pipeline_utils.py 113 KB
Newer Older
1
# coding=utf-8
2
# Copyright 2025 The HuggingFace Inc. team.
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright (c) 2022, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
16
import fnmatch
17
18
19
import importlib
import inspect
import os
20
import re
21
import sys
22
23
from dataclasses import dataclass
from pathlib import Path
24
from typing import Any, Callable, Dict, List, Optional, Union, get_args, get_origin
25
26

import numpy as np
Anh71me's avatar
Anh71me committed
27
import PIL.Image
28
import requests
29
import torch
30
from huggingface_hub import (
Marc Sun's avatar
Marc Sun committed
31
    DDUFEntry,
32
33
34
35
    ModelCard,
    create_repo,
    hf_hub_download,
    model_info,
Marc Sun's avatar
Marc Sun committed
36
    read_dduf_file,
37
38
    snapshot_download,
)
39
from huggingface_hub.utils import OfflineModeIsEnabled, validate_hf_hub_args
40
from packaging import version
41
from requests.exceptions import HTTPError
42
from tqdm.auto import tqdm
43
from typing_extensions import Self
44

45
from .. import __version__
46
from ..configuration_utils import ConfigMixin
47
48
from ..models import AutoencoderKL
from ..models.attention_processor import FusedAttnProcessor2_0
49
from ..models.modeling_utils import _LOW_CPU_MEM_USAGE_DEFAULT, ModelMixin
50
from ..quantizers import PipelineQuantizationConfig
51
from ..quantizers.bitsandbytes.utils import _check_bnb_status
52
53
54
from ..schedulers.scheduling_utils import SCHEDULER_CONFIG_NAME
from ..utils import (
    CONFIG_NAME,
55
    DEPRECATED_REVISION_ARGS,
56
    BaseOutput,
57
    PushToHubMixin,
58
59
    _get_detailed_type,
    _is_valid_type,
60
    deprecate,
61
    is_accelerate_available,
62
    is_accelerate_version,
63
    is_hpu_available,
Mengqing Cao's avatar
Mengqing Cao committed
64
    is_torch_npu_available,
65
    is_torch_version,
66
    is_transformers_version,
67
    logging,
Patrick von Platen's avatar
Patrick von Platen committed
68
    numpy_to_pil,
69
)
70
from ..utils.hub_utils import _check_legacy_sharding_variant_format, load_or_create_model_card, populate_model_card
71
from ..utils.torch_utils import empty_device_cache, get_device, is_compiled_module
Mengqing Cao's avatar
Mengqing Cao committed
72
73
74
75
76


if is_torch_npu_available():
    import torch_npu  # noqa: F401

77
78
79
80
81
from .pipeline_loading_utils import (
    ALL_IMPORTABLE_CLASSES,
    CONNECTED_PIPES_KEYS,
    CUSTOM_PIPELINE_FILE_NAME,
    LOADABLE_CLASSES,
Marc Sun's avatar
Marc Sun committed
82
    _download_dduf_file,
83
    _fetch_class_library_tuple,
84
    _get_custom_components_and_folders,
85
    _get_custom_pipeline_class,
86
    _get_final_device_map,
87
    _get_ignore_patterns,
88
    _get_pipeline_class,
89
    _identify_model_variants,
Marc Sun's avatar
Marc Sun committed
90
    _maybe_raise_error_for_incorrect_transformers,
91
    _maybe_raise_warning_for_inpainting,
92
    _maybe_warn_for_wrong_component_in_quant_config,
93
    _resolve_custom_pipeline_and_cls,
94
    _unwrap_model,
95
    _update_init_kwargs_with_connected_pipeline,
96
    filter_model_files,
97
98
99
100
101
    load_sub_model,
    maybe_raise_or_warn,
    variant_compatible_siblings,
    warn_deprecated_model_variant,
)
102
103


104
105
106
107
if is_accelerate_available():
    import accelerate


108
109
110
LIBRARIES = []
for library in LOADABLE_CLASSES:
    LIBRARIES.append(library)
111

112
SUPPORTED_DEVICE_MAP = ["balanced"] + [get_device()]
113

114
115
116
117
118
119
120
121
122
123
logger = logging.get_logger(__name__)


@dataclass
class ImagePipelineOutput(BaseOutput):
    """
    Output class for image pipelines.

    Args:
        images (`List[PIL.Image.Image]` or `np.ndarray`)
Steven Liu's avatar
Steven Liu committed
124
125
            List of denoised PIL images of length `batch_size` or NumPy array of shape `(batch_size, height, width,
            num_channels)`.
126
127
128
129
130
131
132
133
134
135
136
137
    """

    images: Union[List[PIL.Image.Image], np.ndarray]


@dataclass
class AudioPipelineOutput(BaseOutput):
    """
    Output class for audio pipelines.

    Args:
        audios (`np.ndarray`)
Steven Liu's avatar
Steven Liu committed
138
            List of denoised audio samples of a NumPy array of shape `(batch_size, num_channels, sample_rate)`.
139
140
141
142
143
    """

    audios: np.ndarray


144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
class DeprecatedPipelineMixin:
    """
    A mixin that can be used to mark a pipeline as deprecated.

    Pipelines inheriting from this mixin will raise a warning when instantiated, indicating that they are deprecated
    and won't receive updates past the specified version. Tests will be skipped for pipelines that inherit from this
    mixin.

    Example usage:
    ```python
    class MyDeprecatedPipeline(DeprecatedPipelineMixin, DiffusionPipeline):
        _last_supported_version = "0.20.0"

        def __init__(self, *args, **kwargs):
            super().__init__(*args, **kwargs)
    ```
    """

    # Override this in the inheriting class to specify the last version that will support this pipeline
    _last_supported_version = None

    def __init__(self, *args, **kwargs):
        # Get the class name for the warning message
        class_name = self.__class__.__name__

        # Get the last supported version or use the current version if not specified
        version_info = getattr(self.__class__, "_last_supported_version", __version__)

        # Raise a warning that this pipeline is deprecated
        logger.warning(
            f"The {class_name} has been deprecated and will not receive bug fixes or feature updates after Diffusers version {version_info}. "
        )

        # Call the parent class's __init__ method
        super().__init__(*args, **kwargs)


181
class DiffusionPipeline(ConfigMixin, PushToHubMixin):
182
    r"""
Steven Liu's avatar
Steven Liu committed
183
    Base class for all pipelines.
184

Steven Liu's avatar
Steven Liu committed
185
186
    [`DiffusionPipeline`] stores all components (models, schedulers, and processors) for diffusion pipelines and
    provides methods for loading, downloading and saving models. It also includes methods to:
187
188

        - move all PyTorch modules to the device of your choice
189
        - enable/disable the progress bar for the denoising iteration
190
191
192

    Class attributes:

Steven Liu's avatar
Steven Liu committed
193
194
        - **config_name** (`str`) -- The configuration filename that stores the class and module names of all the
          diffusion pipeline's components.
195
        - **_optional_components** (`List[str]`) -- List of all optional components that don't have to be passed to the
Steven Liu's avatar
Steven Liu committed
196
          pipeline to function (should be overridden by subclasses).
197
    """
198

199
    config_name = "model_index.json"
200
    model_cpu_offload_seq = None
201
    hf_device_map = None
202
    _optional_components = []
203
    _exclude_from_cpu_offload = []
204
    _load_connected_pipes = False
205
    _is_onnx = False
206
207
208
209

    def register_modules(self, **kwargs):
        for name, module in kwargs.items():
            # retrieve library
210
            if module is None or isinstance(module, (tuple, list)) and module[0] is None:
211
212
                register_dict = {name: (None, None)}
            else:
213
                library, class_name = _fetch_class_library_tuple(module)
214
215
216
217
218
219
220
221
                register_dict = {name: (library, class_name)}

            # save model index config
            self.register_to_config(**register_dict)

            # set models
            setattr(self, name, module)

222
    def __setattr__(self, name: str, value: Any):
223
        if name in self.__dict__ and hasattr(self.config, name):
224
225
            # We need to overwrite the config if name exists in config
            if isinstance(getattr(self.config, name), (tuple, list)):
226
                if value is not None and self.config[name][0] is not None:
227
                    class_library_tuple = _fetch_class_library_tuple(value)
228
229
230
231
232
233
234
235
236
                else:
                    class_library_tuple = (None, None)

                self.register_to_config(**{name: class_library_tuple})
            else:
                self.register_to_config(**{name: value})

        super().__setattr__(name, value)

237
238
239
    def save_pretrained(
        self,
        save_directory: Union[str, os.PathLike],
240
        safe_serialization: bool = True,
241
        variant: Optional[str] = None,
242
        max_shard_size: Optional[Union[int, str]] = None,
243
244
        push_to_hub: bool = False,
        **kwargs,
245
246
    ):
        """
Steven Liu's avatar
Steven Liu committed
247
248
249
        Save all saveable variables of the pipeline to a directory. A pipeline variable can be saved and loaded if its
        class implements both a save and loading method. The pipeline is easily reloaded using the
        [`~DiffusionPipeline.from_pretrained`] class method.
250
251
252

        Arguments:
            save_directory (`str` or `os.PathLike`):
Steven Liu's avatar
Steven Liu committed
253
                Directory to save a pipeline to. Will be created if it doesn't exist.
254
            safe_serialization (`bool`, *optional*, defaults to `True`):
Steven Liu's avatar
Steven Liu committed
255
                Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
256
            variant (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
257
                If specified, weights are saved in the format `pytorch_model.<variant>.bin`.
258
            max_shard_size (`int` or `str`, defaults to `None`):
259
260
261
262
263
264
                The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size
                lower than this size. If expressed as a string, needs to be digits followed by a unit (like `"5GB"`).
                If expressed as an integer, the unit is bytes. Note that this limit will be decreased after a certain
                period of time (starting from Oct 2024) to allow users to upgrade to the latest version of `diffusers`.
                This is to establish a common default size for this argument across different libraries in the Hugging
                Face ecosystem (`transformers`, and `accelerate`, for example).
265
266
267
268
            push_to_hub (`bool`, *optional*, defaults to `False`):
                Whether or not to push your model to the Hugging Face model hub after saving it. You can specify the
                repository you want to push to with `repo_id` (will default to the name of `save_directory` in your
                namespace).
Marc Sun's avatar
Marc Sun committed
269

270
271
            kwargs (`Dict[str, Any]`, *optional*):
                Additional keyword arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method.
272
273
        """
        model_index_dict = dict(self.config)
274
275
        model_index_dict.pop("_class_name", None)
        model_index_dict.pop("_diffusers_version", None)
276
        model_index_dict.pop("_module", None)
277
        model_index_dict.pop("_name_or_path", None)
278

279
280
        if push_to_hub:
            commit_message = kwargs.pop("commit_message", None)
281
            private = kwargs.pop("private", None)
282
283
284
285
286
            create_pr = kwargs.pop("create_pr", False)
            token = kwargs.pop("token", None)
            repo_id = kwargs.pop("repo_id", save_directory.split(os.path.sep)[-1])
            repo_id = create_repo(repo_id, exist_ok=True, private=private, token=token).repo_id

287
288
289
290
291
292
293
294
295
296
297
298
299
300
        expected_modules, optional_kwargs = self._get_signature_keys(self)

        def is_saveable_module(name, value):
            if name not in expected_modules:
                return False
            if name in self._optional_components and value[0] is None:
                return False
            return True

        model_index_dict = {k: v for k, v in model_index_dict.items() if is_saveable_module(k, v)}
        for pipeline_component_name in model_index_dict.keys():
            sub_model = getattr(self, pipeline_component_name)
            model_cls = sub_model.__class__

301
302
303
            # Dynamo wraps the original model in a private class.
            # I didn't find a public API to get the original class.
            if is_compiled_module(sub_model):
304
                sub_model = _unwrap_model(sub_model)
305
306
                model_cls = sub_model.__class__

307
308
309
            save_method_name = None
            # search for the model's base class in LOADABLE_CLASSES
            for library_name, library_classes in LOADABLE_CLASSES.items():
310
311
312
313
314
315
316
                if library_name in sys.modules:
                    library = importlib.import_module(library_name)
                else:
                    logger.info(
                        f"{library_name} is not installed. Cannot save {pipeline_component_name} as {library_classes} from {library_name}"
                    )

317
318
319
320
321
322
323
324
325
                for base_class, save_load_methods in library_classes.items():
                    class_candidate = getattr(library, base_class, None)
                    if class_candidate is not None and issubclass(model_cls, class_candidate):
                        # if we found a suitable base class in LOADABLE_CLASSES then grab its save method
                        save_method_name = save_load_methods[0]
                        break
                if save_method_name is not None:
                    break

326
            if save_method_name is None:
327
328
329
                logger.warning(
                    f"self.{pipeline_component_name}={sub_model} of type {type(sub_model)} cannot be saved."
                )
330
331
332
333
                # make sure that unsaveable components are not tried to be loaded afterward
                self.register_to_config(**{pipeline_component_name: (None, None)})
                continue

334
335
336
337
338
            save_method = getattr(sub_model, save_method_name)

            # Call the save method with the argument safe_serialization only if it's supported
            save_method_signature = inspect.signature(save_method)
            save_method_accept_safe = "safe_serialization" in save_method_signature.parameters
339
            save_method_accept_variant = "variant" in save_method_signature.parameters
340
            save_method_accept_max_shard_size = "max_shard_size" in save_method_signature.parameters
341
342

            save_kwargs = {}
343
            if save_method_accept_safe:
344
345
346
                save_kwargs["safe_serialization"] = safe_serialization
            if save_method_accept_variant:
                save_kwargs["variant"] = variant
347
348
            if save_method_accept_max_shard_size and max_shard_size is not None:
                # max_shard_size is expected to not be None in ModelMixin
349
                save_kwargs["max_shard_size"] = max_shard_size
350
351

            save_method(os.path.join(save_directory, pipeline_component_name), **save_kwargs)
352

353
354
355
        # finally save the config
        self.save_config(save_directory)

356
        if push_to_hub:
357
358
359
360
361
            # Create a new empty model card and eventually tag it
            model_card = load_or_create_model_card(repo_id, token=token, is_pipeline=True)
            model_card = populate_model_card(model_card)
            model_card.save(os.path.join(save_directory, "README.md"))

362
363
364
365
366
367
368
369
            self._upload_folder(
                save_directory,
                repo_id,
                token=token,
                commit_message=commit_message,
                create_pr=create_pr,
            )

370
    def to(self, *args, **kwargs) -> Self:
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
        r"""
        Performs Pipeline dtype and/or device conversion. A torch.dtype and torch.device are inferred from the
        arguments of `self.to(*args, **kwargs).`

        <Tip>

            If the pipeline already has the correct torch.dtype and torch.device, then it is returned as is. Otherwise,
            the returned pipeline is a copy of self with the desired torch.dtype and torch.device.

