pipeline_utils.py 99.5 KB
Newer Older
1
# coding=utf-8
2
# Copyright 2025 The HuggingFace Inc. team.
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright (c) 2022, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
16
import fnmatch
17
18
19
import importlib
import inspect
import os
20
import re
21
import sys
22
23
from dataclasses import dataclass
from pathlib import Path
24
from typing import Any, Callable, Dict, List, Optional, Union, get_args, get_origin
25
26

import numpy as np
Anh71me's avatar
Anh71me committed
27
import PIL.Image
28
import requests
29
import torch
30
from huggingface_hub import (
Marc Sun's avatar
Marc Sun committed
31
    DDUFEntry,
32
33
34
35
    ModelCard,
    create_repo,
    hf_hub_download,
    model_info,
Marc Sun's avatar
Marc Sun committed
36
    read_dduf_file,
37
38
    snapshot_download,
)
39
from huggingface_hub.utils import OfflineModeIsEnabled, validate_hf_hub_args
40
from packaging import version
41
from requests.exceptions import HTTPError
42
from tqdm.auto import tqdm
43
from typing_extensions import Self
44

45
from .. import __version__
46
from ..configuration_utils import ConfigMixin
47
48
from ..models import AutoencoderKL
from ..models.attention_processor import FusedAttnProcessor2_0
49
from ..models.modeling_utils import _LOW_CPU_MEM_USAGE_DEFAULT, ModelMixin
50
from ..quantizers.bitsandbytes.utils import _check_bnb_status
51
52
53
from ..schedulers.scheduling_utils import SCHEDULER_CONFIG_NAME
from ..utils import (
    CONFIG_NAME,
54
    DEPRECATED_REVISION_ARGS,
55
    BaseOutput,
56
    PushToHubMixin,
57
58
    _get_detailed_type,
    _is_valid_type,
59
    is_accelerate_available,
60
    is_accelerate_version,
Mengqing Cao's avatar
Mengqing Cao committed
61
    is_torch_npu_available,
62
    is_torch_version,
63
    is_transformers_version,
64
    logging,
Patrick von Platen's avatar
Patrick von Platen committed
65
    numpy_to_pil,
66
)
67
from ..utils.hub_utils import _check_legacy_sharding_variant_format, load_or_create_model_card, populate_model_card
Dhruv Nair's avatar
Dhruv Nair committed
68
from ..utils.torch_utils import is_compiled_module
Mengqing Cao's avatar
Mengqing Cao committed
69
70
71
72
73


if is_torch_npu_available():
    import torch_npu  # noqa: F401

74
75
76
77
78
from .pipeline_loading_utils import (
    ALL_IMPORTABLE_CLASSES,
    CONNECTED_PIPES_KEYS,
    CUSTOM_PIPELINE_FILE_NAME,
    LOADABLE_CLASSES,
Marc Sun's avatar
Marc Sun committed
79
    _download_dduf_file,
80
    _fetch_class_library_tuple,
81
    _get_custom_components_and_folders,
82
    _get_custom_pipeline_class,
83
    _get_final_device_map,
84
    _get_ignore_patterns,
85
    _get_pipeline_class,
86
    _identify_model_variants,
Marc Sun's avatar
Marc Sun committed
87
    _maybe_raise_error_for_incorrect_transformers,
88
89
    _maybe_raise_warning_for_inpainting,
    _resolve_custom_pipeline_and_cls,
90
    _unwrap_model,
91
    _update_init_kwargs_with_connected_pipeline,
92
    filter_model_files,
93
94
95
96
97
    load_sub_model,
    maybe_raise_or_warn,
    variant_compatible_siblings,
    warn_deprecated_model_variant,
)
98
99


100
101
102
103
if is_accelerate_available():
    import accelerate


104
105
106
LIBRARIES = []
for library in LOADABLE_CLASSES:
    LIBRARIES.append(library)
107

108
109
SUPPORTED_DEVICE_MAP = ["balanced"]

110
111
112
113
114
115
116
117
118
119
logger = logging.get_logger(__name__)


@dataclass
class ImagePipelineOutput(BaseOutput):
    """
    Output class for image pipelines.

    Args:
        images (`List[PIL.Image.Image]` or `np.ndarray`)
Steven Liu's avatar
Steven Liu committed
120
121
            List of denoised PIL images of length `batch_size` or NumPy array of shape `(batch_size, height, width,
            num_channels)`.
122
123
124
125
126
127
128
129
130
131
132
133
    """

    images: Union[List[PIL.Image.Image], np.ndarray]


@dataclass
class AudioPipelineOutput(BaseOutput):
    """
    Output class for audio pipelines.

    Args:
        audios (`np.ndarray`)
Steven Liu's avatar
Steven Liu committed
134
            List of denoised audio samples of a NumPy array of shape `(batch_size, num_channels, sample_rate)`.
135
136
137
138
139
    """

    audios: np.ndarray


140
class DiffusionPipeline(ConfigMixin, PushToHubMixin):
141
    r"""
Steven Liu's avatar
Steven Liu committed
142
    Base class for all pipelines.
143

Steven Liu's avatar
Steven Liu committed
144
145
    [`DiffusionPipeline`] stores all components (models, schedulers, and processors) for diffusion pipelines and
    provides methods for loading, downloading and saving models. It also includes methods to:
146
147

        - move all PyTorch modules to the device of your choice
148
        - enable/disable the progress bar for the denoising iteration
149
150
151

    Class attributes:

Steven Liu's avatar
Steven Liu committed
152
153
        - **config_name** (`str`) -- The configuration filename that stores the class and module names of all the
          diffusion pipeline's components.
154
        - **_optional_components** (`List[str]`) -- List of all optional components that don't have to be passed to the
Steven Liu's avatar
Steven Liu committed
155
          pipeline to function (should be overridden by subclasses).
156
    """
157

158
    config_name = "model_index.json"
159
    model_cpu_offload_seq = None
160
    hf_device_map = None
161
    _optional_components = []
162
    _exclude_from_cpu_offload = []
163
    _load_connected_pipes = False
164
    _is_onnx = False
165
166
167
168

    def register_modules(self, **kwargs):
        for name, module in kwargs.items():
            # retrieve library
169
            if module is None or isinstance(module, (tuple, list)) and module[0] is None:
170
171
                register_dict = {name: (None, None)}
            else:
172
                library, class_name = _fetch_class_library_tuple(module)
173
174
175
176
177
178
179
180
                register_dict = {name: (library, class_name)}

            # save model index config
            self.register_to_config(**register_dict)

            # set models
            setattr(self, name, module)

181
    def __setattr__(self, name: str, value: Any):
182
        if name in self.__dict__ and hasattr(self.config, name):
183
184
            # We need to overwrite the config if name exists in config
            if isinstance(getattr(self.config, name), (tuple, list)):
185
                if value is not None and self.config[name][0] is not None:
186
                    class_library_tuple = _fetch_class_library_tuple(value)
187
188
189
190
191
192
193
194
195
                else:
                    class_library_tuple = (None, None)

                self.register_to_config(**{name: class_library_tuple})
            else:
                self.register_to_config(**{name: value})

        super().__setattr__(name, value)

196
197
198
    def save_pretrained(
        self,
        save_directory: Union[str, os.PathLike],
199
        safe_serialization: bool = True,
200
        variant: Optional[str] = None,
201
        max_shard_size: Optional[Union[int, str]] = None,
202
203
        push_to_hub: bool = False,
        **kwargs,
204
205
    ):
        """
Steven Liu's avatar
Steven Liu committed
206
207
208
        Save all saveable variables of the pipeline to a directory. A pipeline variable can be saved and loaded if its
        class implements both a save and loading method. The pipeline is easily reloaded using the
        [`~DiffusionPipeline.from_pretrained`] class method.
209
210
211

        Arguments:
            save_directory (`str` or `os.PathLike`):
Steven Liu's avatar
Steven Liu committed
212
                Directory to save a pipeline to. Will be created if it doesn't exist.
213
            safe_serialization (`bool`, *optional*, defaults to `True`):
Steven Liu's avatar
Steven Liu committed
214
                Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
215
            variant (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
216
                If specified, weights are saved in the format `pytorch_model.<variant>.bin`.
217
            max_shard_size (`int` or `str`, defaults to `None`):
218
219
220
221
222
223
                The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size
                lower than this size. If expressed as a string, needs to be digits followed by a unit (like `"5GB"`).
                If expressed as an integer, the unit is bytes. Note that this limit will be decreased after a certain
                period of time (starting from Oct 2024) to allow users to upgrade to the latest version of `diffusers`.
                This is to establish a common default size for this argument across different libraries in the Hugging
                Face ecosystem (`transformers`, and `accelerate`, for example).
224
225
226
227
            push_to_hub (`bool`, *optional*, defaults to `False`):
                Whether or not to push your model to the Hugging Face model hub after saving it. You can specify the
                repository you want to push to with `repo_id` (will default to the name of `save_directory` in your
                namespace).
Marc Sun's avatar
Marc Sun committed
228

229
230
            kwargs (`Dict[str, Any]`, *optional*):
                Additional keyword arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method.
231
232
        """
        model_index_dict = dict(self.config)
233
234
        model_index_dict.pop("_class_name", None)
        model_index_dict.pop("_diffusers_version", None)
235
        model_index_dict.pop("_module", None)
236
        model_index_dict.pop("_name_or_path", None)
237

238
239
        if push_to_hub:
            commit_message = kwargs.pop("commit_message", None)
240
            private = kwargs.pop("private", None)
241
242
243
244
245
            create_pr = kwargs.pop("create_pr", False)
            token = kwargs.pop("token", None)
            repo_id = kwargs.pop("repo_id", save_directory.split(os.path.sep)[-1])
            repo_id = create_repo(repo_id, exist_ok=True, private=private, token=token).repo_id

246
247
248
249
250
251
252
253
254
255
256
257
258
259
        expected_modules, optional_kwargs = self._get_signature_keys(self)

        def is_saveable_module(name, value):
            if name not in expected_modules:
                return False
            if name in self._optional_components and value[0] is None:
                return False
            return True

        model_index_dict = {k: v for k, v in model_index_dict.items() if is_saveable_module(k, v)}
        for pipeline_component_name in model_index_dict.keys():
            sub_model = getattr(self, pipeline_component_name)
            model_cls = sub_model.__class__

260
261
262
            # Dynamo wraps the original model in a private class.
            # I didn't find a public API to get the original class.
            if is_compiled_module(sub_model):
263
                sub_model = _unwrap_model(sub_model)
264
265
                model_cls = sub_model.__class__

