        save_directory: Union[str, os.PathLike],
240
        safe_serialization: bool = True,
241
        variant: Optional[str] = None,
242
        max_shard_size: Optional[Union[int, str]] = None,
243
244
        push_to_hub: bool = False,
        **kwargs,
245
246
    ):
        """
Steven Liu's avatar
Steven Liu committed
247
248
249
        Save all saveable variables of the pipeline to a directory. A pipeline variable can be saved and loaded if its
        class implements both a save and loading method. The pipeline is easily reloaded using the
        [`~DiffusionPipeline.from_pretrained`] class method.
250
251
252

        Arguments:
            save_directory (`str` or `os.PathLike`):
Steven Liu's avatar
Steven Liu committed
253
                Directory to save a pipeline to. Will be created if it doesn't exist.
254
            safe_serialization (`bool`, *optional*, defaults to `True`):
Steven Liu's avatar
Steven Liu committed
255
                Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
256
            variant (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
257
                If specified, weights are saved in the format `pytorch_model.<variant>.bin`.
258
            max_shard_size (`int` or `str`, defaults to `None`):
259
260
261
262
263
264
                The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size
                lower than this size. If expressed as a string, needs to be digits followed by a unit (like `"5GB"`).
                If expressed as an integer, the unit is bytes. Note that this limit will be decreased after a certain
                period of time (starting from Oct 2024) to allow users to upgrade to the latest version of `diffusers`.
                This is to establish a common default size for this argument across different libraries in the Hugging
                Face ecosystem (`transformers`, and `accelerate`, for example).
265
266
267
268
            push_to_hub (`bool`, *optional*, defaults to `False`):
                Whether or not to push your model to the Hugging Face model hub after saving it. You can specify the
                repository you want to push to with `repo_id` (will default to the name of `save_directory` in your
                namespace).
Marc Sun's avatar
Marc Sun committed
269

270
271
            kwargs (`Dict[str, Any]`, *optional*):
                Additional keyword arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method.
272
273
        """
        model_index_dict = dict(self.config)
274
275
        model_index_dict.pop("_class_name", None)
        model_index_dict.pop("_diffusers_version", None)
276
        model_index_dict.pop("_module", None)
277
        model_index_dict.pop("_name_or_path", None)
278

279
280
        if push_to_hub:
            commit_message = kwargs.pop("commit_message", None)
281
            private = kwargs.pop("private", None)
282
283
284
285
286
            create_pr = kwargs.pop("create_pr", False)
            token = kwargs.pop("token", None)
            repo_id = kwargs.pop("repo_id", save_directory.split(os.path.sep)[-1])
            repo_id = create_repo(repo_id, exist_ok=True, private=private, token=token).repo_id

287
288
289
290
291
292
293
294
295
296
297
298
299
300
        expected_modules, optional_kwargs = self._get_signature_keys(self)

        def is_saveable_module(name, value):
            if name not in expected_modules:
                return False
            if name in self._optional_components and value[0] is None:
                return False
            return True

        model_index_dict = {k: v for k, v in model_index_dict.items() if is_saveable_module(k, v)}
        for pipeline_component_name in model_index_dict.keys():
            sub_model = getattr(self, pipeline_component_name)
            model_cls = sub_model.__class__

301
302
303
            # Dynamo wraps the original model in a private class.
            # I didn't find a public API to get the original class.
            if is_compiled_module(sub_model):
304
                sub_model = _unwrap_model(sub_model)
305
306
                model_cls = sub_model.__class__

307
308
309
            save_method_name = None
            # search for the model's base class in LOADABLE_CLASSES
            for library_name, library_classes in LOADABLE_CLASSES.items():
310
311
312
313
314
315
316
                if library_name in sys.modules:
                    library = importlib.import_module(library_name)
                else:
                    logger.info(
                        f"{library_name} is not installed. Cannot save {pipeline_component_name} as {library_classes} from {library_name}"
                    )

317
318
319
320
321
322
323
324
325
                for base_class, save_load_methods in library_classes.items():
                    class_candidate = getattr(library, base_class, None)
                    if class_candidate is not None and issubclass(model_cls, class_candidate):
                        # if we found a suitable base class in LOADABLE_CLASSES then grab its save method
                        save_method_name = save_load_methods[0]
                        break
                if save_method_name is not None:
                    break

326
            if save_method_name is None:
327
328
329
                logger.warning(
                    f"self.{pipeline_component_name}={sub_model} of type {type(sub_model)} cannot be saved."
                )
330
331
332
333
                # make sure that unsaveable components are not tried to be loaded afterward
                self.register_to_config(**{pipeline_component_name: (None, None)})
                continue

334
335
336
337
338
            save_method = getattr(sub_model, save_method_name)

            # Call the save method with the argument safe_serialization only if it's supported
            save_method_signature = inspect.signature(save_method)
            save_method_accept_safe = "safe_serialization" in save_method_signature.parameters
339
            save_method_accept_variant = "variant" in save_method_signature.parameters
340
            save_method_accept_max_shard_size = "max_shard_size" in save_method_signature.parameters
341
342

            save_kwargs = {}
343
            if save_method_accept_safe:
344
345
346
                save_kwargs["safe_serialization"] = safe_serialization
            if save_method_accept_variant:
                save_kwargs["variant"] = variant
347
348
            if save_method_accept_max_shard_size and max_shard_size is not None:
                # max_shard_size is expected to not be None in ModelMixin
349
                save_kwargs["max_shard_size"] = max_shard_size
350
351

            save_method(os.path.join(save_directory, pipeline_component_name), **save_kwargs)
352

353
354
355
        # finally save the config
        self.save_config(save_directory)

356
        if push_to_hub:
357
358
359
360
361
            # Create a new empty model card and eventually tag it
            model_card = load_or_create_model_card(repo_id, token=token, is_pipeline=True)
            model_card = populate_model_card(model_card)
            model_card.save(os.path.join(save_directory, "README.md"))

362
363
364
365
366
367
368
369
            self._upload_folder(
                save_directory,
                repo_id,
                token=token,
                commit_message=commit_message,
                create_pr=create_pr,
            )

370
    def to(self, *args, **kwargs) -> Self:
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
        r"""
        Performs Pipeline dtype and/or device conversion. A torch.dtype and torch.device are inferred from the
        arguments of `self.to(*args, **kwargs).`

        <Tip>

            If the pipeline already has the correct torch.dtype and torch.device, then it is returned as is. Otherwise,
            the returned pipeline is a copy of self with the desired torch.dtype and torch.device.

        </Tip>


        Here are the ways to call `to`:

        - `to(dtype, silence_dtype_warnings=False) → DiffusionPipeline` to return a pipeline with the specified
          [`dtype`](https://pytorch.org/docs/stable/tensor_attributes.html#torch.dtype)
        - `to(device, silence_dtype_warnings=False) → DiffusionPipeline` to return a pipeline with the specified
          [`device`](https://pytorch.org/docs/stable/tensor_attributes.html#torch.device)
        - `to(device=None, dtype=None, silence_dtype_warnings=False) → DiffusionPipeline` to return a pipeline with the
          specified [`device`](https://pytorch.org/docs/stable/tensor_attributes.html#torch.device) and
          [`dtype`](https://pytorch.org/docs/stable/tensor_attributes.html#torch.dtype)

        Arguments:
            dtype (`torch.dtype`, *optional*):
                Returns a pipeline with the specified
                [`dtype`](https://pytorch.org/docs/stable/tensor_attributes.html#torch.dtype)
            device (`torch.Device`, *optional*):
                Returns a pipeline with the specified
                [`device`](https://pytorch.org/docs/stable/tensor_attributes.html#torch.device)
            silence_dtype_warnings (`str`, *optional*, defaults to `False`):
                Whether to omit warnings if the target `dtype` is not compatible with the target `device`.

        Returns:
            [`DiffusionPipeline`]: The pipeline converted to specified `dtype` and/or `dtype`.
        """
406
407
        dtype = kwargs.pop("dtype", None)
        device = kwargs.pop("device", None)
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
        silence_dtype_warnings = kwargs.pop("silence_dtype_warnings", False)

        dtype_arg = None
        device_arg = None
        if len(args) == 1:
            if isinstance(args[0], torch.dtype):
                dtype_arg = args[0]
            else:
                device_arg = torch.device(args[0]) if args[0] is not None else None
        elif len(args) == 2:
            if isinstance(args[0], torch.dtype):
                raise ValueError(
                    "When passing two arguments, make sure the first corresponds to `device` and the second to `dtype`."
                )
            device_arg = torch.device(args[0]) if args[0] is not None else None
            dtype_arg = args[1]
        elif len(args) > 2:
            raise ValueError("Please make sure to pass at most two arguments (`device` and `dtype`) `.to(...)`")

        if dtype is not None and dtype_arg is not None:
            raise ValueError(
                "You have passed `dtype` both as an argument and as a keyword argument. Please only pass one of the two."
            )

        dtype = dtype or dtype_arg

        if device is not None and device_arg is not None:
            raise ValueError(
                "You have passed `device` both as an argument and as a keyword argument. Please only pass one of the two."
            )

        device = device or device_arg
Aryan's avatar
Aryan committed
440
        device_type = torch.device(device).type if device is not None else None
441
        pipeline_has_bnb = any(any((_check_bnb_status(module))) for _, module in self.components.items())
442

443
444
445
446
447
        # throw warning if pipeline is in "offloaded"-mode but user tries to manually set to GPU.
        def module_is_sequentially_offloaded(module):
            if not is_accelerate_available() or is_accelerate_version("<", "0.14.0"):
                return False

448
449
450
451
452
            _, _, is_loaded_in_8bit_bnb = _check_bnb_status(module)

            if is_loaded_in_8bit_bnb:
                return False

453
454
455
456
457
            return hasattr(module, "_hf_hook") and (
                isinstance(module._hf_hook, accelerate.hooks.AlignDevicesHook)
                or hasattr(module._hf_hook, "hooks")
                and isinstance(module._hf_hook.hooks[0], accelerate.hooks.AlignDevicesHook)
            )
458
459
460
461
462
463
464
465
466
467
468

        def module_is_offloaded(module):
            if not is_accelerate_available() or is_accelerate_version("<", "0.17.0.dev0"):
                return False

            return hasattr(module, "_hf_hook") and isinstance(module._hf_hook, accelerate.hooks.CpuOffload)

        # .to("cuda") would raise an error if the pipeline is sequentially offloaded, so we raise our own to make it clearer
        pipeline_is_sequentially_offloaded = any(
            module_is_sequentially_offloaded(module) for _, module in self.components.items()
        )
469
470
471
472
473
474
475

        is_pipeline_device_mapped = self.hf_device_map is not None and len(self.hf_device_map) > 1
        if is_pipeline_device_mapped:
            raise ValueError(
                "It seems like you have activated a device mapping strategy on the pipeline which doesn't allow explicit device placement using `to()`. You can call `reset_device_map()` to remove the existing device map from the pipeline."
            )

476
        if device_type in ["cuda", "xpu"]:
477
478
479
480
481
482
483
484
485
            if pipeline_is_sequentially_offloaded and not pipeline_has_bnb:
                raise ValueError(
                    "It seems like you have activated sequential model offloading by calling `enable_sequential_cpu_offload`, but are now attempting to move the pipeline to GPU. This is not compatible with offloading. Please, move your pipeline `.to('cpu')` or consider removing the move altogether if you use sequential offloading."
                )
            # PR: https://github.com/huggingface/accelerate/pull/3223/
            elif pipeline_has_bnb and is_accelerate_version("<", "1.1.0.dev0"):
                raise ValueError(
                    "You are trying to call `.to('cuda')` on a pipeline that has models quantized with `bitsandbytes`. Your current `accelerate` installation does not support it. Please upgrade the installation."
                )
486
487
488

        # Display a warning in this case (the operation succeeds but the benefits are lost)
        pipeline_is_offloaded = any(module_is_offloaded(module) for _, module in self.components.items())
489
        if pipeline_is_offloaded and device_type in ["cuda", "xpu"]:
490
491
492
493
            logger.warning(
                f"It seems like you have activated model offloading by calling `enable_model_cpu_offload`, but are now manually moving the pipeline to GPU. It is strongly recommended against doing so as memory gains from offloading are likely to be lost. Offloading automatically takes care of moving the individual components {', '.join(self.components.keys())} to GPU when needed. To make sure offloading works as expected, you should consider moving the pipeline back to CPU: `pipeline.to('cpu')` or removing the move altogether if you use offloading."
            )