        </Tip>


        Here are the ways to call `to`:

        - `to(dtype, silence_dtype_warnings=False) → DiffusionPipeline` to return a pipeline with the specified
          [`dtype`](https://pytorch.org/docs/stable/tensor_attributes.html#torch.dtype)
        - `to(device, silence_dtype_warnings=False) → DiffusionPipeline` to return a pipeline with the specified
          [`device`](https://pytorch.org/docs/stable/tensor_attributes.html#torch.device)
        - `to(device=None, dtype=None, silence_dtype_warnings=False) → DiffusionPipeline` to return a pipeline with the
          specified [`device`](https://pytorch.org/docs/stable/tensor_attributes.html#torch.device) and
          [`dtype`](https://pytorch.org/docs/stable/tensor_attributes.html#torch.dtype)

        Arguments:
            dtype (`torch.dtype`, *optional*):
                Returns a pipeline with the specified
                [`dtype`](https://pytorch.org/docs/stable/tensor_attributes.html#torch.dtype)
            device (`torch.Device`, *optional*):
                Returns a pipeline with the specified
                [`device`](https://pytorch.org/docs/stable/tensor_attributes.html#torch.device)
            silence_dtype_warnings (`str`, *optional*, defaults to `False`):
                Whether to omit warnings if the target `dtype` is not compatible with the target `device`.

        Returns:
            [`DiffusionPipeline`]: The pipeline converted to specified `dtype` and/or `dtype`.
        """
406
407
        dtype = kwargs.pop("dtype", None)
        device = kwargs.pop("device", None)
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
        silence_dtype_warnings = kwargs.pop("silence_dtype_warnings", False)

        dtype_arg = None
        device_arg = None
        if len(args) == 1:
            if isinstance(args[0], torch.dtype):
                dtype_arg = args[0]
            else:
                device_arg = torch.device(args[0]) if args[0] is not None else None
        elif len(args) == 2:
            if isinstance(args[0], torch.dtype):
                raise ValueError(
                    "When passing two arguments, make sure the first corresponds to `device` and the second to `dtype`."
                )
            device_arg = torch.device(args[0]) if args[0] is not None else None
            dtype_arg = args[1]
        elif len(args) > 2:
            raise ValueError("Please make sure to pass at most two arguments (`device` and `dtype`) `.to(...)`")

        if dtype is not None and dtype_arg is not None:
            raise ValueError(
                "You have passed `dtype` both as an argument and as a keyword argument. Please only pass one of the two."
            )

        dtype = dtype or dtype_arg

        if device is not None and device_arg is not None:
            raise ValueError(
                "You have passed `device` both as an argument and as a keyword argument. Please only pass one of the two."
            )

        device = device or device_arg
Aryan's avatar
Aryan committed
440
        device_type = torch.device(device).type if device is not None else None
441
        pipeline_has_bnb = any(any((_check_bnb_status(module))) for _, module in self.components.items())
442

443
444
445
446
447
        # throw warning if pipeline is in "offloaded"-mode but user tries to manually set to GPU.
        def module_is_sequentially_offloaded(module):
            if not is_accelerate_available() or is_accelerate_version("<", "0.14.0"):
                return False

448
449
450
451
452
            _, _, is_loaded_in_8bit_bnb = _check_bnb_status(module)

            if is_loaded_in_8bit_bnb:
                return False

453
454
455
456
457
            return hasattr(module, "_hf_hook") and (
                isinstance(module._hf_hook, accelerate.hooks.AlignDevicesHook)
                or hasattr(module._hf_hook, "hooks")
                and isinstance(module._hf_hook.hooks[0], accelerate.hooks.AlignDevicesHook)
            )
458
459
460
461
462
463
464
465
466
467
468

        def module_is_offloaded(module):
            if not is_accelerate_available() or is_accelerate_version("<", "0.17.0.dev0"):
                return False

            return hasattr(module, "_hf_hook") and isinstance(module._hf_hook, accelerate.hooks.CpuOffload)

        # .to("cuda") would raise an error if the pipeline is sequentially offloaded, so we raise our own to make it clearer
        pipeline_is_sequentially_offloaded = any(
            module_is_sequentially_offloaded(module) for _, module in self.components.items()
        )
469
470
471
472
473
474
475

        is_pipeline_device_mapped = self.hf_device_map is not None and len(self.hf_device_map) > 1
        if is_pipeline_device_mapped:
            raise ValueError(
                "It seems like you have activated a device mapping strategy on the pipeline which doesn't allow explicit device placement using `to()`. You can call `reset_device_map()` to remove the existing device map from the pipeline."
            )

476
        if device_type in ["cuda", "xpu"]:
477
478
479
480
481
482
483
484
485
            if pipeline_is_sequentially_offloaded and not pipeline_has_bnb:
                raise ValueError(
                    "It seems like you have activated sequential model offloading by calling `enable_sequential_cpu_offload`, but are now attempting to move the pipeline to GPU. This is not compatible with offloading. Please, move your pipeline `.to('cpu')` or consider removing the move altogether if you use sequential offloading."
                )
            # PR: https://github.com/huggingface/accelerate/pull/3223/
            elif pipeline_has_bnb and is_accelerate_version("<", "1.1.0.dev0"):
                raise ValueError(
                    "You are trying to call `.to('cuda')` on a pipeline that has models quantized with `bitsandbytes`. Your current `accelerate` installation does not support it. Please upgrade the installation."
                )
486
487
488

        # Display a warning in this case (the operation succeeds but the benefits are lost)
        pipeline_is_offloaded = any(module_is_offloaded(module) for _, module in self.components.items())
489
        if pipeline_is_offloaded and device_type in ["cuda", "xpu"]:
490
491
492
493
            logger.warning(
                f"It seems like you have activated model offloading by calling `enable_model_cpu_offload`, but are now manually moving the pipeline to GPU. It is strongly recommended against doing so as memory gains from offloading are likely to be lost. Offloading automatically takes care of moving the individual components {', '.join(self.components.keys())} to GPU when needed. To make sure offloading works as expected, you should consider moving the pipeline back to CPU: `pipeline.to('cpu')` or removing the move altogether if you use offloading."
            )

494
495
496
497
498
499
500
501
502
503
504
505
506
507
        # Enable generic support for Intel Gaudi accelerator using GPU/HPU migration
        if device_type == "hpu" and kwargs.pop("hpu_migration", True) and is_hpu_available():
            os.environ["PT_HPU_GPU_MIGRATION"] = "1"
            logger.debug("Environment variable set: PT_HPU_GPU_MIGRATION=1")

            import habana_frameworks.torch  # noqa: F401

            # HPU hardware check
            if not (hasattr(torch, "hpu") and torch.hpu.is_available()):
                raise ValueError("You are trying to call `.to('hpu')` but HPU device is unavailable.")

            os.environ["PT_HPU_MAX_COMPOUND_OP_SIZE"] = "1"
            logger.debug("Environment variable set: PT_HPU_MAX_COMPOUND_OP_SIZE=1")

508
        module_names, _ = self._get_signature_keys(self)
509
510
        modules = [getattr(self, n, None) for n in module_names]
        modules = [m for m in modules if isinstance(m, torch.nn.Module)]
511

512
        is_offloaded = pipeline_is_offloaded or pipeline_is_sequentially_offloaded
513
        for module in modules:
514
            _, is_loaded_in_4bit_bnb, is_loaded_in_8bit_bnb = _check_bnb_status(module)
Aryan's avatar
Aryan committed
515
            is_group_offloaded = self._maybe_raise_error_if_group_offload_active(module=module)
Patrick von Platen's avatar
Patrick von Platen committed
516

517
            if (is_loaded_in_4bit_bnb or is_loaded_in_8bit_bnb) and dtype is not None:
Patrick von Platen's avatar
Patrick von Platen committed
518
                logger.warning(
519
                    f"The module '{module.__class__.__name__}' has been loaded in `bitsandbytes` {'4bit' if is_loaded_in_4bit_bnb else '8bit'} and conversion to {dtype} is not supported. Module is still in {'4bit' if is_loaded_in_4bit_bnb else '8bit'} precision."
Patrick von Platen's avatar
Patrick von Platen committed
520
521
                )

522
            if is_loaded_in_8bit_bnb and device is not None:
Patrick von Platen's avatar
Patrick von Platen committed
523
                logger.warning(
524
                    f"The module '{module.__class__.__name__}' has been loaded in `bitsandbytes` 8bit and moving it to {device} via `.to()` is not supported. Module is still on {module.device}."
Patrick von Platen's avatar
Patrick von Platen committed
525
                )
526

Aryan's avatar
Aryan committed
527
528
529
530
531
532
533
534
535
536
            # Note: we also handle this at the ModelMixin level. The reason for doing it here too is that modeling
            # components can be from outside diffusers too, but still have group offloading enabled.
            if (
                self._maybe_raise_error_if_group_offload_active(raise_error=False, module=module)
                and device is not None
            ):
                logger.warning(
                    f"The module '{module.__class__.__name__}' is group offloaded and moving it to {device} via `.to()` is not supported."
                )

537
538
539
540
            # This can happen for `transformer` models. CPU placement was added in
            # https://github.com/huggingface/transformers/pull/33122. So, we guard this accordingly.
            if is_loaded_in_4bit_bnb and device is not None and is_transformers_version(">", "4.44.0"):
                module.to(device=device)
Aryan's avatar
Aryan committed
541
            elif not is_loaded_in_4bit_bnb and not is_loaded_in_8bit_bnb and not is_group_offloaded:
542
                module.to(device, dtype)
Patrick von Platen's avatar
Patrick von Platen committed
543

544
545
            if (
                module.dtype == torch.float16
546
                and str(device) in ["cpu"]
547
548
549
550
                and not silence_dtype_warnings
                and not is_offloaded
            ):
                logger.warning(
551
                    "Pipelines loaded with `dtype=torch.float16` cannot run with `cpu` device. It"
552
553
554
555
556
                    " is not recommended to move them to `cpu` as running them will fail. Please make"
                    " sure to use an accelerator to run the pipeline in inference, due to the lack of"
                    " support for`float16` operations on this device in PyTorch. Please, remove the"
                    " `torch_dtype=torch.float16` argument, or use another device for inference."
                )
557
558
559
560
561
562
563
564
        return self

    @property
    def device(self) -> torch.device:
        r"""
        Returns:
            `torch.device`: The torch device on which the pipeline is located.
        """
565
        module_names, _ = self._get_signature_keys(self)
566
567
568
569
570
        modules = [getattr(self, n, None) for n in module_names]
        modules = [m for m in modules if isinstance(m, torch.nn.Module)]

        for module in modules:
            return module.device
571

572
573
        return torch.device("cpu")

574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
    @property
    def dtype(self) -> torch.dtype:
        r"""
        Returns:
            `torch.dtype`: The torch dtype on which the pipeline is located.
        """
        module_names, _ = self._get_signature_keys(self)
        modules = [getattr(self, n, None) for n in module_names]
        modules = [m for m in modules if isinstance(m, torch.nn.Module)]

        for module in modules:
            return module.dtype

        return torch.float32

589
    @classmethod
590
    @validate_hf_hub_args
591
    def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs) -> Self:
592
        r"""
Steven Liu's avatar
Steven Liu committed
593
        Instantiate a PyTorch diffusion pipeline from pretrained pipeline weights.
594

Steven Liu's avatar
Steven Liu committed
595
        The pipeline is set in evaluation mode (`model.eval()`) by default.
596

Steven Liu's avatar
Steven Liu committed
597
        If you get the error message below, you need to finetune the weights for your downstream task:
598