266
267
268
            save_method_name = None
            # search for the model's base class in LOADABLE_CLASSES
            for library_name, library_classes in LOADABLE_CLASSES.items():
269
270
271
272
273
274
275
                if library_name in sys.modules:
                    library = importlib.import_module(library_name)
                else:
                    logger.info(
                        f"{library_name} is not installed. Cannot save {pipeline_component_name} as {library_classes} from {library_name}"
                    )

276
277
278
279
280
281
282
283
284
                for base_class, save_load_methods in library_classes.items():
                    class_candidate = getattr(library, base_class, None)
                    if class_candidate is not None and issubclass(model_cls, class_candidate):
                        # if we found a suitable base class in LOADABLE_CLASSES then grab its save method
                        save_method_name = save_load_methods[0]
                        break
                if save_method_name is not None:
                    break

285
            if save_method_name is None:
286
287
288
                logger.warning(
                    f"self.{pipeline_component_name}={sub_model} of type {type(sub_model)} cannot be saved."
                )
289
290
291
292
                # make sure that unsaveable components are not tried to be loaded afterward
                self.register_to_config(**{pipeline_component_name: (None, None)})
                continue

293
294
295
296
297
            save_method = getattr(sub_model, save_method_name)

            # Call the save method with the argument safe_serialization only if it's supported
            save_method_signature = inspect.signature(save_method)
            save_method_accept_safe = "safe_serialization" in save_method_signature.parameters
298
            save_method_accept_variant = "variant" in save_method_signature.parameters
299
            save_method_accept_max_shard_size = "max_shard_size" in save_method_signature.parameters
300
301

            save_kwargs = {}
302
            if save_method_accept_safe:
303
304
305
                save_kwargs["safe_serialization"] = safe_serialization
            if save_method_accept_variant:
                save_kwargs["variant"] = variant
306
307
            if save_method_accept_max_shard_size and max_shard_size is not None:
                # max_shard_size is expected to not be None in ModelMixin
308
                save_kwargs["max_shard_size"] = max_shard_size
309
310

            save_method(os.path.join(save_directory, pipeline_component_name), **save_kwargs)
311

312
313
314
        # finally save the config
        self.save_config(save_directory)

315
        if push_to_hub:
316
317
318
319
320
            # Create a new empty model card and eventually tag it
            model_card = load_or_create_model_card(repo_id, token=token, is_pipeline=True)
            model_card = populate_model_card(model_card)
            model_card.save(os.path.join(save_directory, "README.md"))

321
322
323
324
325
326
327
328
            self._upload_folder(
                save_directory,
                repo_id,
                token=token,
                commit_message=commit_message,
                create_pr=create_pr,
            )

329
    def to(self, *args, **kwargs) -> Self:
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
        r"""
        Performs Pipeline dtype and/or device conversion. A torch.dtype and torch.device are inferred from the
        arguments of `self.to(*args, **kwargs).`

        <Tip>

            If the pipeline already has the correct torch.dtype and torch.device, then it is returned as is. Otherwise,
            the returned pipeline is a copy of self with the desired torch.dtype and torch.device.

        </Tip>


        Here are the ways to call `to`:

        - `to(dtype, silence_dtype_warnings=False) → DiffusionPipeline` to return a pipeline with the specified
          [`dtype`](https://pytorch.org/docs/stable/tensor_attributes.html#torch.dtype)
        - `to(device, silence_dtype_warnings=False) → DiffusionPipeline` to return a pipeline with the specified
          [`device`](https://pytorch.org/docs/stable/tensor_attributes.html#torch.device)
        - `to(device=None, dtype=None, silence_dtype_warnings=False) → DiffusionPipeline` to return a pipeline with the
          specified [`device`](https://pytorch.org/docs/stable/tensor_attributes.html#torch.device) and
          [`dtype`](https://pytorch.org/docs/stable/tensor_attributes.html#torch.dtype)

        Arguments:
            dtype (`torch.dtype`, *optional*):
                Returns a pipeline with the specified
                [`dtype`](https://pytorch.org/docs/stable/tensor_attributes.html#torch.dtype)
            device (`torch.Device`, *optional*):
                Returns a pipeline with the specified
                [`device`](https://pytorch.org/docs/stable/tensor_attributes.html#torch.device)
            silence_dtype_warnings (`str`, *optional*, defaults to `False`):
                Whether to omit warnings if the target `dtype` is not compatible with the target `device`.

        Returns:
            [`DiffusionPipeline`]: The pipeline converted to specified `dtype` and/or `dtype`.
        """
365
366
        dtype = kwargs.pop("dtype", None)
        device = kwargs.pop("device", None)
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
        silence_dtype_warnings = kwargs.pop("silence_dtype_warnings", False)

        dtype_arg = None
        device_arg = None
        if len(args) == 1:
            if isinstance(args[0], torch.dtype):
                dtype_arg = args[0]
            else:
                device_arg = torch.device(args[0]) if args[0] is not None else None
        elif len(args) == 2:
            if isinstance(args[0], torch.dtype):
                raise ValueError(
                    "When passing two arguments, make sure the first corresponds to `device` and the second to `dtype`."
                )
            device_arg = torch.device(args[0]) if args[0] is not None else None
            dtype_arg = args[1]
        elif len(args) > 2:
            raise ValueError("Please make sure to pass at most two arguments (`device` and `dtype`) `.to(...)`")

        if dtype is not None and dtype_arg is not None:
            raise ValueError(
                "You have passed `dtype` both as an argument and as a keyword argument. Please only pass one of the two."
            )

        dtype = dtype or dtype_arg

        if device is not None and device_arg is not None:
            raise ValueError(
                "You have passed `device` both as an argument and as a keyword argument. Please only pass one of the two."
            )

        device = device or device_arg
Aryan's avatar
Aryan committed
399
        device_type = torch.device(device).type if device is not None else None
400
        pipeline_has_bnb = any(any((_check_bnb_status(module))) for _, module in self.components.items())
401

402
403
404
405
406
        # throw warning if pipeline is in "offloaded"-mode but user tries to manually set to GPU.
        def module_is_sequentially_offloaded(module):
            if not is_accelerate_available() or is_accelerate_version("<", "0.14.0"):
                return False

407
408
409
410
411
            return hasattr(module, "_hf_hook") and (
                isinstance(module._hf_hook, accelerate.hooks.AlignDevicesHook)
                or hasattr(module._hf_hook, "hooks")
                and isinstance(module._hf_hook.hooks[0], accelerate.hooks.AlignDevicesHook)
            )
412
413
414
415
416
417
418
419
420
421
422

        def module_is_offloaded(module):
            if not is_accelerate_available() or is_accelerate_version("<", "0.17.0.dev0"):
                return False

            return hasattr(module, "_hf_hook") and isinstance(module._hf_hook, accelerate.hooks.CpuOffload)

        # .to("cuda") would raise an error if the pipeline is sequentially offloaded, so we raise our own to make it clearer
        pipeline_is_sequentially_offloaded = any(
            module_is_sequentially_offloaded(module) for _, module in self.components.items()
        )
423
424
425
426
427
428
429

        is_pipeline_device_mapped = self.hf_device_map is not None and len(self.hf_device_map) > 1
        if is_pipeline_device_mapped:
            raise ValueError(
                "It seems like you have activated a device mapping strategy on the pipeline which doesn't allow explicit device placement using `to()`. You can call `reset_device_map()` to remove the existing device map from the pipeline."
            )

430
        if device_type in ["cuda", "xpu"]:
431
432
433
434
435
436
437
438
439
            if pipeline_is_sequentially_offloaded and not pipeline_has_bnb:
                raise ValueError(
                    "It seems like you have activated sequential model offloading by calling `enable_sequential_cpu_offload`, but are now attempting to move the pipeline to GPU. This is not compatible with offloading. Please, move your pipeline `.to('cpu')` or consider removing the move altogether if you use sequential offloading."
                )
            # PR: https://github.com/huggingface/accelerate/pull/3223/
            elif pipeline_has_bnb and is_accelerate_version("<", "1.1.0.dev0"):
                raise ValueError(
                    "You are trying to call `.to('cuda')` on a pipeline that has models quantized with `bitsandbytes`. Your current `accelerate` installation does not support it. Please upgrade the installation."
                )
440
441
442

        # Display a warning in this case (the operation succeeds but the benefits are lost)
        pipeline_is_offloaded = any(module_is_offloaded(module) for _, module in self.components.items())
443
        if pipeline_is_offloaded and device_type in ["cuda", "xpu"]:
444
445
446
447
            logger.warning(
                f"It seems like you have activated model offloading by calling `enable_model_cpu_offload`, but are now manually moving the pipeline to GPU. It is strongly recommended against doing so as memory gains from offloading are likely to be lost. Offloading automatically takes care of moving the individual components {', '.join(self.components.keys())} to GPU when needed. To make sure offloading works as expected, you should consider moving the pipeline back to CPU: `pipeline.to('cpu')` or removing the move altogether if you use offloading."
            )

448
        module_names, _ = self._get_signature_keys(self)
449
450
        modules = [getattr(self, n, None) for n in module_names]
        modules = [m for m in modules if isinstance(m, torch.nn.Module)]
451

452
        is_offloaded = pipeline_is_offloaded or pipeline_is_sequentially_offloaded
453
        for module in modules:
454
            _, is_loaded_in_4bit_bnb, is_loaded_in_8bit_bnb = _check_bnb_status(module)
Aryan's avatar
Aryan committed
455
            is_group_offloaded = self._maybe_raise_error_if_group_offload_active(module=module)
Patrick von Platen's avatar
Patrick von Platen committed
456

457
            if (is_loaded_in_4bit_bnb or is_loaded_in_8bit_bnb) and dtype is not None:
Patrick von Platen's avatar
Patrick von Platen committed
458
                logger.warning(
459
                    f"The module '{module.__class__.__name__}' has been loaded in `bitsandbytes` {'4bit' if is_loaded_in_4bit_bnb else '8bit'} and conversion to {dtype} is not supported. Module is still in {'4bit' if is_loaded_in_4bit_bnb else '8bit'} precision."
Patrick von Platen's avatar
Patrick von Platen committed
460
461
                )

462
            if is_loaded_in_8bit_bnb and device is not None:
Patrick von Platen's avatar
Patrick von Platen committed
463
                logger.warning(
464
                    f"The module '{module.__class__.__name__}' has been loaded in `bitsandbytes` 8bit and moving it to {device} via `.to()` is not supported. Module is still on {module.device}."
Patrick von Platen's avatar
Patrick von Platen committed
465
                )
466