494
495
496
497
498
499
500
501
502
503
504
505
506
507
        # Enable generic support for Intel Gaudi accelerator using GPU/HPU migration
        if device_type == "hpu" and kwargs.pop("hpu_migration", True) and is_hpu_available():
            os.environ["PT_HPU_GPU_MIGRATION"] = "1"
            logger.debug("Environment variable set: PT_HPU_GPU_MIGRATION=1")

            import habana_frameworks.torch  # noqa: F401

            # HPU hardware check
            if not (hasattr(torch, "hpu") and torch.hpu.is_available()):
                raise ValueError("You are trying to call `.to('hpu')` but HPU device is unavailable.")

            os.environ["PT_HPU_MAX_COMPOUND_OP_SIZE"] = "1"
            logger.debug("Environment variable set: PT_HPU_MAX_COMPOUND_OP_SIZE=1")

508
509
510
511
512
513
514
            if dtype in (torch.bfloat16, None) and kwargs.pop("sdp_on_bf16", True):
                if hasattr(torch._C, "_set_math_sdp_allow_fp16_bf16_reduction"):
                    torch._C._set_math_sdp_allow_fp16_bf16_reduction(True)
                    logger.warning(
                        "Enabled SDP with BF16 precision on HPU. To disable, please use `.to('hpu', sdp_on_bf16=False)`"
                    )

515
        module_names, _ = self._get_signature_keys(self)
516
517
        modules = [getattr(self, n, None) for n in module_names]
        modules = [m for m in modules if isinstance(m, torch.nn.Module)]
518

519
        is_offloaded = pipeline_is_offloaded or pipeline_is_sequentially_offloaded
520
        for module in modules:
521
            _, is_loaded_in_4bit_bnb, is_loaded_in_8bit_bnb = _check_bnb_status(module)
Aryan's avatar
Aryan committed
522
            is_group_offloaded = self._maybe_raise_error_if_group_offload_active(module=module)
Patrick von Platen's avatar
Patrick von Platen committed
523

524
            if (is_loaded_in_4bit_bnb or is_loaded_in_8bit_bnb) and dtype is not None:
Patrick von Platen's avatar
Patrick von Platen committed
525
                logger.warning(
526
                    f"The module '{module.__class__.__name__}' has been loaded in `bitsandbytes` {'4bit' if is_loaded_in_4bit_bnb else '8bit'} and conversion to {dtype} is not supported. Module is still in {'4bit' if is_loaded_in_4bit_bnb else '8bit'} precision."
Patrick von Platen's avatar
Patrick von Platen committed
527
528
                )

529
            if is_loaded_in_8bit_bnb and device is not None:
Patrick von Platen's avatar
Patrick von Platen committed
530
                logger.warning(
531
                    f"The module '{module.__class__.__name__}' has been loaded in `bitsandbytes` 8bit and moving it to {device} via `.to()` is not supported. Module is still on {module.device}."
Patrick von Platen's avatar
Patrick von Platen committed
532
                )
533

Aryan's avatar
Aryan committed
534
535
536
537
538
539
540
541
542
543
            # Note: we also handle this at the ModelMixin level. The reason for doing it here too is that modeling
            # components can be from outside diffusers too, but still have group offloading enabled.
            if (
                self._maybe_raise_error_if_group_offload_active(raise_error=False, module=module)
                and device is not None
            ):
                logger.warning(
                    f"The module '{module.__class__.__name__}' is group offloaded and moving it to {device} via `.to()` is not supported."
                )

544
545
546
547
            # This can happen for `transformer` models. CPU placement was added in
            # https://github.com/huggingface/transformers/pull/33122. So, we guard this accordingly.
            if is_loaded_in_4bit_bnb and device is not None and is_transformers_version(">", "4.44.0"):
                module.to(device=device)
Aryan's avatar
Aryan committed
548
            elif not is_loaded_in_4bit_bnb and not is_loaded_in_8bit_bnb and not is_group_offloaded:
549
                module.to(device, dtype)
Patrick von Platen's avatar
Patrick von Platen committed
550

551
552
            if (
                module.dtype == torch.float16
553
                and str(device) in ["cpu"]
554
555
556
557
                and not silence_dtype_warnings
                and not is_offloaded
            ):
                logger.warning(
558
                    "Pipelines loaded with `dtype=torch.float16` cannot run with `cpu` device. It"
559
560
561
562
563
                    " is not recommended to move them to `cpu` as running them will fail. Please make"
                    " sure to use an accelerator to run the pipeline in inference, due to the lack of"
                    " support for`float16` operations on this device in PyTorch. Please, remove the"
                    " `torch_dtype=torch.float16` argument, or use another device for inference."
                )
564
565
566
567
568
569
570
571
        return self

    @property
    def device(self) -> torch.device:
        r"""
        Returns:
            `torch.device`: The torch device on which the pipeline is located.
        """
572
        module_names, _ = self._get_signature_keys(self)
573
574
575
576
577
        modules = [getattr(self, n, None) for n in module_names]
        modules = [m for m in modules if isinstance(m, torch.nn.Module)]

        for module in modules:
            return module.device
578

579
580
        return torch.device("cpu")

581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
    @property
    def dtype(self) -> torch.dtype:
        r"""
        Returns:
            `torch.dtype`: The torch dtype on which the pipeline is located.
        """
        module_names, _ = self._get_signature_keys(self)
        modules = [getattr(self, n, None) for n in module_names]
        modules = [m for m in modules if isinstance(m, torch.nn.Module)]

        for module in modules:
            return module.dtype

        return torch.float32

596
    @classmethod
597
    @validate_hf_hub_args
598
    def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs) -> Self:
599
        r"""
Steven Liu's avatar
Steven Liu committed
600
        Instantiate a PyTorch diffusion pipeline from pretrained pipeline weights.
601

Steven Liu's avatar
Steven Liu committed
602
        The pipeline is set in evaluation mode (`model.eval()`) by default.
603

Steven Liu's avatar
Steven Liu committed
604
        If you get the error message below, you need to finetune the weights for your downstream task:
605

Steven Liu's avatar
Steven Liu committed
606
        ```
607
        Some weights of UNet2DConditionModel were not initialized from the model checkpoint at stable-diffusion-v1-5/stable-diffusion-v1-5 and are newly initialized because the shapes did not match:
Steven Liu's avatar
Steven Liu committed
608
609
610
        - conv_in.weight: found shape torch.Size([320, 4, 3, 3]) in the checkpoint and torch.Size([320, 9, 3, 3]) in the model instantiated
        You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
        ```
611
612
613
614
615

        Parameters:
            pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*):
                Can be either:

Steven Liu's avatar
Steven Liu committed
616
617
618
619
620
                    - A string, the *repo id* (for example `CompVis/ldm-text2im-large-256`) of a pretrained pipeline
                      hosted on the Hub.
                    - A path to a *directory* (for example `./my_pipeline_directory/`) containing pipeline weights
                      saved using
                    [`~DiffusionPipeline.save_pretrained`].
Marc Sun's avatar
Marc Sun committed
621
                    - A path to a *directory* (for example `./my_pipeline_directory/`) containing a dduf file
622
623
624
625
626
627
            torch_dtype (`torch.dtype` or `dict[str, Union[str, torch.dtype]]`, *optional*):
                Override the default `torch.dtype` and load the model with another dtype. To load submodels with
                different dtype pass a `dict` (for example `{'transformer': torch.bfloat16, 'vae': torch.float16}`).
                Set the default dtype for unspecified components with `default` (for example `{'transformer':
                torch.bfloat16, 'default': torch.float16}`). If a component is not specified and no default is set,
                `torch.float32` is used.
628
629
630
631
            custom_pipeline (`str`, *optional*):

                <Tip warning={true}>

Steven Liu's avatar
Steven Liu committed
632
                🧪 This is an experimental feature and may change in the future.
633
634
635
636
637

                </Tip>

                Can be either:

Steven Liu's avatar
Steven Liu committed
638
639
640
                    - A string, the *repo id* (for example `hf-internal-testing/diffusers-dummy-pipeline`) of a custom
                      pipeline hosted on the Hub. The repository must contain a file called pipeline.py that defines
                      the custom pipeline.
641
                    - A string, the *file name* of a community pipeline hosted on GitHub under
Steven Liu's avatar
Steven Liu committed
642
643
644
645
646
647
                      [Community](https://github.com/huggingface/diffusers/tree/main/examples/community). Valid file
                      names must match the file name and not the pipeline script (`clip_guided_stable_diffusion`
                      instead of `clip_guided_stable_diffusion.py`). Community pipelines are always loaded from the
                      current main branch of GitHub.
                    - A path to a directory (`./my_pipeline_directory/`) containing a custom pipeline. The directory
                      must contain a file called `pipeline.py` that defines the custom pipeline.
648
649
650
651
652
653
654

                For more information on how to load and create custom pipelines, please have a look at [Loading and
                Adding Custom
                Pipelines](https://huggingface.co/docs/diffusers/using-diffusers/custom_pipeline_overview)
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
655
            cache_dir (`Union[str, os.PathLike]`, *optional*):
Steven Liu's avatar
Steven Liu committed
656
657
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
658

659
            proxies (`Dict[str, str]`, *optional*):
Steven Liu's avatar
Steven Liu committed
660
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
661
662
663
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            output_loading_info(`bool`, *optional*, defaults to `False`):
                Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
Steven Liu's avatar
Steven Liu committed
664
665
666
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
667
            token (`str` or *bool*, *optional*):
Steven Liu's avatar
Steven Liu committed
668
669
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
670
            revision (`str`, *optional*, defaults to `"main"`):
Steven Liu's avatar
Steven Liu committed
671
672
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
673
            custom_revision (`str`, *optional*):
674
                The specific model version to use. It can be a branch name, a tag name, or a commit id similar to
675
676
                `revision` when loading a custom pipeline from the Hub. Defaults to the latest stable 🤗 Diffusers
                version.
677
            mirror (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
678
679
680
                Mirror source to resolve accessibility issues if you’re downloading a model in China. We do not
                guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
                information.
681
682
683
684
685
            device_map (`str`, *optional*):
                Strategy that dictates how the different components of a pipeline should be placed on available
                devices. Currently, only "balanced" `device_map` is supported. Check out
                [this](https://huggingface.co/docs/diffusers/main/en/tutorials/inference_with_big_models#device-placement)
                to know more.
686
            max_memory (`Dict`, *optional*):
Steven Liu's avatar
Steven Liu committed
687
688
                A dictionary device identifier for the maximum memory. Will default to the maximum memory available for
                each GPU and the available CPU RAM if unset.
689
            offload_folder (`str` or `os.PathLike`, *optional*):
Steven Liu's avatar
Steven Liu committed
690
                The path to offload weights if device_map contains the value `"disk"`.
691
            offload_state_dict (`bool`, *optional*):
Steven Liu's avatar
Steven Liu committed
692
693
694
                If `True`, temporarily offloads the CPU state dict to the hard drive to avoid running out of CPU RAM if
                the weight of the CPU state dict + the biggest shard of the checkpoint does not fit. Defaults to `True`
                when there is some disk offload.
695
            low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
Steven Liu's avatar
Steven Liu committed
696
697
698
699
                Speed up model loading only loading the pretrained weights and not initializing the weights. This also
                tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
                Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
                argument to `True` will raise an error.
700
            use_safetensors (`bool`, *optional*, defaults to `None`):
Steven Liu's avatar
Steven Liu committed
701
702
703
                If set to `None`, the safetensors weights are downloaded if they're available **and** if the
                safetensors library is installed. If set to `True`, the model is forcibly loaded from safetensors
                weights. If set to `False`, safetensors weights are not loaded.
704
705
706
707
708
            use_onnx (`bool`, *optional*, defaults to `None`):
                If set to `True`, ONNX weights will always be downloaded if present. If set to `False`, ONNX weights
                will never be downloaded. By default `use_onnx` defaults to the `_is_onnx` class attribute which is
                `False` for non-ONNX pipelines and `True` for ONNX pipelines. ONNX weights include both files ending
                with `.onnx` and `.pb`.
709
            kwargs (remaining dictionary of keyword arguments, *optional*):
Steven Liu's avatar
Steven Liu committed
710
711
712
                Can be used to overwrite load and saveable variables (the pipeline components of the specific pipeline
                class). The overwritten components are passed directly to the pipelines `__init__` method. See example
                below for more information.
713
            variant (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
714
715
                Load weights from a specified variant filename such as `"fp16"` or `"ema"`. This is ignored when
                loading `from_flax`.
Marc Sun's avatar
Marc Sun committed
716
717
            dduf_file(`str`, *optional*):
                Load weights from the specified dduf file.
718
719
720