Steven Liu's avatar
Steven Liu committed
599
        ```
600
        Some weights of UNet2DConditionModel were not initialized from the model checkpoint at stable-diffusion-v1-5/stable-diffusion-v1-5 and are newly initialized because the shapes did not match:
Steven Liu's avatar
Steven Liu committed
601
602
603
        - conv_in.weight: found shape torch.Size([320, 4, 3, 3]) in the checkpoint and torch.Size([320, 9, 3, 3]) in the model instantiated
        You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
        ```
604
605
606
607
608

        Parameters:
            pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*):
                Can be either:

Steven Liu's avatar
Steven Liu committed
609
610
611
612
613
                    - A string, the *repo id* (for example `CompVis/ldm-text2im-large-256`) of a pretrained pipeline
                      hosted on the Hub.
                    - A path to a *directory* (for example `./my_pipeline_directory/`) containing pipeline weights
                      saved using
                    [`~DiffusionPipeline.save_pretrained`].
Marc Sun's avatar
Marc Sun committed
614
                    - A path to a *directory* (for example `./my_pipeline_directory/`) containing a dduf file
615
616
617
618
619
620
            torch_dtype (`torch.dtype` or `dict[str, Union[str, torch.dtype]]`, *optional*):
                Override the default `torch.dtype` and load the model with another dtype. To load submodels with
                different dtype pass a `dict` (for example `{'transformer': torch.bfloat16, 'vae': torch.float16}`).
                Set the default dtype for unspecified components with `default` (for example `{'transformer':
                torch.bfloat16, 'default': torch.float16}`). If a component is not specified and no default is set,
                `torch.float32` is used.
621
622
623
624
            custom_pipeline (`str`, *optional*):

                <Tip warning={true}>

Steven Liu's avatar
Steven Liu committed
625
                🧪 This is an experimental feature and may change in the future.
626
627
628
629
630

                </Tip>

                Can be either:

Steven Liu's avatar
Steven Liu committed
631
632
633
                    - A string, the *repo id* (for example `hf-internal-testing/diffusers-dummy-pipeline`) of a custom
                      pipeline hosted on the Hub. The repository must contain a file called pipeline.py that defines
                      the custom pipeline.
634
                    - A string, the *file name* of a community pipeline hosted on GitHub under
Steven Liu's avatar
Steven Liu committed
635
636
637
638
639
640
                      [Community](https://github.com/huggingface/diffusers/tree/main/examples/community). Valid file
                      names must match the file name and not the pipeline script (`clip_guided_stable_diffusion`
                      instead of `clip_guided_stable_diffusion.py`). Community pipelines are always loaded from the
                      current main branch of GitHub.
                    - A path to a directory (`./my_pipeline_directory/`) containing a custom pipeline. The directory
                      must contain a file called `pipeline.py` that defines the custom pipeline.
641
642
643
644
645
646
647

                For more information on how to load and create custom pipelines, please have a look at [Loading and
                Adding Custom
                Pipelines](https://huggingface.co/docs/diffusers/using-diffusers/custom_pipeline_overview)
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
648
            cache_dir (`Union[str, os.PathLike]`, *optional*):
Steven Liu's avatar
Steven Liu committed
649
650
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
651

652
            proxies (`Dict[str, str]`, *optional*):
Steven Liu's avatar
Steven Liu committed
653
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
654
655
656
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            output_loading_info(`bool`, *optional*, defaults to `False`):
                Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
Steven Liu's avatar
Steven Liu committed
657
658
659
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
660
            token (`str` or *bool*, *optional*):
Steven Liu's avatar
Steven Liu committed
661
662
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
663
            revision (`str`, *optional*, defaults to `"main"`):
Steven Liu's avatar
Steven Liu committed
664
665
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
666
            custom_revision (`str`, *optional*):
667
                The specific model version to use. It can be a branch name, a tag name, or a commit id similar to
668
669
                `revision` when loading a custom pipeline from the Hub. Defaults to the latest stable 🤗 Diffusers
                version.
670
            mirror (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
671
672
673
                Mirror source to resolve accessibility issues if you’re downloading a model in China. We do not
                guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
                information.
674
675
676
677
678
            device_map (`str`, *optional*):
                Strategy that dictates how the different components of a pipeline should be placed on available
                devices. Currently, only "balanced" `device_map` is supported. Check out
                [this](https://huggingface.co/docs/diffusers/main/en/tutorials/inference_with_big_models#device-placement)
                to know more.
679
            max_memory (`Dict`, *optional*):
Steven Liu's avatar
Steven Liu committed
680
681
                A dictionary device identifier for the maximum memory. Will default to the maximum memory available for
                each GPU and the available CPU RAM if unset.
682
            offload_folder (`str` or `os.PathLike`, *optional*):
Steven Liu's avatar
Steven Liu committed
683
                The path to offload weights if device_map contains the value `"disk"`.
684
            offload_state_dict (`bool`, *optional*):
Steven Liu's avatar
Steven Liu committed
685
686
687
                If `True`, temporarily offloads the CPU state dict to the hard drive to avoid running out of CPU RAM if
                the weight of the CPU state dict + the biggest shard of the checkpoint does not fit. Defaults to `True`
                when there is some disk offload.
688
            low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
Steven Liu's avatar
Steven Liu committed
689
690
691
692
                Speed up model loading only loading the pretrained weights and not initializing the weights. This also
                tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
                Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
                argument to `True` will raise an error.
693
            use_safetensors (`bool`, *optional*, defaults to `None`):
Steven Liu's avatar
Steven Liu committed
694
695
696
                If set to `None`, the safetensors weights are downloaded if they're available **and** if the
                safetensors library is installed. If set to `True`, the model is forcibly loaded from safetensors
                weights. If set to `False`, safetensors weights are not loaded.
697
698
699
700
701
            use_onnx (`bool`, *optional*, defaults to `None`):
                If set to `True`, ONNX weights will always be downloaded if present. If set to `False`, ONNX weights
                will never be downloaded. By default `use_onnx` defaults to the `_is_onnx` class attribute which is
                `False` for non-ONNX pipelines and `True` for ONNX pipelines. ONNX weights include both files ending
                with `.onnx` and `.pb`.
702
            kwargs (remaining dictionary of keyword arguments, *optional*):
Steven Liu's avatar
Steven Liu committed
703
704
705
                Can be used to overwrite load and saveable variables (the pipeline components of the specific pipeline
                class). The overwritten components are passed directly to the pipelines `__init__` method. See example
                below for more information.
706
            variant (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
707
708
                Load weights from a specified variant filename such as `"fp16"` or `"ema"`. This is ignored when
                loading `from_flax`.
Marc Sun's avatar
Marc Sun committed
709
710
            dduf_file(`str`, *optional*):
                Load weights from the specified dduf file.
711
712
713

        <Tip>

714
715
        To use private or [gated](https://huggingface.co/docs/hub/models-gated#gated-models) models, log-in with `hf
        auth login`.
716
717
718
719
720
721
722
723
724
725
726
727
728
729

        </Tip>

        Examples:

        ```py
        >>> from diffusers import DiffusionPipeline

        >>> # Download pipeline from huggingface.co and cache.
        >>> pipeline = DiffusionPipeline.from_pretrained("CompVis/ldm-text2im-large-256")

        >>> # Download pipeline that requires an authorization token
        >>> # For more information on access tokens, please refer to this section
        >>> # of the documentation](https://huggingface.co/docs/hub/security-tokens)
730
        >>> pipeline = DiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5")
731
732
733
734
735
736
737
738

        >>> # Use a different scheduler
        >>> from diffusers import LMSDiscreteScheduler

        >>> scheduler = LMSDiscreteScheduler.from_config(pipeline.scheduler.config)
        >>> pipeline.scheduler = scheduler
        ```
        """
739
740
741
        # Copy the kwargs to re-use during loading connected pipeline.
        kwargs_copied = kwargs.copy()

742
        cache_dir = kwargs.pop("cache_dir", None)
743
744
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
745
746
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
747
        revision = kwargs.pop("revision", None)
748
        from_flax = kwargs.pop("from_flax", False)
749
        torch_dtype = kwargs.pop("torch_dtype", None)
750
751
752
753
        custom_pipeline = kwargs.pop("custom_pipeline", None)
        custom_revision = kwargs.pop("custom_revision", None)
        provider = kwargs.pop("provider", None)
        sess_options = kwargs.pop("sess_options", None)
754
        provider_options = kwargs.pop("provider_options", None)
755
        device_map = kwargs.pop("device_map", None)
756
757
        max_memory = kwargs.pop("max_memory", None)
        offload_folder = kwargs.pop("offload_folder", None)
758
        offload_state_dict = kwargs.pop("offload_state_dict", None)
759
        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT)
760
        variant = kwargs.pop("variant", None)
Marc Sun's avatar
Marc Sun committed
761
        dduf_file = kwargs.pop("dduf_file", None)
762
        use_safetensors = kwargs.pop("use_safetensors", None)
763
        use_onnx = kwargs.pop("use_onnx", None)
764
        load_connected_pipeline = kwargs.pop("load_connected_pipeline", False)
765
        quantization_config = kwargs.pop("quantization_config", None)
766

767
        if torch_dtype is not None and not isinstance(torch_dtype, dict) and not isinstance(torch_dtype, torch.dtype):
768
769
770
771
772
            torch_dtype = torch.float32
            logger.warning(
                f"Passed `torch_dtype` {torch_dtype} is not a `torch.dtype`. Defaulting to `torch.float32`."
            )

773
774
775
776
777
778
779
780
781
        if low_cpu_mem_usage and not is_accelerate_available():
            low_cpu_mem_usage = False
            logger.warning(
                "Cannot initialize model with low cpu memory usage because `accelerate` was not found in the"
                " environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install"
                " `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip"
                " install accelerate\n```\n."
            )

782
783
784
        if quantization_config is not None and not isinstance(quantization_config, PipelineQuantizationConfig):
            raise ValueError("`quantization_config` must be an instance of `PipelineQuantizationConfig`.")

785
786
787
788
789
790
        if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"):
            raise NotImplementedError(
                "Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set"
                " `low_cpu_mem_usage=False`."
            )

791
792
793
794
795
796
        if device_map is not None and not is_torch_version(">=", "1.9.0"):
            raise NotImplementedError(
                "Loading and dispatching requires torch >= 1.9.0. Please either update your PyTorch version or set"
                " `device_map=None`."
            )

797
        if device_map is not None and not is_accelerate_available():
798
            raise NotImplementedError(
799
800
801
802
803
804
805
806
807
                "Using `device_map` requires the `accelerate` library. Please install it using: `pip install accelerate`."
            )

        if device_map is not None and not isinstance(device_map, str):
            raise ValueError("`device_map` must be a string.")

        if device_map is not None and device_map not in SUPPORTED_DEVICE_MAP:
            raise NotImplementedError(
                f"{device_map} not supported. Supported strategies are: {', '.join(SUPPORTED_DEVICE_MAP)}"
808
809
            )

810
811
812
813
        if device_map is not None and device_map in SUPPORTED_DEVICE_MAP:
            if is_accelerate_version("<", "0.28.0"):
                raise NotImplementedError("Device placement requires `accelerate` version `0.28.0` or later.")

814
815
816
817
818
819
        if low_cpu_mem_usage is False and device_map is not None:
            raise ValueError(
                f"You cannot set `low_cpu_mem_usage` to False while using device_map={device_map} for loading and"
                " dispatching. Please make sure to set `low_cpu_mem_usage=True`."
            )

Marc Sun's avatar
Marc Sun committed
820
821
822
823
824
825
        if dduf_file:
            if custom_pipeline:
                raise NotImplementedError("Custom pipelines are not supported with DDUF at the moment.")
            if load_connected_pipeline:
                raise NotImplementedError("Connected pipelines are not supported with DDUF at the moment.")