Aryan's avatar
Aryan committed
467
468
469
470
471
472
473
474
475
476
            # Note: we also handle this at the ModelMixin level. The reason for doing it here too is that modeling
            # components can be from outside diffusers too, but still have group offloading enabled.
            if (
                self._maybe_raise_error_if_group_offload_active(raise_error=False, module=module)
                and device is not None
            ):
                logger.warning(
                    f"The module '{module.__class__.__name__}' is group offloaded and moving it to {device} via `.to()` is not supported."
                )

477
478
479
480
            # This can happen for `transformer` models. CPU placement was added in
            # https://github.com/huggingface/transformers/pull/33122. So, we guard this accordingly.
            if is_loaded_in_4bit_bnb and device is not None and is_transformers_version(">", "4.44.0"):
                module.to(device=device)
Aryan's avatar
Aryan committed
481
            elif not is_loaded_in_4bit_bnb and not is_loaded_in_8bit_bnb and not is_group_offloaded:
482
                module.to(device, dtype)
Patrick von Platen's avatar
Patrick von Platen committed
483

484
485
            if (
                module.dtype == torch.float16
486
                and str(device) in ["cpu"]
487
488
489
490
                and not silence_dtype_warnings
                and not is_offloaded
            ):
                logger.warning(
491
                    "Pipelines loaded with `dtype=torch.float16` cannot run with `cpu` device. It"
492
493
494
495
496
                    " is not recommended to move them to `cpu` as running them will fail. Please make"
                    " sure to use an accelerator to run the pipeline in inference, due to the lack of"
                    " support for`float16` operations on this device in PyTorch. Please, remove the"
                    " `torch_dtype=torch.float16` argument, or use another device for inference."
                )
497
498
499
500
501
502
503
504
        return self

    @property
    def device(self) -> torch.device:
        r"""
        Returns:
            `torch.device`: The torch device on which the pipeline is located.
        """
505
        module_names, _ = self._get_signature_keys(self)
506
507
508
509
510
        modules = [getattr(self, n, None) for n in module_names]
        modules = [m for m in modules if isinstance(m, torch.nn.Module)]

        for module in modules:
            return module.device
511

512
513
        return torch.device("cpu")

514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
    @property
    def dtype(self) -> torch.dtype:
        r"""
        Returns:
            `torch.dtype`: The torch dtype on which the pipeline is located.
        """
        module_names, _ = self._get_signature_keys(self)
        modules = [getattr(self, n, None) for n in module_names]
        modules = [m for m in modules if isinstance(m, torch.nn.Module)]

        for module in modules:
            return module.dtype

        return torch.float32

529
    @classmethod
530
    @validate_hf_hub_args
531
    def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs) -> Self:
532
        r"""
Steven Liu's avatar
Steven Liu committed
533
        Instantiate a PyTorch diffusion pipeline from pretrained pipeline weights.
534

Steven Liu's avatar
Steven Liu committed
535
        The pipeline is set in evaluation mode (`model.eval()`) by default.
536

Steven Liu's avatar
Steven Liu committed
537
        If you get the error message below, you need to finetune the weights for your downstream task:
538

Steven Liu's avatar
Steven Liu committed
539
        ```
540
        Some weights of UNet2DConditionModel were not initialized from the model checkpoint at stable-diffusion-v1-5/stable-diffusion-v1-5 and are newly initialized because the shapes did not match:
Steven Liu's avatar
Steven Liu committed
541
542
543
        - conv_in.weight: found shape torch.Size([320, 4, 3, 3]) in the checkpoint and torch.Size([320, 9, 3, 3]) in the model instantiated
        You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
        ```
544
545
546
547
548

        Parameters:
            pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*):
                Can be either:

Steven Liu's avatar
Steven Liu committed
549
550
551
552
553
                    - A string, the *repo id* (for example `CompVis/ldm-text2im-large-256`) of a pretrained pipeline
                      hosted on the Hub.
                    - A path to a *directory* (for example `./my_pipeline_directory/`) containing pipeline weights
                      saved using
                    [`~DiffusionPipeline.save_pretrained`].
Marc Sun's avatar
Marc Sun committed
554
                    - A path to a *directory* (for example `./my_pipeline_directory/`) containing a dduf file
555
            torch_dtype (`str` or `torch.dtype`, *optional*):
Steven Liu's avatar
Steven Liu committed
556
557
                Override the default `torch.dtype` and load the model with another dtype. If "auto" is passed, the
                dtype is automatically derived from the model's weights.
558
559
560
561
            custom_pipeline (`str`, *optional*):

                <Tip warning={true}>

Steven Liu's avatar
Steven Liu committed
562
                🧪 This is an experimental feature and may change in the future.
563
564
565
566
567

                </Tip>

                Can be either:

Steven Liu's avatar
Steven Liu committed
568
569
570
                    - A string, the *repo id* (for example `hf-internal-testing/diffusers-dummy-pipeline`) of a custom
                      pipeline hosted on the Hub. The repository must contain a file called pipeline.py that defines
                      the custom pipeline.
571
                    - A string, the *file name* of a community pipeline hosted on GitHub under
Steven Liu's avatar
Steven Liu committed
572
573
574
575
576
577
                      [Community](https://github.com/huggingface/diffusers/tree/main/examples/community). Valid file
                      names must match the file name and not the pipeline script (`clip_guided_stable_diffusion`
                      instead of `clip_guided_stable_diffusion.py`). Community pipelines are always loaded from the
                      current main branch of GitHub.
                    - A path to a directory (`./my_pipeline_directory/`) containing a custom pipeline. The directory
                      must contain a file called `pipeline.py` that defines the custom pipeline.
578
579
580
581
582
583
584

                For more information on how to load and create custom pipelines, please have a look at [Loading and
                Adding Custom
                Pipelines](https://huggingface.co/docs/diffusers/using-diffusers/custom_pipeline_overview)
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
585
            cache_dir (`Union[str, os.PathLike]`, *optional*):
Steven Liu's avatar
Steven Liu committed
586
587
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
588

589
            proxies (`Dict[str, str]`, *optional*):
Steven Liu's avatar
Steven Liu committed
590
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
591
592
593
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            output_loading_info(`bool`, *optional*, defaults to `False`):
                Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
Steven Liu's avatar
Steven Liu committed
594
595
596
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
597
            token (`str` or *bool*, *optional*):
Steven Liu's avatar
Steven Liu committed
598
599
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
600
            revision (`str`, *optional*, defaults to `"main"`):
Steven Liu's avatar
Steven Liu committed
601
602
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
603
            custom_revision (`str`, *optional*):
604
                The specific model version to use. It can be a branch name, a tag name, or a commit id similar to
605
606
                `revision` when loading a custom pipeline from the Hub. Defaults to the latest stable 🤗 Diffusers
                version.
607
            mirror (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
608
609
610
                Mirror source to resolve accessibility issues if you’re downloading a model in China. We do not
                guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
                information.
611
            device_map (`str` or `Dict[str, Union[int, str, torch.device]]`, *optional*):
Steven Liu's avatar
Steven Liu committed
612
613
                A map that specifies where each submodule should go. It doesn’t need to be defined for each
                parameter/buffer name; once a given module name is inside, every submodule of it will be sent to the
614
615
                same device.

Steven Liu's avatar
Steven Liu committed
616
                Set `device_map="auto"` to have 🤗 Accelerate automatically compute the most optimized `device_map`. For
617
618
                more information about each option see [designing a device
                map](https://hf.co/docs/accelerate/main/en/usage_guides/big_modeling#designing-a-device-map).
619
            max_memory (`Dict`, *optional*):
Steven Liu's avatar
Steven Liu committed
620
621
                A dictionary device identifier for the maximum memory. Will default to the maximum memory available for
                each GPU and the available CPU RAM if unset.
622
            offload_folder (`str` or `os.PathLike`, *optional*):
Steven Liu's avatar
Steven Liu committed
623
                The path to offload weights if device_map contains the value `"disk"`.
624
            offload_state_dict (`bool`, *optional*):
Steven Liu's avatar
Steven Liu committed
625
626
627
                If `True`, temporarily offloads the CPU state dict to the hard drive to avoid running out of CPU RAM if
                the weight of the CPU state dict + the biggest shard of the checkpoint does not fit. Defaults to `True`
                when there is some disk offload.
628
            low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
Steven Liu's avatar
Steven Liu committed
629
630
631
632
                Speed up model loading only loading the pretrained weights and not initializing the weights. This also
                tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
                Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
                argument to `True` will raise an error.
633
            use_safetensors (`bool`, *optional*, defaults to `None`):
Steven Liu's avatar
Steven Liu committed
634
635
636
                If set to `None`, the safetensors weights are downloaded if they're available **and** if the
                safetensors library is installed. If set to `True`, the model is forcibly loaded from safetensors
                weights. If set to `False`, safetensors weights are not loaded.
637
638
639
640
641
            use_onnx (`bool`, *optional*, defaults to `None`):
                If set to `True`, ONNX weights will always be downloaded if present. If set to `False`, ONNX weights
                will never be downloaded. By default `use_onnx` defaults to the `_is_onnx` class attribute which is
                `False` for non-ONNX pipelines and `True` for ONNX pipelines. ONNX weights include both files ending
                with `.onnx` and `.pb`.
642
            kwargs (remaining dictionary of keyword arguments, *optional*):
Steven Liu's avatar
Steven Liu committed
643
644
645
                Can be used to overwrite load and saveable variables (the pipeline components of the specific pipeline
                class). The overwritten components are passed directly to the pipelines `__init__` method. See example
                below for more information.
646
            variant (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
647
648
                Load weights from a specified variant filename such as `"fp16"` or `"ema"`. This is ignored when
                loading `from_flax`.
Marc Sun's avatar
Marc Sun committed
649
650
            dduf_file(`str`, *optional*):
                Load weights from the specified dduf file.
651
652
653

        <Tip>

Steven Liu's avatar
Steven Liu committed
654
655
        To use private or [gated](https://huggingface.co/docs/hub/models-gated#gated-models) models, log-in with
        `huggingface-cli login`.
656
657
658
659
660
661
662
663
664
665
666
667
668
669

        </Tip>

        Examples:

        ```py
        >>> from diffusers import DiffusionPipeline

        >>> # Download pipeline from huggingface.co and cache.
        >>> pipeline = DiffusionPipeline.from_pretrained("CompVis/ldm-text2im-large-256")