        <Tip>

721
722
        To use private or [gated](https://huggingface.co/docs/hub/models-gated#gated-models) models, log-in with `hf
        auth login`.
723
724
725
726
727
728
729
730
731
732
733
734
735
736

        </Tip>

        Examples:

        ```py
        >>> from diffusers import DiffusionPipeline

        >>> # Download pipeline from huggingface.co and cache.
        >>> pipeline = DiffusionPipeline.from_pretrained("CompVis/ldm-text2im-large-256")

        >>> # Download pipeline that requires an authorization token
        >>> # For more information on access tokens, please refer to this section
        >>> # of the documentation](https://huggingface.co/docs/hub/security-tokens)
737
        >>> pipeline = DiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5")
738
739
740
741
742
743
744
745

        >>> # Use a different scheduler
        >>> from diffusers import LMSDiscreteScheduler

        >>> scheduler = LMSDiscreteScheduler.from_config(pipeline.scheduler.config)
        >>> pipeline.scheduler = scheduler
        ```
        """
746
747
748
        # Copy the kwargs to re-use during loading connected pipeline.
        kwargs_copied = kwargs.copy()

749
        cache_dir = kwargs.pop("cache_dir", None)
750
751
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
752
753
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
754
        revision = kwargs.pop("revision", None)
755
        from_flax = kwargs.pop("from_flax", False)
756
        torch_dtype = kwargs.pop("torch_dtype", None)
757
758
759
760
        custom_pipeline = kwargs.pop("custom_pipeline", None)
        custom_revision = kwargs.pop("custom_revision", None)
        provider = kwargs.pop("provider", None)
        sess_options = kwargs.pop("sess_options", None)
761
        provider_options = kwargs.pop("provider_options", None)
762
        device_map = kwargs.pop("device_map", None)
763
764
        max_memory = kwargs.pop("max_memory", None)
        offload_folder = kwargs.pop("offload_folder", None)
765
        offload_state_dict = kwargs.pop("offload_state_dict", None)
766
        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT)
767
        variant = kwargs.pop("variant", None)
Marc Sun's avatar
Marc Sun committed
768
        dduf_file = kwargs.pop("dduf_file", None)
769
        use_safetensors = kwargs.pop("use_safetensors", None)
770
        use_onnx = kwargs.pop("use_onnx", None)
771
        load_connected_pipeline = kwargs.pop("load_connected_pipeline", False)
772
        quantization_config = kwargs.pop("quantization_config", None)
773

774
        if torch_dtype is not None and not isinstance(torch_dtype, dict) and not isinstance(torch_dtype, torch.dtype):
775
776
777
778
779
            torch_dtype = torch.float32
            logger.warning(
                f"Passed `torch_dtype` {torch_dtype} is not a `torch.dtype`. Defaulting to `torch.float32`."
            )

780
781
782
783
784
785
786
787
788
        if low_cpu_mem_usage and not is_accelerate_available():
            low_cpu_mem_usage = False
            logger.warning(
                "Cannot initialize model with low cpu memory usage because `accelerate` was not found in the"
                " environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install"
                " `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip"
                " install accelerate\n```\n."
            )

789
790
791
        if quantization_config is not None and not isinstance(quantization_config, PipelineQuantizationConfig):
            raise ValueError("`quantization_config` must be an instance of `PipelineQuantizationConfig`.")

792
793
794
795
796
797
        if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"):
            raise NotImplementedError(
                "Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set"
                " `low_cpu_mem_usage=False`."
            )

798
799
800
801
802
803
        if device_map is not None and not is_torch_version(">=", "1.9.0"):
            raise NotImplementedError(
                "Loading and dispatching requires torch >= 1.9.0. Please either update your PyTorch version or set"
                " `device_map=None`."
            )

804
        if device_map is not None and not is_accelerate_available():
805
            raise NotImplementedError(
806
807
808
809
810
811
812
813
814
                "Using `device_map` requires the `accelerate` library. Please install it using: `pip install accelerate`."
            )

        if device_map is not None and not isinstance(device_map, str):
            raise ValueError("`device_map` must be a string.")

        if device_map is not None and device_map not in SUPPORTED_DEVICE_MAP:
            raise NotImplementedError(
                f"{device_map} not supported. Supported strategies are: {', '.join(SUPPORTED_DEVICE_MAP)}"
815
816
            )

817
818
819
820
        if device_map is not None and device_map in SUPPORTED_DEVICE_MAP:
            if is_accelerate_version("<", "0.28.0"):
                raise NotImplementedError("Device placement requires `accelerate` version `0.28.0` or later.")

821
822
823
824
825
826
        if low_cpu_mem_usage is False and device_map is not None:
            raise ValueError(
                f"You cannot set `low_cpu_mem_usage` to False while using device_map={device_map} for loading and"
                " dispatching. Please make sure to set `low_cpu_mem_usage=True`."
            )

Marc Sun's avatar
Marc Sun committed
827
828
829
830
831
832
        if dduf_file:
            if custom_pipeline:
                raise NotImplementedError("Custom pipelines are not supported with DDUF at the moment.")
            if load_connected_pipeline:
                raise NotImplementedError("Connected pipelines are not supported with DDUF at the moment.")

833
834
835
        # 1. Download the checkpoints and configs
        # use snapshot download here to get it working from from_pretrained
        if not os.path.isdir(pretrained_model_name_or_path):
Patrick von Platen's avatar
Patrick von Platen committed
836
837
838
839
840
            if pretrained_model_name_or_path.count("/") > 1:
                raise ValueError(
                    f'The provided pretrained_model_name_or_path "{pretrained_model_name_or_path}"'
                    " is neither a valid local path nor a valid repo id. Please check the parameter."
                )
841
            cached_folder = cls.download(
842
843
844
845
846
                pretrained_model_name_or_path,
                cache_dir=cache_dir,
                force_download=force_download,
                proxies=proxies,
                local_files_only=local_files_only,
847
                token=token,
848
                revision=revision,
849
                from_flax=from_flax,
850
                use_safetensors=use_safetensors,
851
                use_onnx=use_onnx,
852
                custom_pipeline=custom_pipeline,
853
                custom_revision=custom_revision,
854
                variant=variant,
Marc Sun's avatar
Marc Sun committed
855
                dduf_file=dduf_file,
856
                load_connected_pipeline=load_connected_pipeline,
857
                **kwargs,
858
859
860
861
            )
        else:
            cached_folder = pretrained_model_name_or_path

862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
        # The variant filenames can have the legacy sharding checkpoint format that we check and throw
        # a warning if detected.
        if variant is not None and _check_legacy_sharding_variant_format(folder=cached_folder, variant=variant):
            warn_msg = (
                f"Warning: The repository contains sharded checkpoints for variant '{variant}' maybe in a deprecated format. "
                "Please check your files carefully:\n\n"
                "- Correct format example: diffusion_pytorch_model.fp16-00003-of-00003.safetensors\n"
                "- Deprecated format example: diffusion_pytorch_model-00001-of-00002.fp16.safetensors\n\n"
                "If you find any files in the deprecated format:\n"
                "1. Remove all existing checkpoint files for this variant.\n"
                "2. Re-obtain the correct files by running `save_pretrained()`.\n\n"
                "This will ensure you're using the most up-to-date and compatible checkpoint format."
            )
            logger.warning(warn_msg)

Marc Sun's avatar
Marc Sun committed
877
878
879
880
881
882
883
884
885
886
887
        dduf_entries = None
        if dduf_file:
            dduf_file_path = os.path.join(cached_folder, dduf_file)
            dduf_entries = read_dduf_file(dduf_file_path)
            # The reader contains already all the files needed, no need to check it again
            cached_folder = ""

        config_dict = cls.load_config(cached_folder, dduf_entries=dduf_entries)

        if dduf_file:
            _maybe_raise_error_for_incorrect_transformers(config_dict)
888

Patrick von Platen's avatar
Patrick von Platen committed
889
890
891
        # pop out "_ignore_files" as it is only needed for download
        config_dict.pop("_ignore_files", None)

892
        # 2. Define which model components should load variants
893
894
895
896
        # We retrieve the information by matching whether variant model checkpoints exist in the subfolders.
        # Example: `diffusion_pytorch_model.safetensors` -> `diffusion_pytorch_model.fp16.safetensors`
        # with variant being `"fp16"`.
        model_variants = _identify_model_variants(folder=cached_folder, variant=variant, config=config_dict)
897
898
899
        if len(model_variants) == 0 and variant is not None:
            error_message = f"You are trying to load the model files of the `variant={variant}`, but no such modeling files are available."
            raise ValueError(error_message)
900

901
        # 3. Load the pipeline class, if using custom module then load it from the hub
902
        # if we load from explicit class, let's use it
903
904
905
        custom_pipeline, custom_class_name = _resolve_custom_pipeline_and_cls(
            folder=cached_folder, config=config_dict, custom_pipeline=custom_pipeline
        )
906
        pipeline_class = _get_pipeline_class(
907
            cls,
908
            config=config_dict,
909
910
            load_connected_pipeline=load_connected_pipeline,
            custom_pipeline=custom_pipeline,
911
            class_name=custom_class_name,
912
913
            cache_dir=cache_dir,
            revision=custom_revision,
914
        )
915

916
917
918
        if device_map is not None and pipeline_class._load_connected_pipes:
            raise NotImplementedError("`device_map` is not yet supported for connected pipelines.")

919
        # DEPRECATED: To be removed in 1.0.0
920
921
922
923
924
925
926
        # we are deprecating the `StableDiffusionInpaintPipelineLegacy` pipeline which gets loaded
        # when a user requests for a `StableDiffusionInpaintPipeline` with `diffusers` version being <= 0.5.1.
        _maybe_raise_warning_for_inpainting(
            pipeline_class=pipeline_class,
            pretrained_model_name_or_path=pretrained_model_name_or_path,
            config=config_dict,
        )
927

928
929
930
        # 4. Define expected modules given pipeline signature
        # and define non-None initialized modules (=`init_kwargs`)

931
932
933
934
        # some modules can be passed directly to the init
        # in this case they are already instantiated in `kwargs`
        # extract them here
        expected_modules, optional_kwargs = cls._get_signature_keys(pipeline_class)
935
        expected_types = pipeline_class._get_signature_types()
936
937
938
939
        passed_class_obj = {k: kwargs.pop(k) for k in expected_modules if k in kwargs}
        passed_pipe_kwargs = {k: kwargs.pop(k) for k in optional_kwargs if k in kwargs}
        init_dict, unused_kwargs, _ = pipeline_class.extract_init_dict(config_dict, **kwargs)

940
941
942
943
944
945
        # define init kwargs and make sure that optional component modules are filtered out
        init_kwargs = {
            k: init_dict.pop(k)
            for k in optional_kwargs
            if k in init_dict and k not in pipeline_class._optional_components
        }
946
947
948
949
950
951
952
953
954
955
956
957
        init_kwargs = {**init_kwargs, **passed_pipe_kwargs}

        # remove `null` components
        def load_module(name, value):
            if value[0] is None:
                return False
            if name in passed_class_obj and passed_class_obj[name] is None:
                return False
            return True

        init_dict = {k: v for k, v in init_dict.items() if load_module(k, v)}

958
959
960
961
962
963
964
965
        # Special case: safety_checker must be loaded separately when using `from_flax`
        if from_flax and "safety_checker" in init_dict and "safety_checker" not in passed_class_obj:
            raise NotImplementedError(
                "The safety checker cannot be automatically loaded when loading weights `from_flax`."
                " Please, pass `safety_checker=None` to `from_pretrained`, and load the safety checker"
                " separately if you need it."
            )