826
827
828
        # 1. Download the checkpoints and configs
        # use snapshot download here to get it working from from_pretrained
        if not os.path.isdir(pretrained_model_name_or_path):
Patrick von Platen's avatar
Patrick von Platen committed
829
830
831
832
833
            if pretrained_model_name_or_path.count("/") > 1:
                raise ValueError(
                    f'The provided pretrained_model_name_or_path "{pretrained_model_name_or_path}"'
                    " is neither a valid local path nor a valid repo id. Please check the parameter."
                )
834
            cached_folder = cls.download(
835
836
837
838
839
                pretrained_model_name_or_path,
                cache_dir=cache_dir,
                force_download=force_download,
                proxies=proxies,
                local_files_only=local_files_only,
840
                token=token,
841
                revision=revision,
842
                from_flax=from_flax,
843
                use_safetensors=use_safetensors,
844
                use_onnx=use_onnx,
845
                custom_pipeline=custom_pipeline,
846
                custom_revision=custom_revision,
847
                variant=variant,
Marc Sun's avatar
Marc Sun committed
848
                dduf_file=dduf_file,
849
                load_connected_pipeline=load_connected_pipeline,
850
                **kwargs,
851
852
853
854
            )
        else:
            cached_folder = pretrained_model_name_or_path

855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
        # The variant filenames can have the legacy sharding checkpoint format that we check and throw
        # a warning if detected.
        if variant is not None and _check_legacy_sharding_variant_format(folder=cached_folder, variant=variant):
            warn_msg = (
                f"Warning: The repository contains sharded checkpoints for variant '{variant}' maybe in a deprecated format. "
                "Please check your files carefully:\n\n"
                "- Correct format example: diffusion_pytorch_model.fp16-00003-of-00003.safetensors\n"
                "- Deprecated format example: diffusion_pytorch_model-00001-of-00002.fp16.safetensors\n\n"
                "If you find any files in the deprecated format:\n"
                "1. Remove all existing checkpoint files for this variant.\n"
                "2. Re-obtain the correct files by running `save_pretrained()`.\n\n"
                "This will ensure you're using the most up-to-date and compatible checkpoint format."
            )
            logger.warning(warn_msg)

Marc Sun's avatar
Marc Sun committed
870
871
872
873
874
875
876
877
878
879
880
        dduf_entries = None
        if dduf_file:
            dduf_file_path = os.path.join(cached_folder, dduf_file)
            dduf_entries = read_dduf_file(dduf_file_path)
            # The reader contains already all the files needed, no need to check it again
            cached_folder = ""

        config_dict = cls.load_config(cached_folder, dduf_entries=dduf_entries)

        if dduf_file:
            _maybe_raise_error_for_incorrect_transformers(config_dict)
881

Patrick von Platen's avatar
Patrick von Platen committed
882
883
884
        # pop out "_ignore_files" as it is only needed for download
        config_dict.pop("_ignore_files", None)

885
        # 2. Define which model components should load variants
886
887
888
889
        # We retrieve the information by matching whether variant model checkpoints exist in the subfolders.
        # Example: `diffusion_pytorch_model.safetensors` -> `diffusion_pytorch_model.fp16.safetensors`
        # with variant being `"fp16"`.
        model_variants = _identify_model_variants(folder=cached_folder, variant=variant, config=config_dict)
890
891
892
        if len(model_variants) == 0 and variant is not None:
            error_message = f"You are trying to load the model files of the `variant={variant}`, but no such modeling files are available."
            raise ValueError(error_message)
893

894
        # 3. Load the pipeline class, if using custom module then load it from the hub
895
        # if we load from explicit class, let's use it
896
897
898
        custom_pipeline, custom_class_name = _resolve_custom_pipeline_and_cls(
            folder=cached_folder, config=config_dict, custom_pipeline=custom_pipeline
        )
899
        pipeline_class = _get_pipeline_class(
900
            cls,
901
            config=config_dict,
902
903
            load_connected_pipeline=load_connected_pipeline,
            custom_pipeline=custom_pipeline,
904
            class_name=custom_class_name,
905
906
            cache_dir=cache_dir,
            revision=custom_revision,
907
        )
908

909
910
911
        if device_map is not None and pipeline_class._load_connected_pipes:
            raise NotImplementedError("`device_map` is not yet supported for connected pipelines.")

912
        # DEPRECATED: To be removed in 1.0.0
913
914
915
916
917
918
919
        # we are deprecating the `StableDiffusionInpaintPipelineLegacy` pipeline which gets loaded
        # when a user requests for a `StableDiffusionInpaintPipeline` with `diffusers` version being <= 0.5.1.
        _maybe_raise_warning_for_inpainting(
            pipeline_class=pipeline_class,
            pretrained_model_name_or_path=pretrained_model_name_or_path,
            config=config_dict,
        )
920

921
922
923
        # 4. Define expected modules given pipeline signature
        # and define non-None initialized modules (=`init_kwargs`)

924
925
926
927
        # some modules can be passed directly to the init
        # in this case they are already instantiated in `kwargs`
        # extract them here
        expected_modules, optional_kwargs = cls._get_signature_keys(pipeline_class)
928
        expected_types = pipeline_class._get_signature_types()
929
930
931
932
        passed_class_obj = {k: kwargs.pop(k) for k in expected_modules if k in kwargs}
        passed_pipe_kwargs = {k: kwargs.pop(k) for k in optional_kwargs if k in kwargs}
        init_dict, unused_kwargs, _ = pipeline_class.extract_init_dict(config_dict, **kwargs)

933
934
935
936
937
938
        # define init kwargs and make sure that optional component modules are filtered out
        init_kwargs = {
            k: init_dict.pop(k)
            for k in optional_kwargs
            if k in init_dict and k not in pipeline_class._optional_components
        }
939
940
941
942
943
944
945
946
947
948
949
950
        init_kwargs = {**init_kwargs, **passed_pipe_kwargs}

        # remove `null` components
        def load_module(name, value):
            if value[0] is None:
                return False
            if name in passed_class_obj and passed_class_obj[name] is None:
                return False
            return True

        init_dict = {k: v for k, v in init_dict.items() if load_module(k, v)}

951
952
953
954
955
956
957
958
        # Special case: safety_checker must be loaded separately when using `from_flax`
        if from_flax and "safety_checker" in init_dict and "safety_checker" not in passed_class_obj:
            raise NotImplementedError(
                "The safety checker cannot be automatically loaded when loading weights `from_flax`."
                " Please, pass `safety_checker=None` to `from_pretrained`, and load the safety checker"
                " separately if you need it."
            )

959
        # 5. Throw nice warnings / errors for fast accelerate loading
960
961
962
963
964
965
966
967
        if len(unused_kwargs) > 0:
            logger.warning(
                f"Keyword arguments {unused_kwargs} are not expected by {pipeline_class.__name__} and will be ignored."
            )

        # import it here to avoid circular import
        from diffusers import pipelines

968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
        # 6. device map delegation
        final_device_map = None
        if device_map is not None:
            final_device_map = _get_final_device_map(
                device_map=device_map,
                pipeline_class=pipeline_class,
                passed_class_obj=passed_class_obj,
                init_dict=init_dict,
                library=library,
                max_memory=max_memory,
                torch_dtype=torch_dtype,
                cached_folder=cached_folder,
                force_download=force_download,
                proxies=proxies,
                local_files_only=local_files_only,
                token=token,
                revision=revision,
            )

        # 7. Load each module in the pipeline
        current_device_map = None
989
        _maybe_warn_for_wrong_component_in_quant_config(init_dict, quantization_config)
990
        for name, (library_name, class_name) in logging.tqdm(init_dict.items(), desc="Loading pipeline components..."):
991
            # 7.1 device_map shenanigans
992
993
994
995
996
997
998
999
1000
            if final_device_map is not None:
                if isinstance(final_device_map, dict) and len(final_device_map) > 0:
                    component_device = final_device_map.get(name, None)
                    if component_device is not None:
                        current_device_map = {"": component_device}
                    else:
                        current_device_map = None
                elif isinstance(final_device_map, str):
                    current_device_map = final_device_map
1001

1002
            # 7.2 - now that JAX/Flax is an official framework of the library, we might load from Flax names
1003
            class_name = class_name[4:] if class_name.startswith("Flax") else class_name
1004

1005
            # 7.3 Define all importable classes
1006
            is_pipeline_module = hasattr(pipelines, library_name)
1007
            importable_classes = ALL_IMPORTABLE_CLASSES
1008
1009
            loaded_sub_model = None

1010
            # 7.4 Use passed sub model or load class_name from library_name
1011
            if name in passed_class_obj:
1012
1013
1014
1015
1016
                # if the model is in a pipeline module, then we load it from the pipeline
                # check that passed_class_obj has correct parent class
                maybe_raise_or_warn(
                    library_name, library, class_name, importable_classes, passed_class_obj, name, is_pipeline_module
                )
1017
1018
1019

                loaded_sub_model = passed_class_obj[name]
            else:
1020
                # load sub model
1021
1022
1023
1024
1025
                sub_model_dtype = (
                    torch_dtype.get(name, torch_dtype.get("default", torch.float32))
                    if isinstance(torch_dtype, dict)
                    else torch_dtype
                )
1026
1027
1028
1029
1030
1031
1032
                loaded_sub_model = load_sub_model(
                    library_name=library_name,
                    class_name=class_name,
                    importable_classes=importable_classes,
                    pipelines=pipelines,
                    is_pipeline_module=is_pipeline_module,
                    pipeline_class=pipeline_class,
1033
                    torch_dtype=sub_model_dtype,
1034
1035
                    provider=provider,
                    sess_options=sess_options,
1036
                    device_map=current_device_map,
1037
1038
1039
                    max_memory=max_memory,
                    offload_folder=offload_folder,
                    offload_state_dict=offload_state_dict,
1040
1041
1042
1043
1044
1045
                    model_variants=model_variants,
                    name=name,
                    from_flax=from_flax,
                    variant=variant,
                    low_cpu_mem_usage=low_cpu_mem_usage,
                    cached_folder=cached_folder,
1046
                    use_safetensors=use_safetensors,
Marc Sun's avatar
Marc Sun committed
1047
                    dduf_entries=dduf_entries,
1048
                    provider_options=provider_options,
1049
                    quantization_config=quantization_config,
1050
                )
1051
1052
1053
                logger.info(
                    f"Loaded {name} as {class_name} from `{name}` subfolder of {pretrained_model_name_or_path}."
                )
1054
1055
1056

            init_kwargs[name] = loaded_sub_model  # UNet(...), # DiffusionSchedule(...)

1057
        # 8. Handle connected pipelines.
1058
        if pipeline_class._load_connected_pipes and os.path.isfile(os.path.join(cached_folder, "README.md")):
1059
1060
1061
1062
1063
1064
1065
            init_kwargs = _update_init_kwargs_with_connected_pipeline(
                init_kwargs=init_kwargs,
                passed_pipe_kwargs=passed_pipe_kwargs,
                passed_class_objs=passed_class_obj,
                folder=cached_folder,
                **kwargs_copied,
            )
1066

1067
        # 9. Potentially add passed objects if expected
1068
1069
1070
1071
1072
1073
1074
        missing_modules = set(expected_modules) - set(init_kwargs.keys())
        passed_modules = list(passed_class_obj.keys())
        optional_modules = pipeline_class._optional_components
        if len(missing_modules) > 0 and missing_modules <= set(passed_modules + optional_modules):
            for module in missing_modules:
                init_kwargs[module] = passed_class_obj.get(module, None)
        elif len(missing_modules) > 0:
1075
            passed_modules = set(list(init_kwargs.keys()) + list(passed_class_obj.keys())) - set(optional_kwargs)
1076
1077
1078
1079
            raise ValueError(
                f"Pipeline {pipeline_class} expected {expected_modules}, but only {passed_modules} were passed."
            )

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
        # 10. Type checking init arguments
        for kw, arg in init_kwargs.items():
            # Too complex to validate with type annotation alone
            if "scheduler" in kw:
                continue
            # Many tokenizer annotations don't include its "Fast" variant, so skip this
            # e.g T5Tokenizer but not T5TokenizerFast
            elif "tokenizer" in kw:
                continue
            elif (
                arg is not None  # Skip if None
                and not expected_types[kw] == (inspect.Signature.empty,)  # Skip if no type annotations
                and not _is_valid_type(arg, expected_types[kw])  # Check type
            ):
                logger.warning(f"Expected types for {kw}: {expected_types[kw]}, got {_get_detailed_type(arg)}.")

        # 11. Instantiate the pipeline
1097
        model = pipeline_class(**init_kwargs)
1098

1099
        # 12. Save where the model was instantiated from
1100
        model.register_to_config(_name_or_path=pretrained_model_name_or_path)
1101
1102
        if device_map is not None:
            setattr(model, "hf_device_map", final_device_map)
1103
1104
        if quantization_config is not None:
            setattr(model, "quantization_config", quantization_config)
1105
1106
        return model

1107
1108
1109
1110
    @property
    def name_or_path(self) -> str:
        return getattr(self.config, "_name_or_path", None)

1111
1112
1113
1114
1115
1116
1117
    @property
    def _execution_device(self):
        r"""
        Returns the device on which the pipeline's models will be executed. After calling
        [`~DiffusionPipeline.enable_sequential_cpu_offload`] the execution device can only be inferred from
        Accelerate's module hooks.
        """
Aryan's avatar
Aryan committed
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
        from ..hooks.group_offloading import _get_group_onload_device

        # When apply group offloading at the leaf_level, we're in the same situation as accelerate's sequential
        # offloading. We need to return the onload device of the group offloading hooks so that the intermediates
        # required for computation (latents, prompt embeddings, etc.) can be created on the correct device.
        for name, model in self.components.items():
            if not isinstance(model, torch.nn.Module):
                continue
            try:
                return _get_group_onload_device(model)
            except ValueError:
                pass

1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
        for name, model in self.components.items():
            if not isinstance(model, torch.nn.Module) or name in self._exclude_from_cpu_offload:
                continue

            if not hasattr(model, "_hf_hook"):
                return self.device
            for module in model.modules():
                if (
                    hasattr(module, "_hf_hook")
                    and hasattr(module._hf_hook, "execution_device")
                    and module._hf_hook.execution_device is not None
                ):
                    return torch.device(module._hf_hook.execution_device)
        return self.device

1146
1147
1148
1149
1150
1151
    def remove_all_hooks(self):
        r"""
        Removes all hooks that were added when using `enable_sequential_cpu_offload` or `enable_model_cpu_offload`.
        """
        for _, model in self.components.items():
            if isinstance(model, torch.nn.Module) and hasattr(model, "_hf_hook"):
1152
                accelerate.hooks.remove_hook_from_module(model, recurse=True)
1153
1154
        self._all_hooks = []

1155
    def enable_model_cpu_offload(self, gpu_id: Optional[int] = None, device: Union[torch.device, str] = None):
1156
1157
        r"""
        Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared
1158
1159
1160
1161
        to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the accelerator when its
        `forward` method is called, and the model remains in accelerator until the next model runs. Memory savings are
        lower than with `enable_sequential_cpu_offload`, but performance is much better due to the iterative execution
        of the `unet`.
1162
1163
1164
1165

        Arguments:
            gpu_id (`int`, *optional*):
                The ID of the accelerator that shall be used in inference. If not specified, it will default to 0.
1166
            device (`torch.Device` or `str`, *optional*, defaults to None):
1167
                The PyTorch device type of the accelerator that shall be used in inference. If not specified, it will
1168
                automatically detect the available accelerator and use.
1169
        """
Aryan's avatar
Aryan committed
1170
1171
        self._maybe_raise_error_if_group_offload_active(raise_error=True)

1172
1173
1174
1175
1176
1177
        is_pipeline_device_mapped = self.hf_device_map is not None and len(self.hf_device_map) > 1
        if is_pipeline_device_mapped:
            raise ValueError(
                "It seems like you have activated a device mapping strategy on the pipeline so calling `enable_model_cpu_offload() isn't allowed. You can call `reset_device_map()` first and then call `enable_model_cpu_offload()`."
            )

1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
        if self.model_cpu_offload_seq is None:
            raise ValueError(
                "Model CPU offload cannot be enabled because no `model_cpu_offload_seq` class attribute is set."
            )

        if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"):
            from accelerate import cpu_offload_with_hook
        else:
            raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.")