        >>> # Download pipeline that requires an authorization token
        >>> # For more information on access tokens, please refer to this section
        >>> # of the documentation](https://huggingface.co/docs/hub/security-tokens)
670
        >>> pipeline = DiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5")
671
672
673
674
675
676
677
678

        >>> # Use a different scheduler
        >>> from diffusers import LMSDiscreteScheduler

        >>> scheduler = LMSDiscreteScheduler.from_config(pipeline.scheduler.config)
        >>> pipeline.scheduler = scheduler
        ```
        """
679
680
681
        # Copy the kwargs to re-use during loading connected pipeline.
        kwargs_copied = kwargs.copy()

682
        cache_dir = kwargs.pop("cache_dir", None)
683
684
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
685
686
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
687
        revision = kwargs.pop("revision", None)
688
        from_flax = kwargs.pop("from_flax", False)
689
        torch_dtype = kwargs.pop("torch_dtype", torch.float32)
690
691
692
693
        custom_pipeline = kwargs.pop("custom_pipeline", None)
        custom_revision = kwargs.pop("custom_revision", None)
        provider = kwargs.pop("provider", None)
        sess_options = kwargs.pop("sess_options", None)
694
        provider_options = kwargs.pop("provider_options", None)
695
        device_map = kwargs.pop("device_map", None)
696
697
        max_memory = kwargs.pop("max_memory", None)
        offload_folder = kwargs.pop("offload_folder", None)
698
        offload_state_dict = kwargs.pop("offload_state_dict", None)
699
        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT)
700
        variant = kwargs.pop("variant", None)
Marc Sun's avatar
Marc Sun committed
701
        dduf_file = kwargs.pop("dduf_file", None)
702
        use_safetensors = kwargs.pop("use_safetensors", None)
703
        use_onnx = kwargs.pop("use_onnx", None)
704
        load_connected_pipeline = kwargs.pop("load_connected_pipeline", False)
705

706
707
708
709
710
711
        if not isinstance(torch_dtype, torch.dtype):
            torch_dtype = torch.float32
            logger.warning(
                f"Passed `torch_dtype` {torch_dtype} is not a `torch.dtype`. Defaulting to `torch.float32`."
            )

712
713
714
715
716
717
718
719
720
        if low_cpu_mem_usage and not is_accelerate_available():
            low_cpu_mem_usage = False
            logger.warning(
                "Cannot initialize model with low cpu memory usage because `accelerate` was not found in the"
                " environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install"
                " `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip"
                " install accelerate\n```\n."
            )

721
722
723
724
725
726
        if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"):
            raise NotImplementedError(
                "Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set"
                " `low_cpu_mem_usage=False`."
            )

727
728
729
730
731
732
        if device_map is not None and not is_torch_version(">=", "1.9.0"):
            raise NotImplementedError(
                "Loading and dispatching requires torch >= 1.9.0. Please either update your PyTorch version or set"
                " `device_map=None`."
            )

733
        if device_map is not None and not is_accelerate_available():
734
            raise NotImplementedError(
735
736
737
738
739
740
741
742
743
                "Using `device_map` requires the `accelerate` library. Please install it using: `pip install accelerate`."
            )

        if device_map is not None and not isinstance(device_map, str):
            raise ValueError("`device_map` must be a string.")

        if device_map is not None and device_map not in SUPPORTED_DEVICE_MAP:
            raise NotImplementedError(
                f"{device_map} not supported. Supported strategies are: {', '.join(SUPPORTED_DEVICE_MAP)}"
744
745
            )

746
747
748
749
        if device_map is not None and device_map in SUPPORTED_DEVICE_MAP:
            if is_accelerate_version("<", "0.28.0"):
                raise NotImplementedError("Device placement requires `accelerate` version `0.28.0` or later.")

750
751
752
753
754
755
        if low_cpu_mem_usage is False and device_map is not None:
            raise ValueError(
                f"You cannot set `low_cpu_mem_usage` to False while using device_map={device_map} for loading and"
                " dispatching. Please make sure to set `low_cpu_mem_usage=True`."
            )

Marc Sun's avatar
Marc Sun committed
756
757
758
759
760
761
        if dduf_file:
            if custom_pipeline:
                raise NotImplementedError("Custom pipelines are not supported with DDUF at the moment.")
            if load_connected_pipeline:
                raise NotImplementedError("Connected pipelines are not supported with DDUF at the moment.")

762
763
764
        # 1. Download the checkpoints and configs
        # use snapshot download here to get it working from from_pretrained
        if not os.path.isdir(pretrained_model_name_or_path):
Patrick von Platen's avatar
Patrick von Platen committed
765
766
767
768
769
            if pretrained_model_name_or_path.count("/") > 1:
                raise ValueError(
                    f'The provided pretrained_model_name_or_path "{pretrained_model_name_or_path}"'
                    " is neither a valid local path nor a valid repo id. Please check the parameter."
                )
770
            cached_folder = cls.download(
771
772
773
774
775
                pretrained_model_name_or_path,
                cache_dir=cache_dir,
                force_download=force_download,
                proxies=proxies,
                local_files_only=local_files_only,
776
                token=token,
777
                revision=revision,
778
                from_flax=from_flax,
779
                use_safetensors=use_safetensors,
780
                use_onnx=use_onnx,
781
                custom_pipeline=custom_pipeline,
782
                custom_revision=custom_revision,
783
                variant=variant,
Marc Sun's avatar
Marc Sun committed
784
                dduf_file=dduf_file,
785
                load_connected_pipeline=load_connected_pipeline,
786
                **kwargs,
787
788
789
790
            )
        else:
            cached_folder = pretrained_model_name_or_path

791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
        # The variant filenames can have the legacy sharding checkpoint format that we check and throw
        # a warning if detected.
        if variant is not None and _check_legacy_sharding_variant_format(folder=cached_folder, variant=variant):
            warn_msg = (
                f"Warning: The repository contains sharded checkpoints for variant '{variant}' maybe in a deprecated format. "
                "Please check your files carefully:\n\n"
                "- Correct format example: diffusion_pytorch_model.fp16-00003-of-00003.safetensors\n"
                "- Deprecated format example: diffusion_pytorch_model-00001-of-00002.fp16.safetensors\n\n"
                "If you find any files in the deprecated format:\n"
                "1. Remove all existing checkpoint files for this variant.\n"
                "2. Re-obtain the correct files by running `save_pretrained()`.\n\n"
                "This will ensure you're using the most up-to-date and compatible checkpoint format."
            )
            logger.warning(warn_msg)

Marc Sun's avatar
Marc Sun committed
806
807
808
809
810
811
812
813
814
815
816
        dduf_entries = None
        if dduf_file:
            dduf_file_path = os.path.join(cached_folder, dduf_file)
            dduf_entries = read_dduf_file(dduf_file_path)
            # The reader contains already all the files needed, no need to check it again
            cached_folder = ""

        config_dict = cls.load_config(cached_folder, dduf_entries=dduf_entries)

        if dduf_file:
            _maybe_raise_error_for_incorrect_transformers(config_dict)
817

Patrick von Platen's avatar
Patrick von Platen committed
818
819
820
        # pop out "_ignore_files" as it is only needed for download
        config_dict.pop("_ignore_files", None)

821
        # 2. Define which model components should load variants
822
823
824
825
        # We retrieve the information by matching whether variant model checkpoints exist in the subfolders.
        # Example: `diffusion_pytorch_model.safetensors` -> `diffusion_pytorch_model.fp16.safetensors`
        # with variant being `"fp16"`.
        model_variants = _identify_model_variants(folder=cached_folder, variant=variant, config=config_dict)
826
827
828
        if len(model_variants) == 0 and variant is not None:
            error_message = f"You are trying to load the model files of the `variant={variant}`, but no such modeling files are available."
            raise ValueError(error_message)
829

830
        # 3. Load the pipeline class, if using custom module then load it from the hub
831
        # if we load from explicit class, let's use it
832
833
834
        custom_pipeline, custom_class_name = _resolve_custom_pipeline_and_cls(
            folder=cached_folder, config=config_dict, custom_pipeline=custom_pipeline
        )
835
        pipeline_class = _get_pipeline_class(
836
            cls,
837
            config=config_dict,
838
839
            load_connected_pipeline=load_connected_pipeline,
            custom_pipeline=custom_pipeline,
840
            class_name=custom_class_name,
841
842
            cache_dir=cache_dir,
            revision=custom_revision,
843
        )
844

845
846
847
        if device_map is not None and pipeline_class._load_connected_pipes:
            raise NotImplementedError("`device_map` is not yet supported for connected pipelines.")

848
        # DEPRECATED: To be removed in 1.0.0
849
850
851
852
853
854
855
        # we are deprecating the `StableDiffusionInpaintPipelineLegacy` pipeline which gets loaded
        # when a user requests for a `StableDiffusionInpaintPipeline` with `diffusers` version being <= 0.5.1.
        _maybe_raise_warning_for_inpainting(
            pipeline_class=pipeline_class,
            pretrained_model_name_or_path=pretrained_model_name_or_path,
            config=config_dict,
        )
856

857
858
859
        # 4. Define expected modules given pipeline signature
        # and define non-None initialized modules (=`init_kwargs`)

860
861
862
863
        # some modules can be passed directly to the init
        # in this case they are already instantiated in `kwargs`
        # extract them here
        expected_modules, optional_kwargs = cls._get_signature_keys(pipeline_class)
864
        expected_types = pipeline_class._get_signature_types()
865
866
867
868
        passed_class_obj = {k: kwargs.pop(k) for k in expected_modules if k in kwargs}
        passed_pipe_kwargs = {k: kwargs.pop(k) for k in optional_kwargs if k in kwargs}
        init_dict, unused_kwargs, _ = pipeline_class.extract_init_dict(config_dict, **kwargs)

869
870
871
872
873
874
        # define init kwargs and make sure that optional component modules are filtered out
        init_kwargs = {
            k: init_dict.pop(k)
            for k in optional_kwargs
            if k in init_dict and k not in pipeline_class._optional_components
        }
875
876
877
878
879
880
881
882
883
884
885
886
        init_kwargs = {**init_kwargs, **passed_pipe_kwargs}

        # remove `null` components
        def load_module(name, value):
            if value[0] is None:
                return False
            if name in passed_class_obj and passed_class_obj[name] is None:
                return False
            return True

        init_dict = {k: v for k, v in init_dict.items() if load_module(k, v)}

887
888
889
890
891
892
893
894
        # Special case: safety_checker must be loaded separately when using `from_flax`
        if from_flax and "safety_checker" in init_dict and "safety_checker" not in passed_class_obj:
            raise NotImplementedError(
                "The safety checker cannot be automatically loaded when loading weights `from_flax`."
                " Please, pass `safety_checker=None` to `from_pretrained`, and load the safety checker"
                " separately if you need it."
            )