966
        # 5. Throw nice warnings / errors for fast accelerate loading
967
968
969
970
971
972
973
974
        if len(unused_kwargs) > 0:
            logger.warning(
                f"Keyword arguments {unused_kwargs} are not expected by {pipeline_class.__name__} and will be ignored."
            )

        # import it here to avoid circular import
        from diffusers import pipelines

975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
        # 6. device map delegation
        final_device_map = None
        if device_map is not None:
            final_device_map = _get_final_device_map(
                device_map=device_map,
                pipeline_class=pipeline_class,
                passed_class_obj=passed_class_obj,
                init_dict=init_dict,
                library=library,
                max_memory=max_memory,
                torch_dtype=torch_dtype,
                cached_folder=cached_folder,
                force_download=force_download,
                proxies=proxies,
                local_files_only=local_files_only,
                token=token,
                revision=revision,
            )

        # 7. Load each module in the pipeline
        current_device_map = None
996
        _maybe_warn_for_wrong_component_in_quant_config(init_dict, quantization_config)
997
        for name, (library_name, class_name) in logging.tqdm(init_dict.items(), desc="Loading pipeline components..."):
998
            # 7.1 device_map shenanigans
999
1000
1001
1002
1003
1004
1005
1006
1007
            if final_device_map is not None:
                if isinstance(final_device_map, dict) and len(final_device_map) > 0:
                    component_device = final_device_map.get(name, None)
                    if component_device is not None:
                        current_device_map = {"": component_device}
                    else:
                        current_device_map = None
                elif isinstance(final_device_map, str):
                    current_device_map = final_device_map
1008

1009
            # 7.2 - now that JAX/Flax is an official framework of the library, we might load from Flax names
1010
            class_name = class_name[4:] if class_name.startswith("Flax") else class_name
1011

1012
            # 7.3 Define all importable classes
1013
            is_pipeline_module = hasattr(pipelines, library_name)
1014
            importable_classes = ALL_IMPORTABLE_CLASSES
1015
1016
            loaded_sub_model = None

1017
            # 7.4 Use passed sub model or load class_name from library_name
1018
            if name in passed_class_obj:
1019
1020
1021
1022
1023
                # if the model is in a pipeline module, then we load it from the pipeline
                # check that passed_class_obj has correct parent class
                maybe_raise_or_warn(
                    library_name, library, class_name, importable_classes, passed_class_obj, name, is_pipeline_module
                )
1024
1025
1026

                loaded_sub_model = passed_class_obj[name]
            else:
1027
                # load sub model
1028
1029
1030
1031
1032
                sub_model_dtype = (
                    torch_dtype.get(name, torch_dtype.get("default", torch.float32))
                    if isinstance(torch_dtype, dict)
                    else torch_dtype
                )
1033
1034
1035
1036
1037
1038
1039
                loaded_sub_model = load_sub_model(
                    library_name=library_name,
                    class_name=class_name,
                    importable_classes=importable_classes,
                    pipelines=pipelines,
                    is_pipeline_module=is_pipeline_module,
                    pipeline_class=pipeline_class,
1040
                    torch_dtype=sub_model_dtype,
1041
1042
                    provider=provider,
                    sess_options=sess_options,
1043
                    device_map=current_device_map,
1044
1045
1046
                    max_memory=max_memory,
                    offload_folder=offload_folder,
                    offload_state_dict=offload_state_dict,
1047
1048
1049
1050
1051
1052
                    model_variants=model_variants,
                    name=name,
                    from_flax=from_flax,
                    variant=variant,
                    low_cpu_mem_usage=low_cpu_mem_usage,
                    cached_folder=cached_folder,
1053
                    use_safetensors=use_safetensors,
Marc Sun's avatar
Marc Sun committed
1054
                    dduf_entries=dduf_entries,
1055
                    provider_options=provider_options,
1056
                    quantization_config=quantization_config,
1057
                )
1058
1059
1060
                logger.info(
                    f"Loaded {name} as {class_name} from `{name}` subfolder of {pretrained_model_name_or_path}."
                )
1061
1062
1063

            init_kwargs[name] = loaded_sub_model  # UNet(...), # DiffusionSchedule(...)

1064
        # 8. Handle connected pipelines.
1065
        if pipeline_class._load_connected_pipes and os.path.isfile(os.path.join(cached_folder, "README.md")):
1066
1067
1068
1069
1070
1071
1072
            init_kwargs = _update_init_kwargs_with_connected_pipeline(
                init_kwargs=init_kwargs,
                passed_pipe_kwargs=passed_pipe_kwargs,
                passed_class_objs=passed_class_obj,
                folder=cached_folder,
                **kwargs_copied,
            )
1073

1074
        # 9. Potentially add passed objects if expected
1075
1076
1077
1078
1079
1080
1081
        missing_modules = set(expected_modules) - set(init_kwargs.keys())
        passed_modules = list(passed_class_obj.keys())
        optional_modules = pipeline_class._optional_components
        if len(missing_modules) > 0 and missing_modules <= set(passed_modules + optional_modules):
            for module in missing_modules:
                init_kwargs[module] = passed_class_obj.get(module, None)
        elif len(missing_modules) > 0:
1082
            passed_modules = set(list(init_kwargs.keys()) + list(passed_class_obj.keys())) - set(optional_kwargs)
1083
1084
1085
1086
            raise ValueError(
                f"Pipeline {pipeline_class} expected {expected_modules}, but only {passed_modules} were passed."
            )

1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
        # 10. Type checking init arguments
        for kw, arg in init_kwargs.items():
            # Too complex to validate with type annotation alone
            if "scheduler" in kw:
                continue
            # Many tokenizer annotations don't include its "Fast" variant, so skip this
            # e.g T5Tokenizer but not T5TokenizerFast
            elif "tokenizer" in kw:
                continue
            elif (
                arg is not None  # Skip if None
                and not expected_types[kw] == (inspect.Signature.empty,)  # Skip if no type annotations
                and not _is_valid_type(arg, expected_types[kw])  # Check type
            ):
                logger.warning(f"Expected types for {kw}: {expected_types[kw]}, got {_get_detailed_type(arg)}.")

        # 11. Instantiate the pipeline
1104
        model = pipeline_class(**init_kwargs)
1105

1106
        # 12. Save where the model was instantiated from
1107
        model.register_to_config(_name_or_path=pretrained_model_name_or_path)
1108
1109
        if device_map is not None:
            setattr(model, "hf_device_map", final_device_map)
1110
1111
        if quantization_config is not None:
            setattr(model, "quantization_config", quantization_config)
1112
1113
        return model

1114
1115
1116
1117
    @property
    def name_or_path(self) -> str:
        return getattr(self.config, "_name_or_path", None)

1118
1119
1120
1121
1122
1123
1124
    @property
    def _execution_device(self):
        r"""
        Returns the device on which the pipeline's models will be executed. After calling
        [`~DiffusionPipeline.enable_sequential_cpu_offload`] the execution device can only be inferred from
        Accelerate's module hooks.
        """
Aryan's avatar
Aryan committed
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
        from ..hooks.group_offloading import _get_group_onload_device

        # When apply group offloading at the leaf_level, we're in the same situation as accelerate's sequential
        # offloading. We need to return the onload device of the group offloading hooks so that the intermediates
        # required for computation (latents, prompt embeddings, etc.) can be created on the correct device.
        for name, model in self.components.items():
            if not isinstance(model, torch.nn.Module):
                continue
            try:
                return _get_group_onload_device(model)
            except ValueError:
                pass

1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
        for name, model in self.components.items():
            if not isinstance(model, torch.nn.Module) or name in self._exclude_from_cpu_offload:
                continue

            if not hasattr(model, "_hf_hook"):
                return self.device
            for module in model.modules():
                if (
                    hasattr(module, "_hf_hook")
                    and hasattr(module._hf_hook, "execution_device")
                    and module._hf_hook.execution_device is not None
                ):
                    return torch.device(module._hf_hook.execution_device)
        return self.device

1153
1154
1155
1156
1157
1158
    def remove_all_hooks(self):
        r"""
        Removes all hooks that were added when using `enable_sequential_cpu_offload` or `enable_model_cpu_offload`.
        """
        for _, model in self.components.items():
            if isinstance(model, torch.nn.Module) and hasattr(model, "_hf_hook"):
1159
                accelerate.hooks.remove_hook_from_module(model, recurse=True)
1160
1161
        self._all_hooks = []

1162
    def enable_model_cpu_offload(self, gpu_id: Optional[int] = None, device: Union[torch.device, str] = None):
1163
1164
        r"""
        Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared
1165
1166
1167
1168
        to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the accelerator when its
        `forward` method is called, and the model remains in accelerator until the next model runs. Memory savings are
        lower than with `enable_sequential_cpu_offload`, but performance is much better due to the iterative execution
        of the `unet`.
1169
1170
1171
1172

        Arguments:
            gpu_id (`int`, *optional*):
                The ID of the accelerator that shall be used in inference. If not specified, it will default to 0.
1173
            device (`torch.Device` or `str`, *optional*, defaults to None):
1174
                The PyTorch device type of the accelerator that shall be used in inference. If not specified, it will
1175
                automatically detect the available accelerator and use.
1176
        """
Aryan's avatar
Aryan committed
1177
1178
        self._maybe_raise_error_if_group_offload_active(raise_error=True)

1179
1180
1181
1182
1183
1184
        is_pipeline_device_mapped = self.hf_device_map is not None and len(self.hf_device_map) > 1
        if is_pipeline_device_mapped:
            raise ValueError(
                "It seems like you have activated a device mapping strategy on the pipeline so calling `enable_model_cpu_offload() isn't allowed. You can call `reset_device_map()` first and then call `enable_model_cpu_offload()`."
            )

1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
        if self.model_cpu_offload_seq is None:
            raise ValueError(
                "Model CPU offload cannot be enabled because no `model_cpu_offload_seq` class attribute is set."
            )

        if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"):
            from accelerate import cpu_offload_with_hook
        else:
            raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.")

1195
1196
        self.remove_all_hooks()

1197
1198
1199
1200
1201
        if device is None:
            device = get_device()
            if device == "cpu":
                raise RuntimeError("`enable_model_cpu_offload` requires accelerator, but not found")

1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
        torch_device = torch.device(device)
        device_index = torch_device.index

        if gpu_id is not None and device_index is not None:
            raise ValueError(
                f"You have passed both `gpu_id`={gpu_id} and an index as part of the passed device `device`={device}"
                f"Cannot pass both. Please make sure to either not define `gpu_id` or not pass the index as part of the device: `device`={torch_device.type}"
            )

        # _offload_gpu_id should be set to passed gpu_id (or id in passed `device`) or default to previously set id or default to 0
1212
        self._offload_gpu_id = gpu_id or torch_device.index or getattr(self, "_offload_gpu_id", 0)
1213
1214
1215

        device_type = torch_device.type
        device = torch.device(f"{device_type}:{self._offload_gpu_id}")
1216
        self._offload_device = device
1217

1218
        self.to("cpu", silence_dtype_warnings=True)
1219
        empty_device_cache(device.type)
1220
1221
1222

        all_model_components = {k: v for k, v in self.components.items() if isinstance(v, torch.nn.Module)}

1223
        self._all_hooks = []
1224
1225
        hook = None
        for model_str in self.model_cpu_offload_seq.split("->"):
1226
            model = all_model_components.pop(model_str, None)
1227

1228
1229
1230
            if not isinstance(model, torch.nn.Module):
                continue

1231
1232
1233
1234
1235
1236
1237
1238
            # This is because the model would already be placed on a CUDA device.
            _, _, is_loaded_in_8bit_bnb = _check_bnb_status(model)
            if is_loaded_in_8bit_bnb:
                logger.info(
                    f"Skipping the hook placement for the {model.__class__.__name__} as it is loaded in `bitsandbytes` 8bit."
                )
                continue

1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
            _, hook = cpu_offload_with_hook(model, device, prev_module_hook=hook)
            self._all_hooks.append(hook)

        # CPU offload models that are not in the seq chain unless they are explicitly excluded
        # these models will stay on CPU until maybe_free_model_hooks is called
        # some models cannot be in the seq chain because they are iteratively called, such as controlnet
        for name, model in all_model_components.items():
            if not isinstance(model, torch.nn.Module):
                continue

            if name in self._exclude_from_cpu_offload:
                model.to(device)
            else:
                _, hook = cpu_offload_with_hook(model, device)
                self._all_hooks.append(hook)

    def maybe_free_model_hooks(self):
        r"""
1257
1258
1259
1260
1261
1262
1263
1264
1265
        Method that performs the following:
        - Offloads all components.
        - Removes all model hooks that were added when using `enable_model_cpu_offload`, and then applies them again.
          In case the model has not been offloaded, this function is a no-op.
        - Resets stateful diffusers hooks of denoiser components if they were added with
          [`~hooks.HookRegistry.register_hook`].