1188
1189
        self.remove_all_hooks()

1190
1191
1192
1193
1194
        if device is None:
            device = get_device()
            if device == "cpu":
                raise RuntimeError("`enable_model_cpu_offload` requires accelerator, but not found")

1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
        torch_device = torch.device(device)
        device_index = torch_device.index

        if gpu_id is not None and device_index is not None:
            raise ValueError(
                f"You have passed both `gpu_id`={gpu_id} and an index as part of the passed device `device`={device}"
                f"Cannot pass both. Please make sure to either not define `gpu_id` or not pass the index as part of the device: `device`={torch_device.type}"
            )

        # _offload_gpu_id should be set to passed gpu_id (or id in passed `device`) or default to previously set id or default to 0
1205
        self._offload_gpu_id = gpu_id or torch_device.index or getattr(self, "_offload_gpu_id", 0)
1206
1207
1208

        device_type = torch_device.type
        device = torch.device(f"{device_type}:{self._offload_gpu_id}")
1209
        self._offload_device = device
1210

1211
        self.to("cpu", silence_dtype_warnings=True)
1212
        empty_device_cache(device.type)
1213
1214
1215

        all_model_components = {k: v for k, v in self.components.items() if isinstance(v, torch.nn.Module)}

1216
        self._all_hooks = []
1217
1218
        hook = None
        for model_str in self.model_cpu_offload_seq.split("->"):
1219
            model = all_model_components.pop(model_str, None)
1220

1221
1222
1223
            if not isinstance(model, torch.nn.Module):
                continue

1224
1225
1226
1227
1228
1229
1230
1231
            # This is because the model would already be placed on a CUDA device.
            _, _, is_loaded_in_8bit_bnb = _check_bnb_status(model)
            if is_loaded_in_8bit_bnb:
                logger.info(
                    f"Skipping the hook placement for the {model.__class__.__name__} as it is loaded in `bitsandbytes` 8bit."
                )
                continue

1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
            _, hook = cpu_offload_with_hook(model, device, prev_module_hook=hook)
            self._all_hooks.append(hook)

        # CPU offload models that are not in the seq chain unless they are explicitly excluded
        # these models will stay on CPU until maybe_free_model_hooks is called
        # some models cannot be in the seq chain because they are iteratively called, such as controlnet
        for name, model in all_model_components.items():
            if not isinstance(model, torch.nn.Module):
                continue

            if name in self._exclude_from_cpu_offload:
                model.to(device)
            else:
                _, hook = cpu_offload_with_hook(model, device)
                self._all_hooks.append(hook)

    def maybe_free_model_hooks(self):
        r"""
1250
1251
1252
1253
1254
1255
1256
1257
1258
        Method that performs the following:
        - Offloads all components.
        - Removes all model hooks that were added when using `enable_model_cpu_offload`, and then applies them again.
          In case the model has not been offloaded, this function is a no-op.
        - Resets stateful diffusers hooks of denoiser components if they were added with
          [`~hooks.HookRegistry.register_hook`].

        Make sure to add this function to the end of the `__call__` function of your pipeline so that it functions
        correctly when applying `enable_model_cpu_offload`.
1259
        """
1260
1261
1262
1263
        for component in self.components.values():
            if hasattr(component, "_reset_stateful_cache"):
                component._reset_stateful_cache()

1264
1265
1266
1267
1268
        if not hasattr(self, "_all_hooks") or len(self._all_hooks) == 0:
            # `enable_model_cpu_offload` has not be called, so silently do nothing
            return

        # make sure the model is in the same state as before calling it
1269
        self.enable_model_cpu_offload(device=getattr(self, "_offload_device", "cuda"))
1270

1271
    def enable_sequential_cpu_offload(self, gpu_id: Optional[int] = None, device: Union[torch.device, str] = None):
1272
        r"""
1273
1274
        Offloads all models to CPU using 🤗 Accelerate, significantly reducing memory usage. When called, the state
        dicts of all `torch.nn.Module` components (except those in `self._exclude_from_cpu_offload`) are saved to CPU
1275
1276
        and then moved to `torch.device('meta')` and loaded to accelerator only when their specific submodule has its
        `forward` method called. Offloading happens on a submodule basis. Memory savings are higher than with
1277
        `enable_model_cpu_offload`, but performance is lower.
1278
1279
1280
1281

        Arguments:
            gpu_id (`int`, *optional*):
                The ID of the accelerator that shall be used in inference. If not specified, it will default to 0.
1282
            device (`torch.Device` or `str`, *optional*, defaults to None):
1283
                The PyTorch device type of the accelerator that shall be used in inference. If not specified, it will
1284
                automatically detect the available accelerator and use.
1285
        """
Aryan's avatar
Aryan committed
1286
1287
        self._maybe_raise_error_if_group_offload_active(raise_error=True)

1288
1289
1290
1291
        if is_accelerate_available() and is_accelerate_version(">=", "0.14.0"):
            from accelerate import cpu_offload
        else:
            raise ImportError("`enable_sequential_cpu_offload` requires `accelerate v0.14.0` or higher")
1292
        self.remove_all_hooks()
1293

1294
1295
1296
1297
1298
1299
        is_pipeline_device_mapped = self.hf_device_map is not None and len(self.hf_device_map) > 1
        if is_pipeline_device_mapped:
            raise ValueError(
                "It seems like you have activated a device mapping strategy on the pipeline so calling `enable_sequential_cpu_offload() isn't allowed. You can call `reset_device_map()` first and then call `enable_sequential_cpu_offload()`."
            )

1300
1301
1302
1303
1304
        if device is None:
            device = get_device()
            if device == "cpu":
                raise RuntimeError("`enable_sequential_cpu_offload` requires accelerator, but not found")

1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
        torch_device = torch.device(device)
        device_index = torch_device.index

        if gpu_id is not None and device_index is not None:
            raise ValueError(
                f"You have passed both `gpu_id`={gpu_id} and an index as part of the passed device `device`={device}"
                f"Cannot pass both. Please make sure to either not define `gpu_id` or not pass the index as part of the device: `device`={torch_device.type}"
            )

        # _offload_gpu_id should be set to passed gpu_id (or id in passed `device`) or default to previously set id or default to 0
1315
        self._offload_gpu_id = gpu_id or torch_device.index or getattr(self, "_offload_gpu_id", 0)
1316
1317
1318

        device_type = torch_device.type
        device = torch.device(f"{device_type}:{self._offload_gpu_id}")
1319
        self._offload_device = device
1320
1321

        if self.device.type != "cpu":
1322
            orig_device_type = self.device.type
1323
            self.to("cpu", silence_dtype_warnings=True)
1324
            empty_device_cache(orig_device_type)
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337

        for name, model in self.components.items():
            if not isinstance(model, torch.nn.Module):
                continue

            if name in self._exclude_from_cpu_offload:
                model.to(device)
            else:
                # make sure to offload buffers if not all high level weights
                # are of type nn.Module
                offload_buffers = len(model._parameters) > 0
                cpu_offload(model, device, offload_buffers=offload_buffers)

1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
    def enable_group_offload(
        self,
        onload_device: torch.device,
        offload_device: torch.device = torch.device("cpu"),
        offload_type: str = "block_level",
        num_blocks_per_group: Optional[int] = None,
        non_blocking: bool = False,
        use_stream: bool = False,
        record_stream: bool = False,
        low_cpu_mem_usage=False,
        offload_to_disk_path: Optional[str] = None,
        exclude_modules: Optional[Union[str, List[str]]] = None,
    ) -> None:
        r"""
        Applies group offloading to the internal layers of a torch.nn.Module. To understand what group offloading is,
        and where it is beneficial, we need to first provide some context on how other supported offloading methods
        work.

        Typically, offloading is done at two levels:
        - Module-level: In Diffusers, this can be enabled using the `ModelMixin::enable_model_cpu_offload()` method. It
        works by offloading each component of a pipeline to the CPU for storage, and onloading to the accelerator
        device when needed for computation. This method is more memory-efficient than keeping all components on the
        accelerator, but the memory requirements are still quite high. For this method to work, one needs memory
        equivalent to size of the model in runtime dtype + size of largest intermediate activation tensors to be able
        to complete the forward pass.
        - Leaf-level: In Diffusers, this can be enabled using the `ModelMixin::enable_sequential_cpu_offload()` method.
          It
        works by offloading the lowest leaf-level parameters of the computation graph to the CPU for storage, and
        onloading only the leafs to the accelerator device for computation. This uses the lowest amount of accelerator
        memory, but can be slower due to the excessive number of device synchronizations.

        Group offloading is a middle ground between the two methods. It works by offloading groups of internal layers,
        (either `torch.nn.ModuleList` or `torch.nn.Sequential`). This method uses lower memory than module-level
        offloading. It is also faster than leaf-level/sequential offloading, as the number of device synchronizations
        is reduced.

        Another supported feature (for CUDA devices with support for asynchronous data transfer streams) is the ability
        to overlap data transfer and computation to reduce the overall execution time compared to sequential
        offloading. This is enabled using layer prefetching with streams, i.e., the layer that is to be executed next
        starts onloading to the accelerator device while the current layer is being executed - this increases the
        memory requirements slightly. Note that this implementation also supports leaf-level offloading but can be made
        much faster when using streams.

        Args:
            onload_device (`torch.device`):
                The device to which the group of modules are onloaded.
            offload_device (`torch.device`, defaults to `torch.device("cpu")`):
                The device to which the group of modules are offloaded. This should typically be the CPU. Default is
                CPU.
            offload_type (`str` or `GroupOffloadingType`, defaults to "block_level"):
                The type of offloading to be applied. Can be one of "block_level" or "leaf_level". Default is
                "block_level".
            offload_to_disk_path (`str`, *optional*, defaults to `None`):
                The path to the directory where parameters will be offloaded. Setting this option can be useful in
                limited RAM environment settings where a reasonable speed-memory trade-off is desired.
            num_blocks_per_group (`int`, *optional*):
                The number of blocks per group when using offload_type="block_level". This is required when using
                offload_type="block_level".
            non_blocking (`bool`, defaults to `False`):
                If True, offloading and onloading is done with non-blocking data transfer.
            use_stream (`bool`, defaults to `False`):
                If True, offloading and onloading is done asynchronously using a CUDA stream. This can be useful for
                overlapping computation and data transfer.
            record_stream (`bool`, defaults to `False`): When enabled with `use_stream`, it marks the current tensor
                as having been used by this stream. It is faster at the expense of slightly more memory usage. Refer to
                the [PyTorch official docs](https://pytorch.org/docs/stable/generated/torch.Tensor.record_stream.html)
                more details.
            low_cpu_mem_usage (`bool`, defaults to `False`):
                If True, the CPU memory usage is minimized by pinning tensors on-the-fly instead of pre-pinning them.
                This option only matters when using streamed CPU offloading (i.e. `use_stream=True`). This can be
                useful when the CPU memory is a bottleneck but may counteract the benefits of using streams.
            exclude_modules (`Union[str, List[str]]`, defaults to `None`): List of modules to exclude from offloading.