895
        # 5. Throw nice warnings / errors for fast accelerate loading
896
897
898
899
900
901
902
903
        if len(unused_kwargs) > 0:
            logger.warning(
                f"Keyword arguments {unused_kwargs} are not expected by {pipeline_class.__name__} and will be ignored."
            )

        # import it here to avoid circular import
        from diffusers import pipelines

904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
        # 6. device map delegation
        final_device_map = None
        if device_map is not None:
            final_device_map = _get_final_device_map(
                device_map=device_map,
                pipeline_class=pipeline_class,
                passed_class_obj=passed_class_obj,
                init_dict=init_dict,
                library=library,
                max_memory=max_memory,
                torch_dtype=torch_dtype,
                cached_folder=cached_folder,
                force_download=force_download,
                proxies=proxies,
                local_files_only=local_files_only,
                token=token,
                revision=revision,
            )

        # 7. Load each module in the pipeline
        current_device_map = None
925
        for name, (library_name, class_name) in logging.tqdm(init_dict.items(), desc="Loading pipeline components..."):
926
            # 7.1 device_map shenanigans
927
928
929
930
931
932
933
            if final_device_map is not None and len(final_device_map) > 0:
                component_device = final_device_map.get(name, None)
                if component_device is not None:
                    current_device_map = {"": component_device}
                else:
                    current_device_map = None

934
            # 7.2 - now that JAX/Flax is an official framework of the library, we might load from Flax names
935
            class_name = class_name[4:] if class_name.startswith("Flax") else class_name
936

937
            # 7.3 Define all importable classes
938
            is_pipeline_module = hasattr(pipelines, library_name)
939
            importable_classes = ALL_IMPORTABLE_CLASSES
940
941
            loaded_sub_model = None

942
            # 7.4 Use passed sub model or load class_name from library_name
943
            if name in passed_class_obj:
944
945
946
947
948
                # if the model is in a pipeline module, then we load it from the pipeline
                # check that passed_class_obj has correct parent class
                maybe_raise_or_warn(
                    library_name, library, class_name, importable_classes, passed_class_obj, name, is_pipeline_module
                )
949
950
951

                loaded_sub_model = passed_class_obj[name]
            else:
952
953
954
955
956
957
958
959
960
961
962
                # load sub model
                loaded_sub_model = load_sub_model(
                    library_name=library_name,
                    class_name=class_name,
                    importable_classes=importable_classes,
                    pipelines=pipelines,
                    is_pipeline_module=is_pipeline_module,
                    pipeline_class=pipeline_class,
                    torch_dtype=torch_dtype,
                    provider=provider,
                    sess_options=sess_options,
963
                    device_map=current_device_map,
964
965
966
                    max_memory=max_memory,
                    offload_folder=offload_folder,
                    offload_state_dict=offload_state_dict,
967
968
969
970
971
972
                    model_variants=model_variants,
                    name=name,
                    from_flax=from_flax,
                    variant=variant,
                    low_cpu_mem_usage=low_cpu_mem_usage,
                    cached_folder=cached_folder,
973
                    use_safetensors=use_safetensors,
Marc Sun's avatar
Marc Sun committed
974
                    dduf_entries=dduf_entries,
975
                    provider_options=provider_options,
976
                )
977
978
979
                logger.info(
                    f"Loaded {name} as {class_name} from `{name}` subfolder of {pretrained_model_name_or_path}."
                )
980
981
982

            init_kwargs[name] = loaded_sub_model  # UNet(...), # DiffusionSchedule(...)

983
        # 8. Handle connected pipelines.
984
        if pipeline_class._load_connected_pipes and os.path.isfile(os.path.join(cached_folder, "README.md")):
985
986
987
988
989
990
991
            init_kwargs = _update_init_kwargs_with_connected_pipeline(
                init_kwargs=init_kwargs,
                passed_pipe_kwargs=passed_pipe_kwargs,
                passed_class_objs=passed_class_obj,
                folder=cached_folder,
                **kwargs_copied,
            )
992

993
        # 9. Potentially add passed objects if expected
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
        missing_modules = set(expected_modules) - set(init_kwargs.keys())
        passed_modules = list(passed_class_obj.keys())
        optional_modules = pipeline_class._optional_components
        if len(missing_modules) > 0 and missing_modules <= set(passed_modules + optional_modules):
            for module in missing_modules:
                init_kwargs[module] = passed_class_obj.get(module, None)
        elif len(missing_modules) > 0:
            passed_modules = set(list(init_kwargs.keys()) + list(passed_class_obj.keys())) - optional_kwargs
            raise ValueError(
                f"Pipeline {pipeline_class} expected {expected_modules}, but only {passed_modules} were passed."
            )

1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
        # 10. Type checking init arguments
        for kw, arg in init_kwargs.items():
            # Too complex to validate with type annotation alone
            if "scheduler" in kw:
                continue
            # Many tokenizer annotations don't include its "Fast" variant, so skip this
            # e.g T5Tokenizer but not T5TokenizerFast
            elif "tokenizer" in kw:
                continue
            elif (
                arg is not None  # Skip if None
                and not expected_types[kw] == (inspect.Signature.empty,)  # Skip if no type annotations
                and not _is_valid_type(arg, expected_types[kw])  # Check type
            ):
                logger.warning(f"Expected types for {kw}: {expected_types[kw]}, got {_get_detailed_type(arg)}.")

        # 11. Instantiate the pipeline
1023
        model = pipeline_class(**init_kwargs)
1024

1025
        # 12. Save where the model was instantiated from
1026
        model.register_to_config(_name_or_path=pretrained_model_name_or_path)
1027
1028
        if device_map is not None:
            setattr(model, "hf_device_map", final_device_map)
1029
1030
        return model

1031
1032
1033
1034
    @property
    def name_or_path(self) -> str:
        return getattr(self.config, "_name_or_path", None)

1035
1036
1037
1038
1039
1040
1041
    @property
    def _execution_device(self):
        r"""
        Returns the device on which the pipeline's models will be executed. After calling
        [`~DiffusionPipeline.enable_sequential_cpu_offload`] the execution device can only be inferred from
        Accelerate's module hooks.
        """
Aryan's avatar
Aryan committed
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
        from ..hooks.group_offloading import _get_group_onload_device

        # When apply group offloading at the leaf_level, we're in the same situation as accelerate's sequential
        # offloading. We need to return the onload device of the group offloading hooks so that the intermediates
        # required for computation (latents, prompt embeddings, etc.) can be created on the correct device.
        for name, model in self.components.items():
            if not isinstance(model, torch.nn.Module):
                continue
            try:
                return _get_group_onload_device(model)
            except ValueError:
                pass

1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
        for name, model in self.components.items():
            if not isinstance(model, torch.nn.Module) or name in self._exclude_from_cpu_offload:
                continue

            if not hasattr(model, "_hf_hook"):
                return self.device
            for module in model.modules():
                if (
                    hasattr(module, "_hf_hook")
                    and hasattr(module._hf_hook, "execution_device")
                    and module._hf_hook.execution_device is not None
                ):
                    return torch.device(module._hf_hook.execution_device)
        return self.device

1070
1071
1072
1073
1074
1075
    def remove_all_hooks(self):
        r"""
        Removes all hooks that were added when using `enable_sequential_cpu_offload` or `enable_model_cpu_offload`.
        """
        for _, model in self.components.items():
            if isinstance(model, torch.nn.Module) and hasattr(model, "_hf_hook"):
1076
                accelerate.hooks.remove_hook_from_module(model, recurse=True)
1077
1078
        self._all_hooks = []

1079
    def enable_model_cpu_offload(self, gpu_id: Optional[int] = None, device: Union[torch.device, str] = "cuda"):
1080
1081
1082
1083
1084
        r"""
        Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared
        to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward`
        method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with
        `enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`.
1085
1086
1087
1088
1089
1090
1091

        Arguments:
            gpu_id (`int`, *optional*):
                The ID of the accelerator that shall be used in inference. If not specified, it will default to 0.
            device (`torch.Device` or `str`, *optional*, defaults to "cuda"):
                The PyTorch device type of the accelerator that shall be used in inference. If not specified, it will
                default to "cuda".
1092
        """
Aryan's avatar
Aryan committed
1093
1094
        self._maybe_raise_error_if_group_offload_active(raise_error=True)

1095
1096
1097
1098
1099
1100
        is_pipeline_device_mapped = self.hf_device_map is not None and len(self.hf_device_map) > 1
        if is_pipeline_device_mapped:
            raise ValueError(
                "It seems like you have activated a device mapping strategy on the pipeline so calling `enable_model_cpu_offload() isn't allowed. You can call `reset_device_map()` first and then call `enable_model_cpu_offload()`."
            )

1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
        if self.model_cpu_offload_seq is None:
            raise ValueError(
                "Model CPU offload cannot be enabled because no `model_cpu_offload_seq` class attribute is set."
            )

        if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"):
            from accelerate import cpu_offload_with_hook
        else:
            raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.")