        Make sure to add this function to the end of the `__call__` function of your pipeline so that it functions
        correctly when applying `enable_model_cpu_offload`.
1266
        """
1267
1268
1269
1270
        for component in self.components.values():
            if hasattr(component, "_reset_stateful_cache"):
                component._reset_stateful_cache()

1271
1272
1273
1274
1275
        if not hasattr(self, "_all_hooks") or len(self._all_hooks) == 0:
            # `enable_model_cpu_offload` has not be called, so silently do nothing
            return

        # make sure the model is in the same state as before calling it
1276
        self.enable_model_cpu_offload(device=getattr(self, "_offload_device", "cuda"))
1277

1278
    def enable_sequential_cpu_offload(self, gpu_id: Optional[int] = None, device: Union[torch.device, str] = None):
1279
        r"""
1280
1281
        Offloads all models to CPU using 🤗 Accelerate, significantly reducing memory usage. When called, the state
        dicts of all `torch.nn.Module` components (except those in `self._exclude_from_cpu_offload`) are saved to CPU
1282
1283
        and then moved to `torch.device('meta')` and loaded to accelerator only when their specific submodule has its
        `forward` method called. Offloading happens on a submodule basis. Memory savings are higher than with
1284
        `enable_model_cpu_offload`, but performance is lower.
1285
1286
1287
1288

        Arguments:
            gpu_id (`int`, *optional*):
                The ID of the accelerator that shall be used in inference. If not specified, it will default to 0.
1289
            device (`torch.Device` or `str`, *optional*, defaults to None):
1290
                The PyTorch device type of the accelerator that shall be used in inference. If not specified, it will
1291
                automatically detect the available accelerator and use.
1292
        """
Aryan's avatar
Aryan committed
1293
1294
        self._maybe_raise_error_if_group_offload_active(raise_error=True)

1295
1296
1297
1298
        if is_accelerate_available() and is_accelerate_version(">=", "0.14.0"):
            from accelerate import cpu_offload
        else:
            raise ImportError("`enable_sequential_cpu_offload` requires `accelerate v0.14.0` or higher")
1299
        self.remove_all_hooks()
1300

1301
1302
1303
1304
1305
1306
        is_pipeline_device_mapped = self.hf_device_map is not None and len(self.hf_device_map) > 1
        if is_pipeline_device_mapped:
            raise ValueError(
                "It seems like you have activated a device mapping strategy on the pipeline so calling `enable_sequential_cpu_offload() isn't allowed. You can call `reset_device_map()` first and then call `enable_sequential_cpu_offload()`."
            )

1307
1308
1309
1310
1311
        if device is None:
            device = get_device()
            if device == "cpu":
                raise RuntimeError("`enable_sequential_cpu_offload` requires accelerator, but not found")

1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
        torch_device = torch.device(device)
        device_index = torch_device.index

        if gpu_id is not None and device_index is not None:
            raise ValueError(
                f"You have passed both `gpu_id`={gpu_id} and an index as part of the passed device `device`={device}"
                f"Cannot pass both. Please make sure to either not define `gpu_id` or not pass the index as part of the device: `device`={torch_device.type}"
            )

        # _offload_gpu_id should be set to passed gpu_id (or id in passed `device`) or default to previously set id or default to 0
1322
        self._offload_gpu_id = gpu_id or torch_device.index or getattr(self, "_offload_gpu_id", 0)
1323
1324
1325

        device_type = torch_device.type
        device = torch.device(f"{device_type}:{self._offload_gpu_id}")
1326
        self._offload_device = device
1327
1328

        if self.device.type != "cpu":
1329
            orig_device_type = self.device.type
1330
            self.to("cpu", silence_dtype_warnings=True)
1331
            empty_device_cache(orig_device_type)
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344

        for name, model in self.components.items():
            if not isinstance(model, torch.nn.Module):
                continue

            if name in self._exclude_from_cpu_offload:
                model.to(device)
            else:
                # make sure to offload buffers if not all high level weights
                # are of type nn.Module
                offload_buffers = len(model._parameters) > 0
                cpu_offload(model, device, offload_buffers=offload_buffers)

1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
    def enable_group_offload(
        self,
        onload_device: torch.device,
        offload_device: torch.device = torch.device("cpu"),
        offload_type: str = "block_level",
        num_blocks_per_group: Optional[int] = None,
        non_blocking: bool = False,
        use_stream: bool = False,
        record_stream: bool = False,
        low_cpu_mem_usage=False,
        offload_to_disk_path: Optional[str] = None,
        exclude_modules: Optional[Union[str, List[str]]] = None,
    ) -> None:
        r"""
        Applies group offloading to the internal layers of a torch.nn.Module. To understand what group offloading is,
        and where it is beneficial, we need to first provide some context on how other supported offloading methods
        work.

        Typically, offloading is done at two levels:
        - Module-level: In Diffusers, this can be enabled using the `ModelMixin::enable_model_cpu_offload()` method. It
        works by offloading each component of a pipeline to the CPU for storage, and onloading to the accelerator
        device when needed for computation. This method is more memory-efficient than keeping all components on the
        accelerator, but the memory requirements are still quite high. For this method to work, one needs memory
        equivalent to size of the model in runtime dtype + size of largest intermediate activation tensors to be able
        to complete the forward pass.
        - Leaf-level: In Diffusers, this can be enabled using the `ModelMixin::enable_sequential_cpu_offload()` method.
          It
        works by offloading the lowest leaf-level parameters of the computation graph to the CPU for storage, and
        onloading only the leafs to the accelerator device for computation. This uses the lowest amount of accelerator
        memory, but can be slower due to the excessive number of device synchronizations.

        Group offloading is a middle ground between the two methods. It works by offloading groups of internal layers,
        (either `torch.nn.ModuleList` or `torch.nn.Sequential`). This method uses lower memory than module-level
        offloading. It is also faster than leaf-level/sequential offloading, as the number of device synchronizations
        is reduced.

        Another supported feature (for CUDA devices with support for asynchronous data transfer streams) is the ability
        to overlap data transfer and computation to reduce the overall execution time compared to sequential
        offloading. This is enabled using layer prefetching with streams, i.e., the layer that is to be executed next
        starts onloading to the accelerator device while the current layer is being executed - this increases the
        memory requirements slightly. Note that this implementation also supports leaf-level offloading but can be made
        much faster when using streams.

        Args:
            onload_device (`torch.device`):
                The device to which the group of modules are onloaded.
            offload_device (`torch.device`, defaults to `torch.device("cpu")`):
                The device to which the group of modules are offloaded. This should typically be the CPU. Default is
                CPU.
            offload_type (`str` or `GroupOffloadingType`, defaults to "block_level"):
                The type of offloading to be applied. Can be one of "block_level" or "leaf_level". Default is
                "block_level".
            offload_to_disk_path (`str`, *optional*, defaults to `None`):
                The path to the directory where parameters will be offloaded. Setting this option can be useful in
                limited RAM environment settings where a reasonable speed-memory trade-off is desired.
            num_blocks_per_group (`int`, *optional*):
                The number of blocks per group when using offload_type="block_level". This is required when using
                offload_type="block_level".
            non_blocking (`bool`, defaults to `False`):
                If True, offloading and onloading is done with non-blocking data transfer.
            use_stream (`bool`, defaults to `False`):
                If True, offloading and onloading is done asynchronously using a CUDA stream. This can be useful for
                overlapping computation and data transfer.
            record_stream (`bool`, defaults to `False`): When enabled with `use_stream`, it marks the current tensor
                as having been used by this stream. It is faster at the expense of slightly more memory usage. Refer to
                the [PyTorch official docs](https://pytorch.org/docs/stable/generated/torch.Tensor.record_stream.html)
                more details.
            low_cpu_mem_usage (`bool`, defaults to `False`):
                If True, the CPU memory usage is minimized by pinning tensors on-the-fly instead of pre-pinning them.
                This option only matters when using streamed CPU offloading (i.e. `use_stream=True`). This can be
                useful when the CPU memory is a bottleneck but may counteract the benefits of using streams.
            exclude_modules (`Union[str, List[str]]`, defaults to `None`): List of modules to exclude from offloading.

        Example:
            ```python
            >>> from diffusers import DiffusionPipeline
            >>> import torch

            >>> pipe = DiffusionPipeline.from_pretrained("Qwen/Qwen-Image", torch_dtype=torch.bfloat16)

            >>> pipe.enable_group_offload(
            ...     onload_device=torch.device("cuda"),
            ...     offload_device=torch.device("cpu"),
            ...     offload_type="leaf_level",
            ...     use_stream=True,
            ... )
            >>> image = pipe("a beautiful sunset").images[0]
            ```
        """
        from ..hooks import apply_group_offloading

        if isinstance(exclude_modules, str):
            exclude_modules = [exclude_modules]
        elif exclude_modules is None:
            exclude_modules = []

        unknown = set(exclude_modules) - self.components.keys()
        if unknown:
            logger.info(
                f"The following modules are not present in pipeline: {', '.join(unknown)}. Ignore if this is expected."
            )

        group_offload_kwargs = {
            "onload_device": onload_device,
            "offload_device": offload_device,
            "offload_type": offload_type,
            "num_blocks_per_group": num_blocks_per_group,
            "non_blocking": non_blocking,
            "use_stream": use_stream,
            "record_stream": record_stream,
            "low_cpu_mem_usage": low_cpu_mem_usage,
            "offload_to_disk_path": offload_to_disk_path,
        }
        for name, component in self.components.items():
            if name not in exclude_modules and isinstance(component, torch.nn.Module):
                if hasattr(component, "enable_group_offload"):
                    component.enable_group_offload(**group_offload_kwargs)
                else:
                    apply_group_offloading(module=component, **group_offload_kwargs)

        if exclude_modules:
            for module_name in exclude_modules:
                module = getattr(self, module_name, None)
                if module is not None and isinstance(module, torch.nn.Module):
                    module.to(onload_device)
                    logger.debug(f"Placed `{module_name}` on {onload_device} device as it was in `exclude_modules`.")