        Example:
            ```python
            >>> from diffusers import DiffusionPipeline
            >>> import torch

            >>> pipe = DiffusionPipeline.from_pretrained("Qwen/Qwen-Image", torch_dtype=torch.bfloat16)

            >>> pipe.enable_group_offload(
            ...     onload_device=torch.device("cuda"),
            ...     offload_device=torch.device("cpu"),
            ...     offload_type="leaf_level",
            ...     use_stream=True,
            ... )
            >>> image = pipe("a beautiful sunset").images[0]
            ```
        """
        from ..hooks import apply_group_offloading

        if isinstance(exclude_modules, str):
            exclude_modules = [exclude_modules]
        elif exclude_modules is None:
            exclude_modules = []

        unknown = set(exclude_modules) - self.components.keys()
        if unknown:
            logger.info(
                f"The following modules are not present in pipeline: {', '.join(unknown)}. Ignore if this is expected."
            )

        group_offload_kwargs = {
            "onload_device": onload_device,
            "offload_device": offload_device,
            "offload_type": offload_type,
            "num_blocks_per_group": num_blocks_per_group,
            "non_blocking": non_blocking,
            "use_stream": use_stream,
            "record_stream": record_stream,
            "low_cpu_mem_usage": low_cpu_mem_usage,
            "offload_to_disk_path": offload_to_disk_path,
        }
        for name, component in self.components.items():
            if name not in exclude_modules and isinstance(component, torch.nn.Module):
                if hasattr(component, "enable_group_offload"):
                    component.enable_group_offload(**group_offload_kwargs)
                else:
                    apply_group_offloading(module=component, **group_offload_kwargs)

        if exclude_modules:
            for module_name in exclude_modules:
                module = getattr(self, module_name, None)
                if module is not None and isinstance(module, torch.nn.Module):
                    module.to(onload_device)
                    logger.debug(f"Placed `{module_name}` on {onload_device} device as it was in `exclude_modules`.")

1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
    def reset_device_map(self):
        r"""
        Resets the device maps (if any) to None.
        """
        if self.hf_device_map is None:
            return
        else:
            self.remove_all_hooks()
            for name, component in self.components.items():
                if isinstance(component, torch.nn.Module):
                    component.to("cpu")
            self.hf_device_map = None

1478
    @classmethod
1479
    @validate_hf_hub_args
1480
1481
    def download(cls, pretrained_model_name, **kwargs) -> Union[str, os.PathLike]:
        r"""
Steven Liu's avatar
Steven Liu committed
1482
        Download and cache a PyTorch diffusion pipeline from pretrained pipeline weights.
1483
1484

        Parameters:
Steven Liu's avatar
Steven Liu committed
1485
            pretrained_model_name (`str` or `os.PathLike`, *optional*):
Steven Liu's avatar
Steven Liu committed
1486
                A string, the *repository id* (for example `CompVis/ldm-text2im-large-256`) of a pretrained pipeline
Steven Liu's avatar
Steven Liu committed
1487
                hosted on the Hub.
1488
1489
1490
            custom_pipeline (`str`, *optional*):
                Can be either:

Steven Liu's avatar
Steven Liu committed
1491
                    - A string, the *repository id* (for example `CompVis/ldm-text2im-large-256`) of a pretrained
Steven Liu's avatar
Steven Liu committed
1492
1493
                      pipeline hosted on the Hub. The repository must contain a file called `pipeline.py` that defines
                      the custom pipeline.
1494
1495

                    - A string, the *file name* of a community pipeline hosted on GitHub under
Steven Liu's avatar
Steven Liu committed
1496
1497
1498
1499
                      [Community](https://github.com/huggingface/diffusers/tree/main/examples/community). Valid file
                      names must match the file name and not the pipeline script (`clip_guided_stable_diffusion`
                      instead of `clip_guided_stable_diffusion.py`). Community pipelines are always loaded from the
                      current `main` branch of GitHub.
1500

Steven Liu's avatar
Steven Liu committed
1501
1502
                    - A path to a *directory* (`./my_pipeline_directory/`) containing a custom pipeline. The directory
                      must contain a file called `pipeline.py` that defines the custom pipeline.
1503

Steven Liu's avatar
Steven Liu committed
1504
                <Tip warning={true}>
1505

Steven Liu's avatar
Steven Liu committed
1506
                🧪 This is an experimental feature and may change in the future.
1507

Steven Liu's avatar
Steven Liu committed
1508
                </Tip>
1509

Steven Liu's avatar
Steven Liu committed
1510
1511
                For more information on how to load and create custom pipelines, take a look at [How to contribute a
                community pipeline](https://huggingface.co/docs/diffusers/main/en/using-diffusers/contribute_pipeline).
1512
1513
1514
1515

            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
1516

1517
            proxies (`Dict[str, str]`, *optional*):
Steven Liu's avatar
Steven Liu committed
1518
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
1519
1520
1521
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            output_loading_info(`bool`, *optional*, defaults to `False`):
                Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
Steven Liu's avatar
Steven Liu committed
1522
1523
1524
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
1525
            token (`str` or *bool*, *optional*):
Steven Liu's avatar
Steven Liu committed
1526
1527
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
1528
            revision (`str`, *optional*, defaults to `"main"`):
Steven Liu's avatar
Steven Liu committed
1529
1530
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
Steven Liu's avatar
Steven Liu committed
1531
            custom_revision (`str`, *optional*, defaults to `"main"`):
1532
                The specific model version to use. It can be a branch name, a tag name, or a commit id similar to
Steven Liu's avatar
Steven Liu committed
1533
1534
                `revision` when loading a custom pipeline from the Hub. It can be a 🤗 Diffusers version when loading a
                custom pipeline from GitHub, otherwise it defaults to `"main"` when loading from the Hub.
1535
            mirror (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
1536
1537
1538
                Mirror source to resolve accessibility issues if you're downloading a model in China. We do not
                guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
                information.
1539
            variant (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
1540
1541
                Load weights from a specified variant filename such as `"fp16"` or `"ema"`. This is ignored when
                loading `from_flax`.
Marc Sun's avatar
Marc Sun committed
1542
1543
            dduf_file(`str`, *optional*):
                Load weights from the specified DDUF file.
1544
1545
1546
1547
1548
1549
1550
1551
1552
            use_safetensors (`bool`, *optional*, defaults to `None`):
                If set to `None`, the safetensors weights are downloaded if they're available **and** if the
                safetensors library is installed. If set to `True`, the model is forcibly loaded from safetensors
                weights. If set to `False`, safetensors weights are not loaded.
            use_onnx (`bool`, *optional*, defaults to `False`):
                If set to `True`, ONNX weights will always be downloaded if present. If set to `False`, ONNX weights
                will never be downloaded. By default `use_onnx` defaults to the `_is_onnx` class attribute which is
                `False` for non-ONNX pipelines and `True` for ONNX pipelines. ONNX weights include both files ending
                with `.onnx` and `.pb`.
1553
1554
1555
1556
            trust_remote_code (`bool`, *optional*, defaults to `False`):
                Whether or not to allow for custom pipelines and components defined on the Hub in their own files. This
                option should only be set to `True` for repositories you trust and in which you have read the code, as
                it will execute code present on the Hub on your local machine.
Steven Liu's avatar
Steven Liu committed
1557
1558
1559
1560

        Returns:
            `os.PathLike`:
                A path to the downloaded pipeline.
1561
1562
1563

        <Tip>

1564
1565
        To use private or [gated models](https://huggingface.co/docs/hub/models-gated#gated-models), log-in with `hf
        auth login
1566
1567
1568
1569

        </Tip>

        """
1570
        cache_dir = kwargs.pop("cache_dir", None)
1571
1572
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
1573
1574
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
1575
1576
1577
        revision = kwargs.pop("revision", None)
        from_flax = kwargs.pop("from_flax", False)
        custom_pipeline = kwargs.pop("custom_pipeline", None)
1578
        custom_revision = kwargs.pop("custom_revision", None)
1579
        variant = kwargs.pop("variant", None)
1580
        use_safetensors = kwargs.pop("use_safetensors", None)
1581
        use_onnx = kwargs.pop("use_onnx", None)
1582
        load_connected_pipeline = kwargs.pop("load_connected_pipeline", False)
1583
        trust_remote_code = kwargs.pop("trust_remote_code", False)
Marc Sun's avatar
Marc Sun committed
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
        dduf_file: Optional[Dict[str, DDUFEntry]] = kwargs.pop("dduf_file", None)

        if dduf_file:
            if custom_pipeline:
                raise NotImplementedError("Custom pipelines are not supported with DDUF at the moment.")
            if load_connected_pipeline:
                raise NotImplementedError("Connected pipelines are not supported with DDUF at the moment.")
            return _download_dduf_file(
                pretrained_model_name=pretrained_model_name,
                dduf_file=dduf_file,
                pipeline_class_name=cls.__name__,
                cache_dir=cache_dir,
                proxies=proxies,
                local_files_only=local_files_only,
                token=token,
                revision=revision,
            )
1601

1602
1603
        allow_pickle = True if (use_safetensors is None or use_safetensors is False) else False
        use_safetensors = use_safetensors if use_safetensors is not None else True
1604
1605
1606
1607

        allow_patterns = None
        ignore_patterns = None

1608
        model_info_call_error: Optional[Exception] = None
1609
1610
        if not local_files_only:
            try:
1611
                info = model_info(pretrained_model_name, token=token, revision=revision)
1612
            except (HTTPError, OfflineModeIsEnabled, requests.ConnectionError) as e:
1613
                logger.warning(f"Couldn't connect to the Hub: {e}.\nWill try to load from local cache.")
1614
                local_files_only = True
1615
                model_info_call_error = e  # save error to reraise it if model is not cached locally
1616

1617
        if not local_files_only:
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
            config_file = hf_hub_download(
                pretrained_model_name,
                cls.config_name,
                cache_dir=cache_dir,
                revision=revision,
                proxies=proxies,
                force_download=force_download,
                token=token,
            )
            config_dict = cls._dict_from_json_file(config_file)
            ignore_filenames = config_dict.pop("_ignore_files", [])

1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
            filenames = {sibling.rfilename for sibling in info.siblings}
            if variant is not None and _check_legacy_sharding_variant_format(filenames=filenames, variant=variant):
                warn_msg = (
                    f"Warning: The repository contains sharded checkpoints for variant '{variant}' maybe in a deprecated format. "
                    "Please check your files carefully:\n\n"
                    "- Correct format example: diffusion_pytorch_model.fp16-00003-of-00003.safetensors\n"
                    "- Deprecated format example: diffusion_pytorch_model-00001-of-00002.fp16.safetensors\n\n"
                    "If you find any files in the deprecated format:\n"
                    "1. Remove all existing checkpoint files for this variant.\n"
                    "2. Re-obtain the correct files by running `save_pretrained()`.\n\n"
                    "This will ensure you're using the most up-to-date and compatible checkpoint format."
                )
                logger.warning(warn_msg)

1644
            filenames = set(filenames) - set(ignore_filenames)
1645
1646
            if revision in DEPRECATED_REVISION_ARGS and version.parse(
                version.parse(__version__).base_version
Patrick von Platen's avatar
Patrick von Platen committed
1647
            ) >= version.parse("0.22.0"):
1648
                warn_deprecated_model_variant(pretrained_model_name, token, variant, revision, filenames)
1649

1650
            custom_components, folder_names = _get_custom_components_and_folders(
1651
                pretrained_model_name, config_dict, filenames, variant
1652
            )
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
            custom_class_name = None
            if custom_pipeline is None and isinstance(config_dict["_class_name"], (list, tuple)):
                custom_pipeline = config_dict["_class_name"][0]
                custom_class_name = config_dict["_class_name"][1]

            load_pipe_from_hub = custom_pipeline is not None and f"{custom_pipeline}.py" in filenames
            load_components_from_hub = len(custom_components) > 0

            if load_pipe_from_hub and not trust_remote_code:
                raise ValueError(
                    f"The repository for {pretrained_model_name} contains custom code in {custom_pipeline}.py which must be executed to correctly "
                    f"load the model. You can inspect the repository content at https://hf.co/{pretrained_model_name}/blob/main/{custom_pipeline}.py.\n"
                    f"Please pass the argument `trust_remote_code=True` to allow custom code to be run."
                )

            if load_components_from_hub and not trust_remote_code:
                raise ValueError(
1670
1671
                    f"The repository for {pretrained_model_name} contains custom code in {'.py, '.join([os.path.join(k, v) for k, v in custom_components.items()])} which must be executed to correctly "
                    f"load the model. You can inspect the repository content at {', '.join([f'https://hf.co/{pretrained_model_name}/{k}/{v}.py' for k, v in custom_components.items()])}.\n"
1672
1673
1674
                    f"Please pass the argument `trust_remote_code=True` to allow custom code to be run."
                )

1675
1676
            # retrieve passed components that should not be downloaded
            pipeline_class = _get_pipeline_class(
1677
1678
1679
1680
                cls,
                config_dict,
                load_connected_pipeline=load_connected_pipeline,
                custom_pipeline=custom_pipeline,
1681
1682
1683
                repo_id=pretrained_model_name if load_pipe_from_hub else None,
                hub_revision=revision,
                class_name=custom_class_name,
1684
1685
                cache_dir=cache_dir,
                revision=custom_revision,
1686
1687
1688
1689
            )
            expected_components, _ = cls._get_signature_keys(pipeline_class)
            passed_components = [k for k in expected_components if k in kwargs]