1111
1112
        self.remove_all_hooks()

1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
        torch_device = torch.device(device)
        device_index = torch_device.index

        if gpu_id is not None and device_index is not None:
            raise ValueError(
                f"You have passed both `gpu_id`={gpu_id} and an index as part of the passed device `device`={device}"
                f"Cannot pass both. Please make sure to either not define `gpu_id` or not pass the index as part of the device: `device`={torch_device.type}"
            )

        # _offload_gpu_id should be set to passed gpu_id (or id in passed `device`) or default to previously set id or default to 0
1123
        self._offload_gpu_id = gpu_id or torch_device.index or getattr(self, "_offload_gpu_id", 0)
1124
1125
1126

        device_type = torch_device.type
        device = torch.device(f"{device_type}:{self._offload_gpu_id}")
1127
        self._offload_device = device
1128

1129
1130
1131
1132
        self.to("cpu", silence_dtype_warnings=True)
        device_mod = getattr(torch, device.type, None)
        if hasattr(device_mod, "empty_cache") and device_mod.is_available():
            device_mod.empty_cache()  # otherwise we don't see the memory savings (but they probably exist)
1133
1134
1135

        all_model_components = {k: v for k, v in self.components.items() if isinstance(v, torch.nn.Module)}

1136
        self._all_hooks = []
1137
1138
        hook = None
        for model_str in self.model_cpu_offload_seq.split("->"):
1139
            model = all_model_components.pop(model_str, None)
1140

1141
1142
1143
            if not isinstance(model, torch.nn.Module):
                continue

1144
1145
1146
1147
1148
1149
1150
1151
            # This is because the model would already be placed on a CUDA device.
            _, _, is_loaded_in_8bit_bnb = _check_bnb_status(model)
            if is_loaded_in_8bit_bnb:
                logger.info(
                    f"Skipping the hook placement for the {model.__class__.__name__} as it is loaded in `bitsandbytes` 8bit."
                )
                continue

1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
            _, hook = cpu_offload_with_hook(model, device, prev_module_hook=hook)
            self._all_hooks.append(hook)

        # CPU offload models that are not in the seq chain unless they are explicitly excluded
        # these models will stay on CPU until maybe_free_model_hooks is called
        # some models cannot be in the seq chain because they are iteratively called, such as controlnet
        for name, model in all_model_components.items():
            if not isinstance(model, torch.nn.Module):
                continue

            if name in self._exclude_from_cpu_offload:
                model.to(device)
            else:
                _, hook = cpu_offload_with_hook(model, device)
                self._all_hooks.append(hook)

    def maybe_free_model_hooks(self):
        r"""
1170
1171
1172
1173
1174
1175
1176
1177
1178
        Method that performs the following:
        - Offloads all components.
        - Removes all model hooks that were added when using `enable_model_cpu_offload`, and then applies them again.
          In case the model has not been offloaded, this function is a no-op.
        - Resets stateful diffusers hooks of denoiser components if they were added with
          [`~hooks.HookRegistry.register_hook`].

        Make sure to add this function to the end of the `__call__` function of your pipeline so that it functions
        correctly when applying `enable_model_cpu_offload`.
1179
        """
1180
1181
1182
1183
        for component in self.components.values():
            if hasattr(component, "_reset_stateful_cache"):
                component._reset_stateful_cache()

1184
1185
1186
1187
1188
        if not hasattr(self, "_all_hooks") or len(self._all_hooks) == 0:
            # `enable_model_cpu_offload` has not be called, so silently do nothing
            return

        # make sure the model is in the same state as before calling it
1189
        self.enable_model_cpu_offload(device=getattr(self, "_offload_device", "cuda"))
1190

1191
    def enable_sequential_cpu_offload(self, gpu_id: Optional[int] = None, device: Union[torch.device, str] = "cuda"):
1192
        r"""
1193
1194
1195
1196
        Offloads all models to CPU using 🤗 Accelerate, significantly reducing memory usage. When called, the state
        dicts of all `torch.nn.Module` components (except those in `self._exclude_from_cpu_offload`) are saved to CPU
        and then moved to `torch.device('meta')` and loaded to GPU only when their specific submodule has its `forward`
        method called. Offloading happens on a submodule basis. Memory savings are higher than with
1197
        `enable_model_cpu_offload`, but performance is lower.
1198
1199
1200
1201
1202
1203
1204

        Arguments:
            gpu_id (`int`, *optional*):
                The ID of the accelerator that shall be used in inference. If not specified, it will default to 0.
            device (`torch.Device` or `str`, *optional*, defaults to "cuda"):
                The PyTorch device type of the accelerator that shall be used in inference. If not specified, it will
                default to "cuda".
1205
        """
Aryan's avatar
Aryan committed
1206
1207
        self._maybe_raise_error_if_group_offload_active(raise_error=True)

1208
1209
1210
1211
        if is_accelerate_available() and is_accelerate_version(">=", "0.14.0"):
            from accelerate import cpu_offload
        else:
            raise ImportError("`enable_sequential_cpu_offload` requires `accelerate v0.14.0` or higher")
1212
        self.remove_all_hooks()
1213

1214
1215
1216
1217
1218
1219
        is_pipeline_device_mapped = self.hf_device_map is not None and len(self.hf_device_map) > 1
        if is_pipeline_device_mapped:
            raise ValueError(
                "It seems like you have activated a device mapping strategy on the pipeline so calling `enable_sequential_cpu_offload() isn't allowed. You can call `reset_device_map()` first and then call `enable_sequential_cpu_offload()`."
            )

1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
        torch_device = torch.device(device)
        device_index = torch_device.index

        if gpu_id is not None and device_index is not None:
            raise ValueError(
                f"You have passed both `gpu_id`={gpu_id} and an index as part of the passed device `device`={device}"
                f"Cannot pass both. Please make sure to either not define `gpu_id` or not pass the index as part of the device: `device`={torch_device.type}"
            )

        # _offload_gpu_id should be set to passed gpu_id (or id in passed `device`) or default to previously set id or default to 0
1230
        self._offload_gpu_id = gpu_id or torch_device.index or getattr(self, "_offload_gpu_id", 0)
1231
1232
1233

        device_type = torch_device.type
        device = torch.device(f"{device_type}:{self._offload_gpu_id}")
1234
        self._offload_device = device
1235
1236
1237

        if self.device.type != "cpu":
            self.to("cpu", silence_dtype_warnings=True)
1238
1239
1240
            device_mod = getattr(torch, self.device.type, None)
            if hasattr(device_mod, "empty_cache") and device_mod.is_available():
                device_mod.empty_cache()  # otherwise we don't see the memory savings (but they probably exist)
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253

        for name, model in self.components.items():
            if not isinstance(model, torch.nn.Module):
                continue

            if name in self._exclude_from_cpu_offload:
                model.to(device)
            else:
                # make sure to offload buffers if not all high level weights
                # are of type nn.Module
                offload_buffers = len(model._parameters) > 0
                cpu_offload(model, device, offload_buffers=offload_buffers)

1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
    def reset_device_map(self):
        r"""
        Resets the device maps (if any) to None.
        """
        if self.hf_device_map is None:
            return
        else:
            self.remove_all_hooks()
            for name, component in self.components.items():
                if isinstance(component, torch.nn.Module):
                    component.to("cpu")
            self.hf_device_map = None

1267
    @classmethod
1268
    @validate_hf_hub_args
1269
1270
    def download(cls, pretrained_model_name, **kwargs) -> Union[str, os.PathLike]:
        r"""
Steven Liu's avatar
Steven Liu committed
1271
        Download and cache a PyTorch diffusion pipeline from pretrained pipeline weights.
1272
1273

        Parameters:
Steven Liu's avatar
Steven Liu committed
1274
            pretrained_model_name (`str` or `os.PathLike`, *optional*):
Steven Liu's avatar
Steven Liu committed
1275
                A string, the *repository id* (for example `CompVis/ldm-text2im-large-256`) of a pretrained pipeline
Steven Liu's avatar
Steven Liu committed
1276
                hosted on the Hub.
1277
1278
1279
            custom_pipeline (`str`, *optional*):
                Can be either:

Steven Liu's avatar
Steven Liu committed
1280
                    - A string, the *repository id* (for example `CompVis/ldm-text2im-large-256`) of a pretrained
Steven Liu's avatar
Steven Liu committed
1281
1282
                      pipeline hosted on the Hub. The repository must contain a file called `pipeline.py` that defines
                      the custom pipeline.
1283
1284

                    - A string, the *file name* of a community pipeline hosted on GitHub under
Steven Liu's avatar
Steven Liu committed
1285
1286
1287
1288
                      [Community](https://github.com/huggingface/diffusers/tree/main/examples/community). Valid file
                      names must match the file name and not the pipeline script (`clip_guided_stable_diffusion`
                      instead of `clip_guided_stable_diffusion.py`). Community pipelines are always loaded from the
                      current `main` branch of GitHub.
1289

Steven Liu's avatar
Steven Liu committed
1290
1291
                    - A path to a *directory* (`./my_pipeline_directory/`) containing a custom pipeline. The directory
                      must contain a file called `pipeline.py` that defines the custom pipeline.
1292

Steven Liu's avatar
Steven Liu committed
1293
                <Tip warning={true}>
1294

Steven Liu's avatar
Steven Liu committed
1295
                🧪 This is an experimental feature and may change in the future.
1296

Steven Liu's avatar
Steven Liu committed
1297
                </Tip>
1298

Steven Liu's avatar
Steven Liu committed
1299
1300
                For more information on how to load and create custom pipelines, take a look at [How to contribute a
                community pipeline](https://huggingface.co/docs/diffusers/main/en/using-diffusers/contribute_pipeline).
1301
1302
1303
1304

            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
1305

1306
            proxies (`Dict[str, str]`, *optional*):
Steven Liu's avatar
Steven Liu committed
1307
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
1308
1309
1310
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            output_loading_info(`bool`, *optional*, defaults to `False`):
                Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
Steven Liu's avatar
Steven Liu committed
1311
1312
1313
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
1314
            token (`str` or *bool*, *optional*):
Steven Liu's avatar
Steven Liu committed
1315
1316
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
1317
            revision (`str`, *optional*, defaults to `"main"`):
Steven Liu's avatar
Steven Liu committed
1318
1319
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
Steven Liu's avatar
Steven Liu committed
1320
            custom_revision (`str`, *optional*, defaults to `"main"`):
1321
                The specific model version to use. It can be a branch name, a tag name, or a commit id similar to
Steven Liu's avatar
Steven Liu committed
1322
1323
                `revision` when loading a custom pipeline from the Hub. It can be a 🤗 Diffusers version when loading a
                custom pipeline from GitHub, otherwise it defaults to `"main"` when loading from the Hub.
1324
            mirror (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
1325
1326
1327
                Mirror source to resolve accessibility issues if you're downloading a model in China. We do not
                guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
                information.
1328
            variant (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
1329
1330
                Load weights from a specified variant filename such as `"fp16"` or `"ema"`. This is ignored when
                loading `from_flax`.
Marc Sun's avatar
Marc Sun committed
1331
1332
            dduf_file(`str`, *optional*):
                Load weights from the specified DDUF file.
1333
1334
1335
1336
1337
1338
1339
1340
1341
            use_safetensors (`bool`, *optional*, defaults to `None`):
                If set to `None`, the safetensors weights are downloaded if they're available **and** if the
                safetensors library is installed. If set to `True`, the model is forcibly loaded from safetensors
                weights. If set to `False`, safetensors weights are not loaded.
            use_onnx (`bool`, *optional*, defaults to `False`):
                If set to `True`, ONNX weights will always be downloaded if present. If set to `False`, ONNX weights
                will never be downloaded. By default `use_onnx` defaults to the `_is_onnx` class attribute which is
                `False` for non-ONNX pipelines and `True` for ONNX pipelines. ONNX weights include both files ending
                with `.onnx` and `.pb`.
1342
1343
1344
1345
            trust_remote_code (`bool`, *optional*, defaults to `False`):
                Whether or not to allow for custom pipelines and components defined on the Hub in their own files. This
                option should only be set to `True` for repositories you trust and in which you have read the code, as
                it will execute code present on the Hub on your local machine.
Steven Liu's avatar
Steven Liu committed
1346
1347
1348
1349