1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
    def reset_device_map(self):
        r"""
        Resets the device maps (if any) to None.
        """
        if self.hf_device_map is None:
            return
        else:
            self.remove_all_hooks()
            for name, component in self.components.items():
                if isinstance(component, torch.nn.Module):
                    component.to("cpu")
            self.hf_device_map = None

1485
    @classmethod
1486
    @validate_hf_hub_args
1487
1488
    def download(cls, pretrained_model_name, **kwargs) -> Union[str, os.PathLike]:
        r"""
Steven Liu's avatar
Steven Liu committed
1489
        Download and cache a PyTorch diffusion pipeline from pretrained pipeline weights.
1490
1491

        Parameters:
Steven Liu's avatar
Steven Liu committed
1492
            pretrained_model_name (`str` or `os.PathLike`, *optional*):
Steven Liu's avatar
Steven Liu committed
1493
                A string, the *repository id* (for example `CompVis/ldm-text2im-large-256`) of a pretrained pipeline
Steven Liu's avatar
Steven Liu committed
1494
                hosted on the Hub.
1495
1496
1497
            custom_pipeline (`str`, *optional*):
                Can be either:

Steven Liu's avatar
Steven Liu committed
1498
                    - A string, the *repository id* (for example `CompVis/ldm-text2im-large-256`) of a pretrained
Steven Liu's avatar
Steven Liu committed
1499
1500
                      pipeline hosted on the Hub. The repository must contain a file called `pipeline.py` that defines
                      the custom pipeline.
1501
1502

                    - A string, the *file name* of a community pipeline hosted on GitHub under
Steven Liu's avatar
Steven Liu committed
1503
1504
1505
1506
                      [Community](https://github.com/huggingface/diffusers/tree/main/examples/community). Valid file
                      names must match the file name and not the pipeline script (`clip_guided_stable_diffusion`
                      instead of `clip_guided_stable_diffusion.py`). Community pipelines are always loaded from the
                      current `main` branch of GitHub.
1507

Steven Liu's avatar
Steven Liu committed
1508
1509
                    - A path to a *directory* (`./my_pipeline_directory/`) containing a custom pipeline. The directory
                      must contain a file called `pipeline.py` that defines the custom pipeline.
1510

Steven Liu's avatar
Steven Liu committed
1511
                <Tip warning={true}>
1512

Steven Liu's avatar
Steven Liu committed
1513
                🧪 This is an experimental feature and may change in the future.
1514

Steven Liu's avatar
Steven Liu committed
1515
                </Tip>
1516

Steven Liu's avatar
Steven Liu committed
1517
1518
                For more information on how to load and create custom pipelines, take a look at [How to contribute a
                community pipeline](https://huggingface.co/docs/diffusers/main/en/using-diffusers/contribute_pipeline).
1519
1520
1521
1522

            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
1523

1524
            proxies (`Dict[str, str]`, *optional*):
Steven Liu's avatar
Steven Liu committed
1525
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
1526
1527
1528
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            output_loading_info(`bool`, *optional*, defaults to `False`):
                Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
Steven Liu's avatar
Steven Liu committed
1529
1530
1531
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
1532
            token (`str` or *bool*, *optional*):
Steven Liu's avatar
Steven Liu committed
1533
1534
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
1535
            revision (`str`, *optional*, defaults to `"main"`):
Steven Liu's avatar
Steven Liu committed
1536
1537
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
Steven Liu's avatar
Steven Liu committed
1538
            custom_revision (`str`, *optional*, defaults to `"main"`):
1539
                The specific model version to use. It can be a branch name, a tag name, or a commit id similar to
Steven Liu's avatar
Steven Liu committed
1540
1541
                `revision` when loading a custom pipeline from the Hub. It can be a 🤗 Diffusers version when loading a
                custom pipeline from GitHub, otherwise it defaults to `"main"` when loading from the Hub.
1542
            mirror (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
1543
1544
1545
                Mirror source to resolve accessibility issues if you're downloading a model in China. We do not
                guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
                information.
1546
            variant (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
1547
1548
                Load weights from a specified variant filename such as `"fp16"` or `"ema"`. This is ignored when
                loading `from_flax`.
Marc Sun's avatar
Marc Sun committed
1549
1550
            dduf_file(`str`, *optional*):
                Load weights from the specified DDUF file.
1551
1552
1553
1554
1555
1556
1557
1558
1559
            use_safetensors (`bool`, *optional*, defaults to `None`):
                If set to `None`, the safetensors weights are downloaded if they're available **and** if the
                safetensors library is installed. If set to `True`, the model is forcibly loaded from safetensors
                weights. If set to `False`, safetensors weights are not loaded.
            use_onnx (`bool`, *optional*, defaults to `False`):
                If set to `True`, ONNX weights will always be downloaded if present. If set to `False`, ONNX weights
                will never be downloaded. By default `use_onnx` defaults to the `_is_onnx` class attribute which is
                `False` for non-ONNX pipelines and `True` for ONNX pipelines. ONNX weights include both files ending
                with `.onnx` and `.pb`.
1560
1561
1562
1563
            trust_remote_code (`bool`, *optional*, defaults to `False`):
                Whether or not to allow for custom pipelines and components defined on the Hub in their own files. This
                option should only be set to `True` for repositories you trust and in which you have read the code, as
                it will execute code present on the Hub on your local machine.
Steven Liu's avatar
Steven Liu committed
1564
1565
1566
1567

        Returns:
            `os.PathLike`:
                A path to the downloaded pipeline.
1568
1569
1570

        <Tip>

1571
1572
        To use private or [gated models](https://huggingface.co/docs/hub/models-gated#gated-models), log-in with `hf
        auth login
1573
1574
1575
1576

        </Tip>

        """
1577
        cache_dir = kwargs.pop("cache_dir", None)
1578
1579
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
1580
1581
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
1582
1583
1584
        revision = kwargs.pop("revision", None)
        from_flax = kwargs.pop("from_flax", False)
        custom_pipeline = kwargs.pop("custom_pipeline", None)
1585
        custom_revision = kwargs.pop("custom_revision", None)
1586
        variant = kwargs.pop("variant", None)
1587
        use_safetensors = kwargs.pop("use_safetensors", None)
1588
        use_onnx = kwargs.pop("use_onnx", None)
1589
        load_connected_pipeline = kwargs.pop("load_connected_pipeline", False)
1590
        trust_remote_code = kwargs.pop("trust_remote_code", False)
Marc Sun's avatar
Marc Sun committed
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
        dduf_file: Optional[Dict[str, DDUFEntry]] = kwargs.pop("dduf_file", None)

        if dduf_file:
            if custom_pipeline:
                raise NotImplementedError("Custom pipelines are not supported with DDUF at the moment.")
            if load_connected_pipeline:
                raise NotImplementedError("Connected pipelines are not supported with DDUF at the moment.")
            return _download_dduf_file(
                pretrained_model_name=pretrained_model_name,
                dduf_file=dduf_file,
                pipeline_class_name=cls.__name__,
                cache_dir=cache_dir,
                proxies=proxies,
                local_files_only=local_files_only,
                token=token,
                revision=revision,
            )
1608

1609
1610
        allow_pickle = True if (use_safetensors is None or use_safetensors is False) else False
        use_safetensors = use_safetensors if use_safetensors is not None else True
1611
1612
1613
1614

        allow_patterns = None
        ignore_patterns = None

1615
        model_info_call_error: Optional[Exception] = None
1616
1617
        if not local_files_only:
            try:
1618
                info = model_info(pretrained_model_name, token=token, revision=revision)
1619
            except (HfHubHTTPError, OfflineModeIsEnabled, requests.ConnectionError, httpx.NetworkError) as e:
1620
                logger.warning(f"Couldn't connect to the Hub: {e}.\nWill try to load from local cache.")
1621
                local_files_only = True
1622
                model_info_call_error = e  # save error to reraise it if model is not cached locally
1623

1624
        if not local_files_only:
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
            config_file = hf_hub_download(
                pretrained_model_name,
                cls.config_name,
                cache_dir=cache_dir,
                revision=revision,
                proxies=proxies,
                force_download=force_download,
                token=token,
            )
            config_dict = cls._dict_from_json_file(config_file)
            ignore_filenames = config_dict.pop("_ignore_files", [])

1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
            filenames = {sibling.rfilename for sibling in info.siblings}
            if variant is not None and _check_legacy_sharding_variant_format(filenames=filenames, variant=variant):
                warn_msg = (
                    f"Warning: The repository contains sharded checkpoints for variant '{variant}' maybe in a deprecated format. "
                    "Please check your files carefully:\n\n"
                    "- Correct format example: diffusion_pytorch_model.fp16-00003-of-00003.safetensors\n"
                    "- Deprecated format example: diffusion_pytorch_model-00001-of-00002.fp16.safetensors\n\n"
                    "If you find any files in the deprecated format:\n"
                    "1. Remove all existing checkpoint files for this variant.\n"
                    "2. Re-obtain the correct files by running `save_pretrained()`.\n\n"
                    "This will ensure you're using the most up-to-date and compatible checkpoint format."
                )
                logger.warning(warn_msg)

1651
            filenames = set(filenames) - set(ignore_filenames)
1652
1653
            if revision in DEPRECATED_REVISION_ARGS and version.parse(
                version.parse(__version__).base_version
Patrick von Platen's avatar
Patrick von Platen committed
1654
            ) >= version.parse("0.22.0"):
1655
                warn_deprecated_model_variant(pretrained_model_name, token, variant, revision, filenames)
1656

1657
            custom_components, folder_names = _get_custom_components_and_folders(
1658
                pretrained_model_name, config_dict, filenames, variant
1659
            )
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
            custom_class_name = None
            if custom_pipeline is None and isinstance(config_dict["_class_name"], (list, tuple)):
                custom_pipeline = config_dict["_class_name"][0]
                custom_class_name = config_dict["_class_name"][1]

            load_pipe_from_hub = custom_pipeline is not None and f"{custom_pipeline}.py" in filenames
            load_components_from_hub = len(custom_components) > 0

            if load_pipe_from_hub and not trust_remote_code:
                raise ValueError(
                    f"The repository for {pretrained_model_name} contains custom code in {custom_pipeline}.py which must be executed to correctly "
                    f"load the model. You can inspect the repository content at https://hf.co/{pretrained_model_name}/blob/main/{custom_pipeline}.py.\n"
                    f"Please pass the argument `trust_remote_code=True` to allow custom code to be run."
                )

            if load_components_from_hub and not trust_remote_code:
                raise ValueError(
1677
1678
                    f"The repository for {pretrained_model_name} contains custom code in {'.py, '.join([os.path.join(k, v) for k, v in custom_components.items()])} which must be executed to correctly "
                    f"load the model. You can inspect the repository content at {', '.join([f'https://hf.co/{pretrained_model_name}/{k}/{v}.py' for k, v in custom_components.items()])}.\n"
1679
1680
1681
                    f"Please pass the argument `trust_remote_code=True` to allow custom code to be run."
                )

1682
1683
            # retrieve passed components that should not be downloaded
            pipeline_class = _get_pipeline_class(
1684
1685
1686
1687
                cls,
                config_dict,
                load_connected_pipeline=load_connected_pipeline,
                custom_pipeline=custom_pipeline,
1688
1689
1690
                repo_id=pretrained_model_name if load_pipe_from_hub else None,
                hub_revision=revision,
                class_name=custom_class_name,
1691
1692
                cache_dir=cache_dir,
                revision=custom_revision,
1693
1694
1695
1696
            )
            expected_components, _ = cls._get_signature_keys(pipeline_class)
            passed_components = [k for k in expected_components if k in kwargs]

1697
1698
1699
1700
            # retrieve the names of the folders containing model weights
            model_folder_names = {
                os.path.split(f)[0] for f in filter_model_files(filenames) if os.path.split(f)[0] in folder_names
            }
1701
1702
1703
1704
            # retrieve all patterns that should not be downloaded and error out when needed
            ignore_patterns = _get_ignore_patterns(
                passed_components,
                model_folder_names,
1705
                filenames,
1706
1707
1708
1709
1710
1711
1712
                use_safetensors,
                from_flax,
                allow_pickle,
                use_onnx,
                pipeline_class._is_onnx,
                variant,
            )
1713

1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
            model_filenames, variant_filenames = variant_compatible_siblings(
                filenames, variant=variant, ignore_patterns=ignore_patterns
            )

            # all filenames compatible with variant will be added
            allow_patterns = list(model_filenames)

            # allow all patterns from non-model folders
            # this enables downloading schedulers, tokenizers, ...
            allow_patterns += [f"{k}/*" for k in folder_names if k not in model_folder_names]
            # add custom component files
            allow_patterns += [f"{k}/{f}.py" for k, f in custom_components.items()]
            # add custom pipeline file
            allow_patterns += [f"{custom_pipeline}.py"] if f"{custom_pipeline}.py" in filenames else []
            # also allow downloading config.json files with the model
            allow_patterns += [os.path.join(k, "config.json") for k in model_folder_names]
            allow_patterns += [
                SCHEDULER_CONFIG_NAME,
                CONFIG_NAME,
                cls.config_name,
                CUSTOM_PIPELINE_FILE_NAME,
            ]

1737
1738
1739
1740
            # Don't download any objects that are passed
            allow_patterns = [
                p for p in allow_patterns if not (len(p.split("/")) == 2 and p.split("/")[0] in passed_components)
            ]
1741
1742
1743
1744

            if pipeline_class._load_connected_pipes:
                allow_patterns.append("README.md")