1690
1691
1692
1693
            # retrieve the names of the folders containing model weights
            model_folder_names = {
                os.path.split(f)[0] for f in filter_model_files(filenames) if os.path.split(f)[0] in folder_names
            }
1694
1695
1696
1697
            # retrieve all patterns that should not be downloaded and error out when needed
            ignore_patterns = _get_ignore_patterns(
                passed_components,
                model_folder_names,
1698
                filenames,
1699
1700
1701
1702
1703
1704
1705
                use_safetensors,
                from_flax,
                allow_pickle,
                use_onnx,
                pipeline_class._is_onnx,
                variant,
            )
1706

1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
            model_filenames, variant_filenames = variant_compatible_siblings(
                filenames, variant=variant, ignore_patterns=ignore_patterns
            )

            # all filenames compatible with variant will be added
            allow_patterns = list(model_filenames)

            # allow all patterns from non-model folders
            # this enables downloading schedulers, tokenizers, ...
            allow_patterns += [f"{k}/*" for k in folder_names if k not in model_folder_names]
            # add custom component files
            allow_patterns += [f"{k}/{f}.py" for k, f in custom_components.items()]
            # add custom pipeline file
            allow_patterns += [f"{custom_pipeline}.py"] if f"{custom_pipeline}.py" in filenames else []
            # also allow downloading config.json files with the model
            allow_patterns += [os.path.join(k, "config.json") for k in model_folder_names]
            allow_patterns += [
                SCHEDULER_CONFIG_NAME,
                CONFIG_NAME,
                cls.config_name,
                CUSTOM_PIPELINE_FILE_NAME,
            ]

1730
1731
1732
1733
            # Don't download any objects that are passed
            allow_patterns = [
                p for p in allow_patterns if not (len(p.split("/")) == 2 and p.split("/")[0] in passed_components)
            ]
1734
1735
1736
1737

            if pipeline_class._load_connected_pipes:
                allow_patterns.append("README.md")

1738
1739
            # Don't download index files of forbidden patterns either
            ignore_patterns = ignore_patterns + [f"{i}.index.*json" for i in ignore_patterns]
1740
1741
1742
1743
1744
            re_ignore_pattern = [re.compile(fnmatch.translate(p)) for p in ignore_patterns]
            re_allow_pattern = [re.compile(fnmatch.translate(p)) for p in allow_patterns]

            expected_files = [f for f in filenames if not any(p.match(f) for p in re_ignore_pattern)]
            expected_files = [f for f in expected_files if any(p.match(f) for p in re_allow_pattern)]
1745

1746
1747
            snapshot_folder = Path(config_file).parent
            pipeline_is_cached = all((snapshot_folder / f).is_file() for f in expected_files)
1748

1749
            if pipeline_is_cached and not force_download:
1750
1751
1752
                # if the pipeline is cached, we can directly return it
                # else call snapshot_download
                return snapshot_folder
1753

1754
1755
1756
        user_agent = {"pipeline_class": cls.__name__}
        if custom_pipeline is not None and not custom_pipeline.endswith(".py"):
            user_agent["custom_pipeline"] = custom_pipeline
1757
1758

        # download all allow_patterns - ignore_patterns
1759
        try:
1760
            cached_folder = snapshot_download(
1761
1762
1763
1764
                pretrained_model_name,
                cache_dir=cache_dir,
                proxies=proxies,
                local_files_only=local_files_only,
1765
                token=token,
1766
1767
1768
1769
1770
                revision=revision,
                allow_patterns=allow_patterns,
                ignore_patterns=ignore_patterns,
                user_agent=user_agent,
            )
1771

1772
            cls_name = cls.load_config(os.path.join(cached_folder, "model_index.json")).get("_class_name", None)
1773
            cls_name = cls_name[4:] if isinstance(cls_name, str) and cls_name.startswith("Flax") else cls_name
1774

1775
1776
            diffusers_module = importlib.import_module(__name__.split(".")[0])
            pipeline_class = getattr(diffusers_module, cls_name, None) if isinstance(cls_name, str) else None
1777
1778

            if pipeline_class is not None and pipeline_class._load_connected_pipes:
1779
1780
1781
                modelcard = ModelCard.load(os.path.join(cached_folder, "README.md"))
                connected_pipes = sum([getattr(modelcard.data, k, []) for k in CONNECTED_PIPES_KEYS], [])
                for connected_pipe_repo_id in connected_pipes:
1782
1783
1784
1785
1786
                    download_kwargs = {
                        "cache_dir": cache_dir,
                        "force_download": force_download,
                        "proxies": proxies,
                        "local_files_only": local_files_only,
1787
                        "token": token,
1788
1789
1790
1791
                        "variant": variant,
                        "use_safetensors": use_safetensors,
                    }
                    DiffusionPipeline.download(connected_pipe_repo_id, **download_kwargs)
1792
1793
1794

            return cached_folder

1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
        except FileNotFoundError:
            # Means we tried to load pipeline with `local_files_only=True` but the files have not been found in local cache.
            # This can happen in two cases:
            # 1. If the user passed `local_files_only=True`                    => we raise the error directly
            # 2. If we forced `local_files_only=True` when `model_info` failed => we raise the initial error
            if model_info_call_error is None:
                # 1. user passed `local_files_only=True`
                raise
            else:
                # 2. we forced `local_files_only=True` when `model_info` failed
                raise EnvironmentError(
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
1806
                    f"Cannot load model {pretrained_model_name}: model is not cached locally and an error occurred"
1807
1808
1809
                    " while trying to fetch metadata from the Hub. Please check out the root cause in the stacktrace"
                    " above."
                ) from model_info_call_error
1810

1811
1812
    @classmethod
    def _get_signature_keys(cls, obj):
1813
1814
1815
        parameters = inspect.signature(obj.__init__).parameters
        required_parameters = {k: v for k, v in parameters.items() if v.default == inspect._empty}
        optional_parameters = set({k for k, v in parameters.items() if v.default != inspect._empty})
1816
        expected_modules = set(required_parameters.keys()) - {"self"}
1817
1818
1819
1820
1821
1822
1823

        optional_names = list(optional_parameters)
        for name in optional_names:
            if name in cls._optional_components:
                expected_modules.add(name)
                optional_parameters.remove(name)

1824
        return sorted(expected_modules), sorted(optional_parameters)
1825

1826
1827
1828
1829
1830
1831
1832
1833
    @classmethod
    def _get_signature_types(cls):
        signature_types = {}
        for k, v in inspect.signature(cls.__init__).parameters.items():
            if inspect.isclass(v.annotation):
                signature_types[k] = (v.annotation,)
            elif get_origin(v.annotation) == Union:
                signature_types[k] = get_args(v.annotation)
Dhruv Nair's avatar
Dhruv Nair committed
1834
1835
            elif get_origin(v.annotation) in [List, Dict, list, dict]:
                signature_types[k] = (v.annotation,)
1836
1837
1838
1839
            else:
                logger.warning(f"cannot get type annotation for Parameter {k} of {cls}.")
        return signature_types

1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
    @property
    def parameters(self) -> Dict[str, Any]:
        r"""
        The `self.parameters` property can be useful to run different pipelines with the same weights and
        configurations without reallocating additional memory.

        Returns (`dict`):
            A dictionary containing all the optional parameters needed to initialize the pipeline.

        Examples:

        ```py
        >>> from diffusers import (
        ...     StableDiffusionPipeline,
        ...     StableDiffusionImg2ImgPipeline,
        ...     StableDiffusionInpaintPipeline,
        ... )

        >>> text2img = StableDiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5")
        >>> img2img = StableDiffusionImg2ImgPipeline(**text2img.components, **text2img.parameters)
        >>> inpaint = StableDiffusionInpaintPipeline(**text2img.components, **text2img.parameters)
        ```
        """
        expected_modules, optional_parameters = self._get_signature_keys(self)
        pipeline_parameters = {
            k: self.config[k] for k in self.config.keys() if not k.startswith("_") and k in optional_parameters
        }

        return pipeline_parameters

1870
1871
1872
1873
    @property
    def components(self) -> Dict[str, Any]:
        r"""
        The `self.components` property can be useful to run different pipelines with the same weights and
Steven Liu's avatar
Steven Liu committed
1874
1875
1876
1877
        configurations without reallocating additional memory.

        Returns (`dict`):
            A dictionary containing all the modules needed to initialize the pipeline.
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887

        Examples:

        ```py
        >>> from diffusers import (
        ...     StableDiffusionPipeline,
        ...     StableDiffusionImg2ImgPipeline,
        ...     StableDiffusionInpaintPipeline,
        ... )

1888
        >>> text2img = StableDiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5")
1889
1890
1891
1892
1893
1894
1895
1896
1897
        >>> img2img = StableDiffusionImg2ImgPipeline(**text2img.components)
        >>> inpaint = StableDiffusionInpaintPipeline(**text2img.components)
        ```
        """
        expected_modules, optional_parameters = self._get_signature_keys(self)
        components = {
            k: getattr(self, k) for k in self.config.keys() if not k.startswith("_") and k not in optional_parameters
        }

1898
1899
1900
        actual = sorted(set(components.keys()))
        expected = sorted(expected_modules)
        if actual != expected:
1901
1902
            raise ValueError(
                f"{self} has been incorrectly initialized or {self.__class__} is incorrectly implemented. Expected"
1903
                f" {expected} to be defined, but {actual} are defined."
1904
1905
1906
1907
1908
1909
1910
            )

        return components

    @staticmethod
    def numpy_to_pil(images):
        """
Steven Liu's avatar
Steven Liu committed
1911
        Convert a NumPy image or a batch of images to a PIL image.
1912
        """
Patrick von Platen's avatar
Patrick von Platen committed
1913
        return numpy_to_pil(images)
1914

lsb's avatar
lsb committed
1915
    @torch.compiler.disable
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
    def progress_bar(self, iterable=None, total=None):
        if not hasattr(self, "_progress_bar_config"):
            self._progress_bar_config = {}
        elif not isinstance(self._progress_bar_config, dict):
            raise ValueError(
                f"`self._progress_bar_config` should be of type `dict`, but is {type(self._progress_bar_config)}."
            )

        if iterable is not None:
            return tqdm(iterable, **self._progress_bar_config)
        elif total is not None:
            return tqdm(total=total, **self._progress_bar_config)
        else:
            raise ValueError("Either `total` or `iterable` has to be defined.")

    def set_progress_bar_config(self, **kwargs):
        self._progress_bar_config = kwargs

1934
    def enable_xformers_memory_efficient_attention(self, attention_op: Optional[Callable] = None):
1935
        r"""
1936
1937
1938
        Enable memory efficient attention from [xFormers](https://facebookresearch.github.io/xformers/). When this
        option is enabled, you should observe lower GPU memory usage and a potential speed up during inference. Speed
        up during training is not guaranteed.
1939

Steven Liu's avatar
Steven Liu committed
1940
        <Tip warning={true}>
1941

Steven Liu's avatar
Steven Liu committed
1942
1943
1944
1945
        ⚠️ When memory efficient attention and sliced attention are both enabled, memory efficient attention takes
        precedent.

        </Tip>
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965

        Parameters:
            attention_op (`Callable`, *optional*):
                Override the default `None` operator for use as `op` argument to the
                [`memory_efficient_attention()`](https://facebookresearch.github.io/xformers/components/ops.html#xformers.ops.memory_efficient_attention)
                function of xFormers.

        Examples:

        ```py
        >>> import torch
        >>> from diffusers import DiffusionPipeline
        >>> from xformers.ops import MemoryEfficientAttentionFlashAttentionOp

        >>> pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1", torch_dtype=torch.float16)
        >>> pipe = pipe.to("cuda")
        >>> pipe.enable_xformers_memory_efficient_attention(attention_op=MemoryEfficientAttentionFlashAttentionOp)
        >>> # Workaround for not accepting attention shape using VAE for Flash Attention
        >>> pipe.vae.enable_xformers_memory_efficient_attention(attention_op=None)
        ```
1966
        """
1967
        self.set_use_memory_efficient_attention_xformers(True, attention_op)
1968
1969
1970

    def disable_xformers_memory_efficient_attention(self):
        r"""
Steven Liu's avatar
Steven Liu committed
1971
        Disable memory efficient attention from [xFormers](https://facebookresearch.github.io/xformers/).
1972
1973
1974
        """
        self.set_use_memory_efficient_attention_xformers(False)

1975
1976
1977
    def set_use_memory_efficient_attention_xformers(
        self, valid: bool, attention_op: Optional[Callable] = None
    ) -> None:
1978
1979
1980
1981
1982
        # Recursively walk through all the children.
        # Any children which exposes the set_use_memory_efficient_attention_xformers method
        # gets the message
        def fn_recursive_set_mem_eff(module: torch.nn.Module):
            if hasattr(module, "set_use_memory_efficient_attention_xformers"):
1983
                module.set_use_memory_efficient_attention_xformers(valid, attention_op)
1984
1985
1986
1987

            for child in module.children():
                fn_recursive_set_mem_eff(child)

1988
1989
1990
        module_names, _ = self._get_signature_keys(self)
        modules = [getattr(self, n, None) for n in module_names]
        modules = [m for m in modules if isinstance(m, torch.nn.Module)]
1991

1992
1993
        for module in modules:
            fn_recursive_set_mem_eff(module)
1994
1995
1996

    def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"):
        r"""
1997
        Enable sliced attention computation. When this option is enabled, the attention module splits the input tensor
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
        in slices to compute attention in several steps. For more than one attention head, the computation is performed
        sequentially over each head. This is useful to save some memory in exchange for a small speed decrease.