        Returns:
            `os.PathLike`:
                A path to the downloaded pipeline.
1350
1351
1352

        <Tip>

Steven Liu's avatar
Steven Liu committed
1353
1354
        To use private or [gated models](https://huggingface.co/docs/hub/models-gated#gated-models), log-in with
        `huggingface-cli login`.
1355
1356
1357
1358

        </Tip>

        """
1359
        cache_dir = kwargs.pop("cache_dir", None)
1360
1361
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
1362
1363
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
1364
1365
1366
        revision = kwargs.pop("revision", None)
        from_flax = kwargs.pop("from_flax", False)
        custom_pipeline = kwargs.pop("custom_pipeline", None)
1367
        custom_revision = kwargs.pop("custom_revision", None)
1368
        variant = kwargs.pop("variant", None)
1369
        use_safetensors = kwargs.pop("use_safetensors", None)
1370
        use_onnx = kwargs.pop("use_onnx", None)
1371
        load_connected_pipeline = kwargs.pop("load_connected_pipeline", False)
1372
        trust_remote_code = kwargs.pop("trust_remote_code", False)
Marc Sun's avatar
Marc Sun committed
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
        dduf_file: Optional[Dict[str, DDUFEntry]] = kwargs.pop("dduf_file", None)

        if dduf_file:
            if custom_pipeline:
                raise NotImplementedError("Custom pipelines are not supported with DDUF at the moment.")
            if load_connected_pipeline:
                raise NotImplementedError("Connected pipelines are not supported with DDUF at the moment.")
            return _download_dduf_file(
                pretrained_model_name=pretrained_model_name,
                dduf_file=dduf_file,
                pipeline_class_name=cls.__name__,
                cache_dir=cache_dir,
                proxies=proxies,
                local_files_only=local_files_only,
                token=token,
                revision=revision,
            )
1390

1391
1392
        allow_pickle = True if (use_safetensors is None or use_safetensors is False) else False
        use_safetensors = use_safetensors if use_safetensors is not None else True
1393
1394
1395
1396

        allow_patterns = None
        ignore_patterns = None

1397
        model_info_call_error: Optional[Exception] = None
1398
1399
        if not local_files_only:
            try:
1400
                info = model_info(pretrained_model_name, token=token, revision=revision)
1401
            except (HTTPError, OfflineModeIsEnabled, requests.ConnectionError) as e:
1402
                logger.warning(f"Couldn't connect to the Hub: {e}.\nWill try to load from local cache.")
1403
                local_files_only = True
1404
                model_info_call_error = e  # save error to reraise it if model is not cached locally
1405

1406
        if not local_files_only:
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
            config_file = hf_hub_download(
                pretrained_model_name,
                cls.config_name,
                cache_dir=cache_dir,
                revision=revision,
                proxies=proxies,
                force_download=force_download,
                token=token,
            )
            config_dict = cls._dict_from_json_file(config_file)
            ignore_filenames = config_dict.pop("_ignore_files", [])

1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
            filenames = {sibling.rfilename for sibling in info.siblings}
            if variant is not None and _check_legacy_sharding_variant_format(filenames=filenames, variant=variant):
                warn_msg = (
                    f"Warning: The repository contains sharded checkpoints for variant '{variant}' maybe in a deprecated format. "
                    "Please check your files carefully:\n\n"
                    "- Correct format example: diffusion_pytorch_model.fp16-00003-of-00003.safetensors\n"
                    "- Deprecated format example: diffusion_pytorch_model-00001-of-00002.fp16.safetensors\n\n"
                    "If you find any files in the deprecated format:\n"
                    "1. Remove all existing checkpoint files for this variant.\n"
                    "2. Re-obtain the correct files by running `save_pretrained()`.\n\n"
                    "This will ensure you're using the most up-to-date and compatible checkpoint format."
                )
                logger.warning(warn_msg)

1433
            filenames = set(filenames) - set(ignore_filenames)
1434
1435
            if revision in DEPRECATED_REVISION_ARGS and version.parse(
                version.parse(__version__).base_version
Patrick von Platen's avatar
Patrick von Platen committed
1436
            ) >= version.parse("0.22.0"):
1437
                warn_deprecated_model_variant(pretrained_model_name, token, variant, revision, filenames)
1438

1439
            custom_components, folder_names = _get_custom_components_and_folders(
1440
                pretrained_model_name, config_dict, filenames, variant
1441
            )
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
            custom_class_name = None
            if custom_pipeline is None and isinstance(config_dict["_class_name"], (list, tuple)):
                custom_pipeline = config_dict["_class_name"][0]
                custom_class_name = config_dict["_class_name"][1]

            load_pipe_from_hub = custom_pipeline is not None and f"{custom_pipeline}.py" in filenames
            load_components_from_hub = len(custom_components) > 0

            if load_pipe_from_hub and not trust_remote_code:
                raise ValueError(
                    f"The repository for {pretrained_model_name} contains custom code in {custom_pipeline}.py which must be executed to correctly "
                    f"load the model. You can inspect the repository content at https://hf.co/{pretrained_model_name}/blob/main/{custom_pipeline}.py.\n"
                    f"Please pass the argument `trust_remote_code=True` to allow custom code to be run."
                )

            if load_components_from_hub and not trust_remote_code:
                raise ValueError(
                    f"The repository for {pretrained_model_name} contains custom code in {'.py, '.join([os.path.join(k, v) for k,v in custom_components.items()])} which must be executed to correctly "
                    f"load the model. You can inspect the repository content at {', '.join([f'https://hf.co/{pretrained_model_name}/{k}/{v}.py' for k,v in custom_components.items()])}.\n"
                    f"Please pass the argument `trust_remote_code=True` to allow custom code to be run."
                )

1464
1465
            # retrieve passed components that should not be downloaded
            pipeline_class = _get_pipeline_class(
1466
1467
1468
1469
                cls,
                config_dict,
                load_connected_pipeline=load_connected_pipeline,
                custom_pipeline=custom_pipeline,
1470
1471
1472
                repo_id=pretrained_model_name if load_pipe_from_hub else None,
                hub_revision=revision,
                class_name=custom_class_name,
1473
1474
                cache_dir=cache_dir,
                revision=custom_revision,
1475
1476
1477
1478
            )
            expected_components, _ = cls._get_signature_keys(pipeline_class)
            passed_components = [k for k in expected_components if k in kwargs]

1479
1480
1481
1482
            # retrieve the names of the folders containing model weights
            model_folder_names = {
                os.path.split(f)[0] for f in filter_model_files(filenames) if os.path.split(f)[0] in folder_names
            }
1483
1484
1485
1486
            # retrieve all patterns that should not be downloaded and error out when needed
            ignore_patterns = _get_ignore_patterns(
                passed_components,
                model_folder_names,
1487
                filenames,
1488
1489
1490
1491
1492
1493
1494
                use_safetensors,
                from_flax,
                allow_pickle,
                use_onnx,
                pipeline_class._is_onnx,
                variant,
            )
1495

1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
            model_filenames, variant_filenames = variant_compatible_siblings(
                filenames, variant=variant, ignore_patterns=ignore_patterns
            )

            # all filenames compatible with variant will be added
            allow_patterns = list(model_filenames)

            # allow all patterns from non-model folders
            # this enables downloading schedulers, tokenizers, ...
            allow_patterns += [f"{k}/*" for k in folder_names if k not in model_folder_names]
            # add custom component files
            allow_patterns += [f"{k}/{f}.py" for k, f in custom_components.items()]
            # add custom pipeline file
            allow_patterns += [f"{custom_pipeline}.py"] if f"{custom_pipeline}.py" in filenames else []
            # also allow downloading config.json files with the model
            allow_patterns += [os.path.join(k, "config.json") for k in model_folder_names]
            allow_patterns += [
                SCHEDULER_CONFIG_NAME,
                CONFIG_NAME,
                cls.config_name,
                CUSTOM_PIPELINE_FILE_NAME,
            ]

1519
1520
1521
1522
            # Don't download any objects that are passed
            allow_patterns = [
                p for p in allow_patterns if not (len(p.split("/")) == 2 and p.split("/")[0] in passed_components)
            ]
1523
1524
1525
1526

            if pipeline_class._load_connected_pipes:
                allow_patterns.append("README.md")

1527
1528
            # Don't download index files of forbidden patterns either
            ignore_patterns = ignore_patterns + [f"{i}.index.*json" for i in ignore_patterns]
1529
1530
1531
1532
1533
            re_ignore_pattern = [re.compile(fnmatch.translate(p)) for p in ignore_patterns]
            re_allow_pattern = [re.compile(fnmatch.translate(p)) for p in allow_patterns]

            expected_files = [f for f in filenames if not any(p.match(f) for p in re_ignore_pattern)]
            expected_files = [f for f in expected_files if any(p.match(f) for p in re_allow_pattern)]
1534

1535
1536
            snapshot_folder = Path(config_file).parent
            pipeline_is_cached = all((snapshot_folder / f).is_file() for f in expected_files)
1537

1538
            if pipeline_is_cached and not force_download:
1539
1540
1541
                # if the pipeline is cached, we can directly return it
                # else call snapshot_download
                return snapshot_folder
1542

1543
1544
1545
        user_agent = {"pipeline_class": cls.__name__}
        if custom_pipeline is not None and not custom_pipeline.endswith(".py"):
            user_agent["custom_pipeline"] = custom_pipeline
1546
1547

        # download all allow_patterns - ignore_patterns
1548
        try:
1549
            cached_folder = snapshot_download(
1550
1551
1552
1553
                pretrained_model_name,
                cache_dir=cache_dir,
                proxies=proxies,
                local_files_only=local_files_only,
1554
                token=token,
1555
1556
1557
1558
1559
                revision=revision,
                allow_patterns=allow_patterns,
                ignore_patterns=ignore_patterns,
                user_agent=user_agent,
            )
1560

1561
            cls_name = cls.load_config(os.path.join(cached_folder, "model_index.json")).get("_class_name", None)
1562
            cls_name = cls_name[4:] if isinstance(cls_name, str) and cls_name.startswith("Flax") else cls_name
1563