1745
1746
            # Don't download index files of forbidden patterns either
            ignore_patterns = ignore_patterns + [f"{i}.index.*json" for i in ignore_patterns]
1747
1748
1749
1750
1751
            re_ignore_pattern = [re.compile(fnmatch.translate(p)) for p in ignore_patterns]
            re_allow_pattern = [re.compile(fnmatch.translate(p)) for p in allow_patterns]

            expected_files = [f for f in filenames if not any(p.match(f) for p in re_ignore_pattern)]
            expected_files = [f for f in expected_files if any(p.match(f) for p in re_allow_pattern)]
1752

1753
1754
            snapshot_folder = Path(config_file).parent
            pipeline_is_cached = all((snapshot_folder / f).is_file() for f in expected_files)
1755

1756
            if pipeline_is_cached and not force_download:
1757
1758
1759
                # if the pipeline is cached, we can directly return it
                # else call snapshot_download
                return snapshot_folder
1760

1761
1762
1763
        user_agent = {"pipeline_class": cls.__name__}
        if custom_pipeline is not None and not custom_pipeline.endswith(".py"):
            user_agent["custom_pipeline"] = custom_pipeline
1764
1765

        # download all allow_patterns - ignore_patterns
1766
        try:
1767
            cached_folder = snapshot_download(
1768
1769
1770
1771
                pretrained_model_name,
                cache_dir=cache_dir,
                proxies=proxies,
                local_files_only=local_files_only,
1772
                token=token,
1773
1774
1775
1776
1777
                revision=revision,
                allow_patterns=allow_patterns,
                ignore_patterns=ignore_patterns,
                user_agent=user_agent,
            )
1778

1779
            cls_name = cls.load_config(os.path.join(cached_folder, "model_index.json")).get("_class_name", None)
1780
            cls_name = cls_name[4:] if isinstance(cls_name, str) and cls_name.startswith("Flax") else cls_name
1781

1782
1783
            diffusers_module = importlib.import_module(__name__.split(".")[0])
            pipeline_class = getattr(diffusers_module, cls_name, None) if isinstance(cls_name, str) else None
1784
1785

            if pipeline_class is not None and pipeline_class._load_connected_pipes:
1786
1787
1788
                modelcard = ModelCard.load(os.path.join(cached_folder, "README.md"))
                connected_pipes = sum([getattr(modelcard.data, k, []) for k in CONNECTED_PIPES_KEYS], [])
                for connected_pipe_repo_id in connected_pipes:
1789
1790
1791
1792
1793
                    download_kwargs = {
                        "cache_dir": cache_dir,
                        "force_download": force_download,
                        "proxies": proxies,
                        "local_files_only": local_files_only,
1794
                        "token": token,
1795
1796
1797
1798
                        "variant": variant,
                        "use_safetensors": use_safetensors,
                    }
                    DiffusionPipeline.download(connected_pipe_repo_id, **download_kwargs)
1799
1800
1801

            return cached_folder

1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
        except FileNotFoundError:
            # Means we tried to load pipeline with `local_files_only=True` but the files have not been found in local cache.
            # This can happen in two cases:
            # 1. If the user passed `local_files_only=True`                    => we raise the error directly
            # 2. If we forced `local_files_only=True` when `model_info` failed => we raise the initial error
            if model_info_call_error is None:
                # 1. user passed `local_files_only=True`
                raise
            else:
                # 2. we forced `local_files_only=True` when `model_info` failed
                raise EnvironmentError(
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
1813
                    f"Cannot load model {pretrained_model_name}: model is not cached locally and an error occurred"
1814
1815
1816
                    " while trying to fetch metadata from the Hub. Please check out the root cause in the stacktrace"
                    " above."
                ) from model_info_call_error
1817

1818
1819
    @classmethod
    def _get_signature_keys(cls, obj):
1820
1821
1822
        parameters = inspect.signature(obj.__init__).parameters
        required_parameters = {k: v for k, v in parameters.items() if v.default == inspect._empty}
        optional_parameters = set({k for k, v in parameters.items() if v.default != inspect._empty})
1823
        expected_modules = set(required_parameters.keys()) - {"self"}
1824
1825
1826
1827
1828
1829
1830

        optional_names = list(optional_parameters)
        for name in optional_names:
            if name in cls._optional_components:
                expected_modules.add(name)
                optional_parameters.remove(name)

1831
        return sorted(expected_modules), sorted(optional_parameters)
1832

1833
1834
1835
1836
1837
1838
1839
1840
    @classmethod
    def _get_signature_types(cls):
        signature_types = {}
        for k, v in inspect.signature(cls.__init__).parameters.items():
            if inspect.isclass(v.annotation):
                signature_types[k] = (v.annotation,)
            elif get_origin(v.annotation) == Union:
                signature_types[k] = get_args(v.annotation)
Dhruv Nair's avatar
Dhruv Nair committed
1841
1842
            elif get_origin(v.annotation) in [List, Dict, list, dict]:
                signature_types[k] = (v.annotation,)
1843
1844
1845
1846
            else:
                logger.warning(f"cannot get type annotation for Parameter {k} of {cls}.")
        return signature_types

1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
    @property
    def parameters(self) -> Dict[str, Any]:
        r"""
        The `self.parameters` property can be useful to run different pipelines with the same weights and
        configurations without reallocating additional memory.

        Returns (`dict`):
            A dictionary containing all the optional parameters needed to initialize the pipeline.

        Examples:

        ```py
        >>> from diffusers import (
        ...     StableDiffusionPipeline,
        ...     StableDiffusionImg2ImgPipeline,
        ...     StableDiffusionInpaintPipeline,
        ... )

        >>> text2img = StableDiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5")
        >>> img2img = StableDiffusionImg2ImgPipeline(**text2img.components, **text2img.parameters)
        >>> inpaint = StableDiffusionInpaintPipeline(**text2img.components, **text2img.parameters)
        ```
        """
        expected_modules, optional_parameters = self._get_signature_keys(self)
        pipeline_parameters = {
            k: self.config[k] for k in self.config.keys() if not k.startswith("_") and k in optional_parameters
        }

        return pipeline_parameters

1877
1878
1879
1880
    @property
    def components(self) -> Dict[str, Any]:
        r"""
        The `self.components` property can be useful to run different pipelines with the same weights and
Steven Liu's avatar
Steven Liu committed
1881
1882
1883
1884
        configurations without reallocating additional memory.

        Returns (`dict`):
            A dictionary containing all the modules needed to initialize the pipeline.
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894

        Examples:

        ```py
        >>> from diffusers import (
        ...     StableDiffusionPipeline,
        ...     StableDiffusionImg2ImgPipeline,
        ...     StableDiffusionInpaintPipeline,
        ... )

1895
        >>> text2img = StableDiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5")
1896
1897
1898
1899
1900
1901
1902
1903
1904
        >>> img2img = StableDiffusionImg2ImgPipeline(**text2img.components)
        >>> inpaint = StableDiffusionInpaintPipeline(**text2img.components)
        ```
        """
        expected_modules, optional_parameters = self._get_signature_keys(self)
        components = {
            k: getattr(self, k) for k in self.config.keys() if not k.startswith("_") and k not in optional_parameters
        }

1905
1906
1907
        actual = sorted(set(components.keys()))
        expected = sorted(expected_modules)
        if actual != expected:
1908
1909
            raise ValueError(
                f"{self} has been incorrectly initialized or {self.__class__} is incorrectly implemented. Expected"
1910
                f" {expected} to be defined, but {actual} are defined."
1911
1912
1913
1914
1915
1916
1917
            )

        return components

    @staticmethod
    def numpy_to_pil(images):
        """
Steven Liu's avatar
Steven Liu committed
1918
        Convert a NumPy image or a batch of images to a PIL image.
1919
        """
Patrick von Platen's avatar
Patrick von Platen committed
1920
        return numpy_to_pil(images)
1921

lsb's avatar
lsb committed
1922
    @torch.compiler.disable
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
    def progress_bar(self, iterable=None, total=None):
        if not hasattr(self, "_progress_bar_config"):
            self._progress_bar_config = {}
        elif not isinstance(self._progress_bar_config, dict):
            raise ValueError(
                f"`self._progress_bar_config` should be of type `dict`, but is {type(self._progress_bar_config)}."
            )

        if iterable is not None:
            return tqdm(iterable, **self._progress_bar_config)
        elif total is not None:
            return tqdm(total=total, **self._progress_bar_config)
        else:
            raise ValueError("Either `total` or `iterable` has to be defined.")

    def set_progress_bar_config(self, **kwargs):
        self._progress_bar_config = kwargs

1941
    def enable_xformers_memory_efficient_attention(self, attention_op: Optional[Callable] = None):
1942
        r"""
1943
1944
1945
        Enable memory efficient attention from [xFormers](https://facebookresearch.github.io/xformers/). When this
        option is enabled, you should observe lower GPU memory usage and a potential speed up during inference. Speed
        up during training is not guaranteed.
1946

Steven Liu's avatar
Steven Liu committed
1947
        <Tip warning={true}>
1948

Steven Liu's avatar
Steven Liu committed
1949
1950
1951
1952
        ⚠️ When memory efficient attention and sliced attention are both enabled, memory efficient attention takes
        precedent.

        </Tip>
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972

        Parameters:
            attention_op (`Callable`, *optional*):
                Override the default `None` operator for use as `op` argument to the
                [`memory_efficient_attention()`](https://facebookresearch.github.io/xformers/components/ops.html#xformers.ops.memory_efficient_attention)
                function of xFormers.

        Examples:

        ```py
        >>> import torch
        >>> from diffusers import DiffusionPipeline
        >>> from xformers.ops import MemoryEfficientAttentionFlashAttentionOp

        >>> pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1", torch_dtype=torch.float16)
        >>> pipe = pipe.to("cuda")
        >>> pipe.enable_xformers_memory_efficient_attention(attention_op=MemoryEfficientAttentionFlashAttentionOp)
        >>> # Workaround for not accepting attention shape using VAE for Flash Attention
        >>> pipe.vae.enable_xformers_memory_efficient_attention(attention_op=None)
        ```
1973
        """
1974
        self.set_use_memory_efficient_attention_xformers(True, attention_op)
1975
1976
1977

    def disable_xformers_memory_efficient_attention(self):
        r"""
Steven Liu's avatar
Steven Liu committed
1978
        Disable memory efficient attention from [xFormers](https://facebookresearch.github.io/xformers/).
1979
1980
1981
        """
        self.set_use_memory_efficient_attention_xformers(False)

1982
1983
1984
    def set_use_memory_efficient_attention_xformers(
        self, valid: bool, attention_op: Optional[Callable] = None
    ) -> None:
1985
1986
1987
1988
1989
        # Recursively walk through all the children.
        # Any children which exposes the set_use_memory_efficient_attention_xformers method
        # gets the message
        def fn_recursive_set_mem_eff(module: torch.nn.Module):
            if hasattr(module, "set_use_memory_efficient_attention_xformers"):
1990
                module.set_use_memory_efficient_attention_xformers(valid, attention_op)
1991
1992
1993
1994

            for child in module.children():
                fn_recursive_set_mem_eff(child)

1995
1996
1997
        module_names, _ = self._get_signature_keys(self)
        modules = [getattr(self, n, None) for n in module_names]
        modules = [m for m in modules if isinstance(m, torch.nn.Module)]
1998

1999
2000
        for module in modules:
            fn_recursive_set_mem_eff(module)
2001
2002
2003

    def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"):
        r"""
2004
        Enable sliced attention computation. When this option is enabled, the attention module splits the input tensor
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
        in slices to compute attention in several steps. For more than one attention head, the computation is performed
        sequentially over each head. This is useful to save some memory in exchange for a small speed decrease.

        <Tip warning={true}>

        ⚠️ Don't enable attention slicing if you're already using `scaled_dot_product_attention` (SDPA) from PyTorch
        2.0 or xFormers. These attention computations are already very memory efficient so you won't need to enable
        this function. If you enable attention slicing with SDPA or xFormers, it can lead to serious slow downs!