        <Tip warning={true}>

        ⚠️ Don't enable attention slicing if you're already using `scaled_dot_product_attention` (SDPA) from PyTorch
        2.0 or xFormers. These attention computations are already very memory efficient so you won't need to enable
        this function. If you enable attention slicing with SDPA or xFormers, it can lead to serious slow downs!

        </Tip>
2008
2009
2010
2011

        Args:
            slice_size (`str` or `int`, *optional*, defaults to `"auto"`):
                When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
Alexander Pivovarov's avatar
Alexander Pivovarov committed
2012
                `"max"`, maximum amount of memory will be saved by running only one slice at a time. If a number is
2013
2014
                provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
                must be a multiple of `slice_size`.
2015
2016
2017
2018
2019
2020
2021
2022

        Examples:

        ```py
        >>> import torch
        >>> from diffusers import StableDiffusionPipeline

        >>> pipe = StableDiffusionPipeline.from_pretrained(
2023
        ...     "stable-diffusion-v1-5/stable-diffusion-v1-5",
2024
2025
2026
2027
2028
2029
2030
2031
        ...     torch_dtype=torch.float16,
        ...     use_safetensors=True,
        ... )

        >>> prompt = "a photo of an astronaut riding a horse on mars"
        >>> pipe.enable_attention_slicing()
        >>> image = pipe(prompt).images[0]
        ```
2032
2033
2034
2035
2036
        """
        self.set_attention_slice(slice_size)

    def disable_attention_slicing(self):
        r"""
Steven Liu's avatar
Steven Liu committed
2037
2038
        Disable sliced attention computation. If `enable_attention_slicing` was previously called, attention is
        computed in one step.
2039
2040
2041
2042
2043
        """
        # set slice_size = `None` to disable `attention slicing`
        self.enable_attention_slicing(None)

    def set_attention_slice(self, slice_size: Optional[int]):
2044
2045
2046
        module_names, _ = self._get_signature_keys(self)
        modules = [getattr(self, n, None) for n in module_names]
        modules = [m for m in modules if isinstance(m, torch.nn.Module) and hasattr(m, "set_attention_slice")]
2047

2048
2049
        for module in modules:
            module.set_attention_slice(slice_size)
2050

2051
2052
2053
    @classmethod
    def from_pipe(cls, pipeline, **kwargs):
        r"""
2054
2055
        Create a new pipeline from a given pipeline. This method is useful to create a new pipeline from the existing
        pipeline components without reallocating additional memory.
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069

        Arguments:
            pipeline (`DiffusionPipeline`):
                The pipeline from which to create a new pipeline.

        Returns:
            `DiffusionPipeline`:
                A new pipeline with the same weights and configurations as `pipeline`.

        Examples:

        ```py
        >>> from diffusers import StableDiffusionPipeline, StableDiffusionSAGPipeline

2070
        >>> pipe = StableDiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5")
2071
2072
2073
2074
2075
        >>> new_pipe = StableDiffusionSAGPipeline.from_pipe(pipe)
        ```
        """

        original_config = dict(pipeline.config)
2076
        torch_dtype = kwargs.pop("torch_dtype", torch.float32)
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113

        # derive the pipeline class to instantiate
        custom_pipeline = kwargs.pop("custom_pipeline", None)
        custom_revision = kwargs.pop("custom_revision", None)

        if custom_pipeline is not None:
            pipeline_class = _get_custom_pipeline_class(custom_pipeline, revision=custom_revision)
        else:
            pipeline_class = cls

        expected_modules, optional_kwargs = cls._get_signature_keys(pipeline_class)
        # true_optional_modules are optional components with default value in signature so it is ok not to pass them to `__init__`
        # e.g. `image_encoder` for StableDiffusionPipeline
        parameters = inspect.signature(cls.__init__).parameters
        true_optional_modules = set(
            {k for k, v in parameters.items() if v.default != inspect._empty and k in expected_modules}
        )

        # get the class of each component based on its type hint
        # e.g. {"unet": UNet2DConditionModel, "text_encoder": CLIPTextMode}
        component_types = pipeline_class._get_signature_types()

        pretrained_model_name_or_path = original_config.pop("_name_or_path", None)
        # allow users pass modules in `kwargs` to override the original pipeline's components
        passed_class_obj = {k: kwargs.pop(k) for k in expected_modules if k in kwargs}

        original_class_obj = {}
        for name, component in pipeline.components.items():
            if name in expected_modules and name not in passed_class_obj:
                # for model components, we will not switch over if the class does not matches the type hint in the new pipeline's signature
                if (
                    not isinstance(component, ModelMixin)
                    or type(component) in component_types[name]
                    or (component is None and name in cls._optional_components)
                ):
                    original_class_obj[name] = component
                else:
2114
                    logger.warning(
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
                        f"component {name} is not switched over to new pipeline because type does not match the expected."
                        f" {name} is {type(component)} while the new pipeline expect {component_types[name]}."
                        f" please pass the component of the correct type to the new pipeline. `from_pipe(..., {name}={name})`"
                    )

        # allow users pass optional kwargs to override the original pipelines config attribute
        passed_pipe_kwargs = {k: kwargs.pop(k) for k in optional_kwargs if k in kwargs}
        original_pipe_kwargs = {
            k: original_config[k]
            for k in original_config.keys()
            if k in optional_kwargs and k not in passed_pipe_kwargs
        }

        # config attribute that were not expected by pipeline is stored as its private attribute
        # (i.e. when the original pipeline was also instantiated with `from_pipe` from another pipeline that has this config)
        # in this case, we will pass them as optional arguments if they can be accepted by the new pipeline
        additional_pipe_kwargs = [
            k[1:]
            for k in original_config.keys()
            if k.startswith("_") and k[1:] in optional_kwargs and k[1:] not in passed_pipe_kwargs
        ]
        for k in additional_pipe_kwargs:
            original_pipe_kwargs[k] = original_config.pop(f"_{k}")

        pipeline_kwargs = {
            **passed_class_obj,
            **original_class_obj,
            **passed_pipe_kwargs,
            **original_pipe_kwargs,
            **kwargs,
        }

        # store unused config as private attribute in the new pipeline
        unused_original_config = {
            f"{'' if k.startswith('_') else '_'}{k}": v for k, v in original_config.items() if k not in pipeline_kwargs
        }

YiYi Xu's avatar
YiYi Xu committed
2152
2153
2154
2155
2156
        optional_components = (
            pipeline._optional_components
            if hasattr(pipeline, "_optional_components") and pipeline._optional_components
            else []
        )
2157
        missing_modules = (
YiYi Xu's avatar
YiYi Xu committed
2158
            set(expected_modules) - set(optional_components) - set(pipeline_kwargs.keys()) - set(true_optional_modules)
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
        )

        if len(missing_modules) > 0:
            raise ValueError(
                f"Pipeline {pipeline_class} expected {expected_modules}, but only {set(list(passed_class_obj.keys()) + list(original_class_obj.keys()))} were passed"
            )

        new_pipeline = pipeline_class(**pipeline_kwargs)
        if pretrained_model_name_or_path is not None:
            new_pipeline.register_to_config(_name_or_path=pretrained_model_name_or_path)
        new_pipeline.register_to_config(**unused_original_config)

        if torch_dtype is not None:
            new_pipeline.to(dtype=torch_dtype)

        return new_pipeline

Aryan's avatar
Aryan committed
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
    def _maybe_raise_error_if_group_offload_active(
        self, raise_error: bool = False, module: Optional[torch.nn.Module] = None
    ) -> bool:
        from ..hooks.group_offloading import _is_group_offload_enabled

        components = self.components.values() if module is None else [module]
        components = [component for component in components if isinstance(component, torch.nn.Module)]
        for component in components:
            if _is_group_offload_enabled(component):
                if raise_error:
                    raise ValueError(
                        "You are trying to apply model/sequential CPU offloading to a pipeline that contains components "
                        "with group offloading enabled. This is not supported. Please disable group offloading for "
                        "components of the pipeline to use other offloading methods."
                    )
                return True
        return False

2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204

class StableDiffusionMixin:
    r"""
    Helper for DiffusionPipeline with vae and unet.(mainly for LDM such as stable diffusion)
    """

    def enable_vae_slicing(self):
        r"""
        Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
        compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
        """
2205
2206
2207
2208
2209
2210
        depr_message = f"Calling `enable_vae_slicing()` on a `{self.__class__.__name__}` is deprecated and this method will be removed in a future version. Please use `pipe.vae.enable_slicing()`."
        deprecate(
            "enable_vae_slicing",
            "0.40.0",
            depr_message,
        )
2211
2212
2213
2214
2215
2216
2217
        self.vae.enable_slicing()

    def disable_vae_slicing(self):
        r"""
        Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
        computing decoding in one step.
        """
2218
2219
2220
2221
2222
2223
        depr_message = f"Calling `disable_vae_slicing()` on a `{self.__class__.__name__}` is deprecated and this method will be removed in a future version. Please use `pipe.vae.disable_slicing()`."
        deprecate(
            "disable_vae_slicing",
            "0.40.0",
            depr_message,
        )
2224
2225
2226
2227
2228
2229
2230
2231
        self.vae.disable_slicing()

    def enable_vae_tiling(self):
        r"""
        Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
        compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
        processing larger images.
        """
2232
2233
2234
2235
2236
2237
        depr_message = f"Calling `enable_vae_tiling()` on a `{self.__class__.__name__}` is deprecated and this method will be removed in a future version. Please use `pipe.vae.enable_tiling()`."
        deprecate(
            "enable_vae_tiling",
            "0.40.0",
            depr_message,
        )
2238
2239
2240
2241
2242
2243
2244
        self.vae.enable_tiling()

    def disable_vae_tiling(self):
        r"""
        Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
        computing decoding in one step.
        """
2245
2246
2247
2248
2249
2250
        depr_message = f"Calling `disable_vae_tiling()` on a `{self.__class__.__name__}` is deprecated and this method will be removed in a future version. Please use `pipe.vae.disable_tiling()`."
        deprecate(
            "disable_vae_tiling",
            "0.40.0",
            depr_message,
        )
2251
2252
2253
        self.vae.disable_tiling()

    def enable_freeu(self, s1: float, s2: float, b1: float, b2: float):
Quentin Gallouédec's avatar
Quentin Gallouédec committed
2254
        r"""Enables the FreeU mechanism as in https://huggingface.co/papers/2309.11497.
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280

        The suffixes after the scaling factors represent the stages where they are being applied.

        Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of the values
        that are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL.

        Args:
            s1 (`float`):
                Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to
                mitigate "oversmoothing effect" in the enhanced denoising process.
            s2 (`float`):
                Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to
                mitigate "oversmoothing effect" in the enhanced denoising process.
            b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features.
            b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features.
        """
        if not hasattr(self, "unet"):
            raise ValueError("The pipeline must have `unet` for using FreeU.")
        self.unet.enable_freeu(s1=s1, s2=s2, b1=b1, b2=b2)

    def disable_freeu(self):
        """Disables the FreeU mechanism if enabled."""
        self.unet.disable_freeu()

    def fuse_qkv_projections(self, unet: bool = True, vae: bool = True):
        """
2281
2282
        Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value)
        are fused. For cross-attention modules, key and value projection matrices are fused.
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336

        <Tip warning={true}>

        This API is 🧪 experimental.

        </Tip>

        Args:
            unet (`bool`, defaults to `True`): To apply fusion on the UNet.
            vae (`bool`, defaults to `True`): To apply fusion on the VAE.
        """
        self.fusing_unet = False
        self.fusing_vae = False

        if unet:
            self.fusing_unet = True
            self.unet.fuse_qkv_projections()
            self.unet.set_attn_processor(FusedAttnProcessor2_0())

        if vae:
            if not isinstance(self.vae, AutoencoderKL):
                raise ValueError("`fuse_qkv_projections()` is only supported for the VAE of type `AutoencoderKL`.")

            self.fusing_vae = True
            self.vae.fuse_qkv_projections()
            self.vae.set_attn_processor(FusedAttnProcessor2_0())

    def unfuse_qkv_projections(self, unet: bool = True, vae: bool = True):
        """Disable QKV projection fusion if enabled.

        <Tip warning={true}>

        This API is 🧪 experimental.

        </Tip>

        Args:
            unet (`bool`, defaults to `True`): To apply fusion on the UNet.
            vae (`bool`, defaults to `True`): To apply fusion on the VAE.

        """
        if unet:
            if not self.fusing_unet:
                logger.warning("The UNet was not initially fused for QKV projections. Doing nothing.")
            else:
                self.unet.unfuse_qkv_projections()
                self.fusing_unet = False

        if vae:
            if not self.fusing_vae:
                logger.warning("The VAE was not initially fused for QKV projections. Doing nothing.")
            else:
                self.vae.unfuse_qkv_projections()
                self.fusing_vae = False