        </Tip>
2015
2016
2017
2018

        Args:
            slice_size (`str` or `int`, *optional*, defaults to `"auto"`):
                When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
Alexander Pivovarov's avatar
Alexander Pivovarov committed
2019
                `"max"`, maximum amount of memory will be saved by running only one slice at a time. If a number is
2020
2021
                provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
                must be a multiple of `slice_size`.
2022
2023
2024
2025
2026
2027
2028
2029

        Examples:

        ```py
        >>> import torch
        >>> from diffusers import StableDiffusionPipeline

        >>> pipe = StableDiffusionPipeline.from_pretrained(
2030
        ...     "stable-diffusion-v1-5/stable-diffusion-v1-5",
2031
2032
2033
2034
2035
2036
2037
2038
        ...     torch_dtype=torch.float16,
        ...     use_safetensors=True,
        ... )

        >>> prompt = "a photo of an astronaut riding a horse on mars"
        >>> pipe.enable_attention_slicing()
        >>> image = pipe(prompt).images[0]
        ```
2039
2040
2041
2042
2043
        """
        self.set_attention_slice(slice_size)

    def disable_attention_slicing(self):
        r"""
Steven Liu's avatar
Steven Liu committed
2044
2045
        Disable sliced attention computation. If `enable_attention_slicing` was previously called, attention is
        computed in one step.
2046
2047
2048
2049
2050
        """
        # set slice_size = `None` to disable `attention slicing`
        self.enable_attention_slicing(None)

    def set_attention_slice(self, slice_size: Optional[int]):
2051
2052
2053
        module_names, _ = self._get_signature_keys(self)
        modules = [getattr(self, n, None) for n in module_names]
        modules = [m for m in modules if isinstance(m, torch.nn.Module) and hasattr(m, "set_attention_slice")]
2054

2055
2056
        for module in modules:
            module.set_attention_slice(slice_size)
2057

2058
2059
2060
    @classmethod
    def from_pipe(cls, pipeline, **kwargs):
        r"""
2061
2062
        Create a new pipeline from a given pipeline. This method is useful to create a new pipeline from the existing
        pipeline components without reallocating additional memory.
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076

        Arguments:
            pipeline (`DiffusionPipeline`):
                The pipeline from which to create a new pipeline.

        Returns:
            `DiffusionPipeline`:
                A new pipeline with the same weights and configurations as `pipeline`.

        Examples:

        ```py
        >>> from diffusers import StableDiffusionPipeline, StableDiffusionSAGPipeline

2077
        >>> pipe = StableDiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5")
2078
2079
2080
2081
2082
        >>> new_pipe = StableDiffusionSAGPipeline.from_pipe(pipe)
        ```
        """

        original_config = dict(pipeline.config)
2083
        torch_dtype = kwargs.pop("torch_dtype", torch.float32)
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120

        # derive the pipeline class to instantiate
        custom_pipeline = kwargs.pop("custom_pipeline", None)
        custom_revision = kwargs.pop("custom_revision", None)

        if custom_pipeline is not None:
            pipeline_class = _get_custom_pipeline_class(custom_pipeline, revision=custom_revision)
        else:
            pipeline_class = cls

        expected_modules, optional_kwargs = cls._get_signature_keys(pipeline_class)
        # true_optional_modules are optional components with default value in signature so it is ok not to pass them to `__init__`
        # e.g. `image_encoder` for StableDiffusionPipeline
        parameters = inspect.signature(cls.__init__).parameters
        true_optional_modules = set(
            {k for k, v in parameters.items() if v.default != inspect._empty and k in expected_modules}
        )

        # get the class of each component based on its type hint
        # e.g. {"unet": UNet2DConditionModel, "text_encoder": CLIPTextMode}
        component_types = pipeline_class._get_signature_types()

        pretrained_model_name_or_path = original_config.pop("_name_or_path", None)
        # allow users pass modules in `kwargs` to override the original pipeline's components
        passed_class_obj = {k: kwargs.pop(k) for k in expected_modules if k in kwargs}

        original_class_obj = {}
        for name, component in pipeline.components.items():
            if name in expected_modules and name not in passed_class_obj:
                # for model components, we will not switch over if the class does not matches the type hint in the new pipeline's signature
                if (
                    not isinstance(component, ModelMixin)
                    or type(component) in component_types[name]
                    or (component is None and name in cls._optional_components)
                ):
                    original_class_obj[name] = component
                else:
2121
                    logger.warning(
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
                        f"component {name} is not switched over to new pipeline because type does not match the expected."
                        f" {name} is {type(component)} while the new pipeline expect {component_types[name]}."
                        f" please pass the component of the correct type to the new pipeline. `from_pipe(..., {name}={name})`"
                    )

        # allow users pass optional kwargs to override the original pipelines config attribute
        passed_pipe_kwargs = {k: kwargs.pop(k) for k in optional_kwargs if k in kwargs}
        original_pipe_kwargs = {
            k: original_config[k]
            for k in original_config.keys()
            if k in optional_kwargs and k not in passed_pipe_kwargs
        }

        # config attribute that were not expected by pipeline is stored as its private attribute
        # (i.e. when the original pipeline was also instantiated with `from_pipe` from another pipeline that has this config)
        # in this case, we will pass them as optional arguments if they can be accepted by the new pipeline
        additional_pipe_kwargs = [
            k[1:]
            for k in original_config.keys()
            if k.startswith("_") and k[1:] in optional_kwargs and k[1:] not in passed_pipe_kwargs
        ]
        for k in additional_pipe_kwargs:
            original_pipe_kwargs[k] = original_config.pop(f"_{k}")

        pipeline_kwargs = {
            **passed_class_obj,
            **original_class_obj,
            **passed_pipe_kwargs,
            **original_pipe_kwargs,
            **kwargs,
        }

        # store unused config as private attribute in the new pipeline
        unused_original_config = {
            f"{'' if k.startswith('_') else '_'}{k}": v for k, v in original_config.items() if k not in pipeline_kwargs
        }

YiYi Xu's avatar
YiYi Xu committed
2159
2160
2161
2162
2163
        optional_components = (
            pipeline._optional_components
            if hasattr(pipeline, "_optional_components") and pipeline._optional_components
            else []
        )
2164
        missing_modules = (
YiYi Xu's avatar
YiYi Xu committed
2165
            set(expected_modules) - set(optional_components) - set(pipeline_kwargs.keys()) - set(true_optional_modules)
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
        )

        if len(missing_modules) > 0:
            raise ValueError(
                f"Pipeline {pipeline_class} expected {expected_modules}, but only {set(list(passed_class_obj.keys()) + list(original_class_obj.keys()))} were passed"
            )

        new_pipeline = pipeline_class(**pipeline_kwargs)
        if pretrained_model_name_or_path is not None:
            new_pipeline.register_to_config(_name_or_path=pretrained_model_name_or_path)
        new_pipeline.register_to_config(**unused_original_config)

        if torch_dtype is not None:
            new_pipeline.to(dtype=torch_dtype)

        return new_pipeline

Aryan's avatar
Aryan committed
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
    def _maybe_raise_error_if_group_offload_active(
        self, raise_error: bool = False, module: Optional[torch.nn.Module] = None
    ) -> bool:
        from ..hooks.group_offloading import _is_group_offload_enabled

        components = self.components.values() if module is None else [module]
        components = [component for component in components if isinstance(component, torch.nn.Module)]
        for component in components:
            if _is_group_offload_enabled(component):
                if raise_error:
                    raise ValueError(
                        "You are trying to apply model/sequential CPU offloading to a pipeline that contains components "
                        "with group offloading enabled. This is not supported. Please disable group offloading for "
                        "components of the pipeline to use other offloading methods."
                    )
                return True
        return False

2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211

class StableDiffusionMixin:
    r"""
    Helper for DiffusionPipeline with vae and unet.(mainly for LDM such as stable diffusion)
    """

    def enable_vae_slicing(self):
        r"""
        Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
        compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
        """
2212
2213
2214
2215
2216
2217
        depr_message = f"Calling `enable_vae_slicing()` on a `{self.__class__.__name__}` is deprecated and this method will be removed in a future version. Please use `pipe.vae.enable_slicing()`."
        deprecate(
            "enable_vae_slicing",
            "0.40.0",
            depr_message,
        )
2218
2219
2220
2221
2222
2223
2224
        self.vae.enable_slicing()

    def disable_vae_slicing(self):
        r"""
        Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
        computing decoding in one step.
        """
2225
2226
2227
2228
2229
2230
        depr_message = f"Calling `disable_vae_slicing()` on a `{self.__class__.__name__}` is deprecated and this method will be removed in a future version. Please use `pipe.vae.disable_slicing()`."
        deprecate(
            "disable_vae_slicing",
            "0.40.0",
            depr_message,
        )
2231
2232
2233
2234
2235
2236
2237
2238
        self.vae.disable_slicing()

    def enable_vae_tiling(self):
        r"""
        Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
        compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
        processing larger images.
        """
2239
2240
2241
2242
2243
2244
        depr_message = f"Calling `enable_vae_tiling()` on a `{self.__class__.__name__}` is deprecated and this method will be removed in a future version. Please use `pipe.vae.enable_tiling()`."
        deprecate(
            "enable_vae_tiling",
            "0.40.0",
            depr_message,
        )
2245
2246
2247
2248
2249
2250
2251
        self.vae.enable_tiling()

    def disable_vae_tiling(self):
        r"""
        Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
        computing decoding in one step.
        """
2252
2253
2254
2255
2256
2257
        depr_message = f"Calling `disable_vae_tiling()` on a `{self.__class__.__name__}` is deprecated and this method will be removed in a future version. Please use `pipe.vae.disable_tiling()`."
        deprecate(
            "disable_vae_tiling",
            "0.40.0",
            depr_message,
        )
2258
2259
2260
        self.vae.disable_tiling()

    def enable_freeu(self, s1: float, s2: float, b1: float, b2: float):
Quentin Gallouédec's avatar
Quentin Gallouédec committed
2261
        r"""Enables the FreeU mechanism as in https://huggingface.co/papers/2309.11497.
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287

        The suffixes after the scaling factors represent the stages where they are being applied.

        Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of the values
        that are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL.

        Args:
            s1 (`float`):
                Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to
                mitigate "oversmoothing effect" in the enhanced denoising process.
            s2 (`float`):
                Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to
                mitigate "oversmoothing effect" in the enhanced denoising process.
            b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features.
            b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features.
        """
        if not hasattr(self, "unet"):
            raise ValueError("The pipeline must have `unet` for using FreeU.")
        self.unet.enable_freeu(s1=s1, s2=s2, b1=b1, b2=b2)

    def disable_freeu(self):
        """Disables the FreeU mechanism if enabled."""
        self.unet.disable_freeu()

    def fuse_qkv_projections(self, unet: bool = True, vae: bool = True):
        """
2288
2289
        Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value)
        are fused. For cross-attention modules, key and value projection matrices are fused.
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343

        <Tip warning={true}>

        This API is 🧪 experimental.

        </Tip>

        Args:
            unet (`bool`, defaults to `True`): To apply fusion on the UNet.
            vae (`bool`, defaults to `True`): To apply fusion on the VAE.
        """
        self.fusing_unet = False
        self.fusing_vae = False

        if unet:
            self.fusing_unet = True
            self.unet.fuse_qkv_projections()
            self.unet.set_attn_processor(FusedAttnProcessor2_0())

        if vae:
            if not isinstance(self.vae, AutoencoderKL):
                raise ValueError("`fuse_qkv_projections()` is only supported for the VAE of type `AutoencoderKL`.")

            self.fusing_vae = True
            self.vae.fuse_qkv_projections()
            self.vae.set_attn_processor(FusedAttnProcessor2_0())

    def unfuse_qkv_projections(self, unet: bool = True, vae: bool = True):
        """Disable QKV projection fusion if enabled.

        <Tip warning={true}>

        This API is 🧪 experimental.

        </Tip>

        Args:
            unet (`bool`, defaults to `True`): To apply fusion on the UNet.
            vae (`bool`, defaults to `True`): To apply fusion on the VAE.

        """
        if unet:
            if not self.fusing_unet:
                logger.warning("The UNet was not initially fused for QKV projections. Doing nothing.")
            else:
                self.unet.unfuse_qkv_projections()
                self.fusing_unet = False

        if vae:
            if not self.fusing_vae:
                logger.warning("The VAE was not initially fused for QKV projections. Doing nothing.")
            else:
                self.vae.unfuse_qkv_projections()
                self.fusing_vae = False