1564
1565
            diffusers_module = importlib.import_module(__name__.split(".")[0])
            pipeline_class = getattr(diffusers_module, cls_name, None) if isinstance(cls_name, str) else None
1566
1567

            if pipeline_class is not None and pipeline_class._load_connected_pipes:
1568
1569
1570
                modelcard = ModelCard.load(os.path.join(cached_folder, "README.md"))
                connected_pipes = sum([getattr(modelcard.data, k, []) for k in CONNECTED_PIPES_KEYS], [])
                for connected_pipe_repo_id in connected_pipes:
1571
1572
1573
1574
1575
                    download_kwargs = {
                        "cache_dir": cache_dir,
                        "force_download": force_download,
                        "proxies": proxies,
                        "local_files_only": local_files_only,
1576
                        "token": token,
1577
1578
1579
1580
                        "variant": variant,
                        "use_safetensors": use_safetensors,
                    }
                    DiffusionPipeline.download(connected_pipe_repo_id, **download_kwargs)
1581
1582
1583

            return cached_folder

1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
        except FileNotFoundError:
            # Means we tried to load pipeline with `local_files_only=True` but the files have not been found in local cache.
            # This can happen in two cases:
            # 1. If the user passed `local_files_only=True`                    => we raise the error directly
            # 2. If we forced `local_files_only=True` when `model_info` failed => we raise the initial error
            if model_info_call_error is None:
                # 1. user passed `local_files_only=True`
                raise
            else:
                # 2. we forced `local_files_only=True` when `model_info` failed
                raise EnvironmentError(
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
1595
                    f"Cannot load model {pretrained_model_name}: model is not cached locally and an error occurred"
1596
1597
1598
                    " while trying to fetch metadata from the Hub. Please check out the root cause in the stacktrace"
                    " above."
                ) from model_info_call_error
1599

1600
1601
    @classmethod
    def _get_signature_keys(cls, obj):
1602
1603
1604
        parameters = inspect.signature(obj.__init__).parameters
        required_parameters = {k: v for k, v in parameters.items() if v.default == inspect._empty}
        optional_parameters = set({k for k, v in parameters.items() if v.default != inspect._empty})
1605
        expected_modules = set(required_parameters.keys()) - {"self"}
1606
1607
1608
1609
1610
1611
1612

        optional_names = list(optional_parameters)
        for name in optional_names:
            if name in cls._optional_components:
                expected_modules.add(name)
                optional_parameters.remove(name)

1613
        return sorted(expected_modules), sorted(optional_parameters)
1614

1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
    @classmethod
    def _get_signature_types(cls):
        signature_types = {}
        for k, v in inspect.signature(cls.__init__).parameters.items():
            if inspect.isclass(v.annotation):
                signature_types[k] = (v.annotation,)
            elif get_origin(v.annotation) == Union:
                signature_types[k] = get_args(v.annotation)
            else:
                logger.warning(f"cannot get type annotation for Parameter {k} of {cls}.")
        return signature_types

1627
1628
1629
1630
    @property
    def components(self) -> Dict[str, Any]:
        r"""
        The `self.components` property can be useful to run different pipelines with the same weights and
Steven Liu's avatar
Steven Liu committed
1631
1632
1633
1634
        configurations without reallocating additional memory.

        Returns (`dict`):
            A dictionary containing all the modules needed to initialize the pipeline.
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644

        Examples:

        ```py
        >>> from diffusers import (
        ...     StableDiffusionPipeline,
        ...     StableDiffusionImg2ImgPipeline,
        ...     StableDiffusionInpaintPipeline,
        ... )

1645
        >>> text2img = StableDiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5")
1646
1647
1648
1649
1650
1651
1652
1653
1654
        >>> img2img = StableDiffusionImg2ImgPipeline(**text2img.components)
        >>> inpaint = StableDiffusionInpaintPipeline(**text2img.components)
        ```
        """
        expected_modules, optional_parameters = self._get_signature_keys(self)
        components = {
            k: getattr(self, k) for k in self.config.keys() if not k.startswith("_") and k not in optional_parameters
        }

1655
1656
1657
        actual = sorted(set(components.keys()))
        expected = sorted(expected_modules)
        if actual != expected:
1658
1659
            raise ValueError(
                f"{self} has been incorrectly initialized or {self.__class__} is incorrectly implemented. Expected"
1660
                f" {expected} to be defined, but {actual} are defined."
1661
1662
1663
1664
1665
1666
1667
            )

        return components

    @staticmethod
    def numpy_to_pil(images):
        """
Steven Liu's avatar
Steven Liu committed
1668
        Convert a NumPy image or a batch of images to a PIL image.
1669
        """
Patrick von Platen's avatar
Patrick von Platen committed
1670
        return numpy_to_pil(images)
1671

lsb's avatar
lsb committed
1672
    @torch.compiler.disable
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
    def progress_bar(self, iterable=None, total=None):
        if not hasattr(self, "_progress_bar_config"):
            self._progress_bar_config = {}
        elif not isinstance(self._progress_bar_config, dict):
            raise ValueError(
                f"`self._progress_bar_config` should be of type `dict`, but is {type(self._progress_bar_config)}."
            )

        if iterable is not None:
            return tqdm(iterable, **self._progress_bar_config)
        elif total is not None:
            return tqdm(total=total, **self._progress_bar_config)
        else:
            raise ValueError("Either `total` or `iterable` has to be defined.")

    def set_progress_bar_config(self, **kwargs):
        self._progress_bar_config = kwargs

1691
    def enable_xformers_memory_efficient_attention(self, attention_op: Optional[Callable] = None):
1692
        r"""
1693
1694
1695
        Enable memory efficient attention from [xFormers](https://facebookresearch.github.io/xformers/). When this
        option is enabled, you should observe lower GPU memory usage and a potential speed up during inference. Speed
        up during training is not guaranteed.
1696

Steven Liu's avatar
Steven Liu committed
1697
        <Tip warning={true}>
1698

Steven Liu's avatar
Steven Liu committed
1699
1700
1701
1702
        ⚠️ When memory efficient attention and sliced attention are both enabled, memory efficient attention takes
        precedent.

        </Tip>
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722

        Parameters:
            attention_op (`Callable`, *optional*):
                Override the default `None` operator for use as `op` argument to the
                [`memory_efficient_attention()`](https://facebookresearch.github.io/xformers/components/ops.html#xformers.ops.memory_efficient_attention)
                function of xFormers.

        Examples:

        ```py
        >>> import torch
        >>> from diffusers import DiffusionPipeline
        >>> from xformers.ops import MemoryEfficientAttentionFlashAttentionOp

        >>> pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1", torch_dtype=torch.float16)
        >>> pipe = pipe.to("cuda")
        >>> pipe.enable_xformers_memory_efficient_attention(attention_op=MemoryEfficientAttentionFlashAttentionOp)
        >>> # Workaround for not accepting attention shape using VAE for Flash Attention
        >>> pipe.vae.enable_xformers_memory_efficient_attention(attention_op=None)
        ```
1723
        """
1724
        self.set_use_memory_efficient_attention_xformers(True, attention_op)
1725
1726
1727

    def disable_xformers_memory_efficient_attention(self):
        r"""
Steven Liu's avatar
Steven Liu committed
1728
        Disable memory efficient attention from [xFormers](https://facebookresearch.github.io/xformers/).
1729
1730
1731
        """
        self.set_use_memory_efficient_attention_xformers(False)

1732
1733
1734
    def set_use_memory_efficient_attention_xformers(
        self, valid: bool, attention_op: Optional[Callable] = None
    ) -> None:
1735
1736
1737
1738
1739
        # Recursively walk through all the children.
        # Any children which exposes the set_use_memory_efficient_attention_xformers method
        # gets the message
        def fn_recursive_set_mem_eff(module: torch.nn.Module):
            if hasattr(module, "set_use_memory_efficient_attention_xformers"):
1740
                module.set_use_memory_efficient_attention_xformers(valid, attention_op)
1741
1742
1743
1744

            for child in module.children():
                fn_recursive_set_mem_eff(child)

1745
1746
1747
        module_names, _ = self._get_signature_keys(self)
        modules = [getattr(self, n, None) for n in module_names]
        modules = [m for m in modules if isinstance(m, torch.nn.Module)]
1748

1749
1750
        for module in modules:
            fn_recursive_set_mem_eff(module)
1751
1752
1753

    def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"):
        r"""
1754
        Enable sliced attention computation. When this option is enabled, the attention module splits the input tensor
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
        in slices to compute attention in several steps. For more than one attention head, the computation is performed
        sequentially over each head. This is useful to save some memory in exchange for a small speed decrease.

        <Tip warning={true}>

        ⚠️ Don't enable attention slicing if you're already using `scaled_dot_product_attention` (SDPA) from PyTorch
        2.0 or xFormers. These attention computations are already very memory efficient so you won't need to enable
        this function. If you enable attention slicing with SDPA or xFormers, it can lead to serious slow downs!

        </Tip>
1765
1766
1767
1768

        Args:
            slice_size (`str` or `int`, *optional*, defaults to `"auto"`):
                When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
Alexander Pivovarov's avatar
Alexander Pivovarov committed
1769
                `"max"`, maximum amount of memory will be saved by running only one slice at a time. If a number is
1770
1771
                provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
                must be a multiple of `slice_size`.
1772
1773
1774
1775
1776
1777
1778
1779

        Examples:

        ```py
        >>> import torch
        >>> from diffusers import StableDiffusionPipeline

        >>> pipe = StableDiffusionPipeline.from_pretrained(
1780
        ...     "stable-diffusion-v1-5/stable-diffusion-v1-5",
1781
1782
1783
1784
1785
1786
1787
1788
        ...     torch_dtype=torch.float16,
        ...     use_safetensors=True,
        ... )

        >>> prompt = "a photo of an astronaut riding a horse on mars"
        >>> pipe.enable_attention_slicing()
        >>> image = pipe(prompt).images[0]
        ```
1789
1790
1791
1792
1793
        """
        self.set_attention_slice(slice_size)

    def disable_attention_slicing(self):
        r"""
Steven Liu's avatar
Steven Liu committed
1794
1795
        Disable sliced attention computation. If `enable_attention_slicing` was previously called, attention is
        computed in one step.
1796
1797
1798
1799
1800
        """
        # set slice_size = `None` to disable `attention slicing`
        self.enable_attention_slicing(None)

    def set_attention_slice(self, slice_size: Optional[int]):
1801
1802
1803
        module_names, _ = self._get_signature_keys(self)
        modules = [getattr(self, n, None) for n in module_names]
        modules = [m for m in modules if isinstance(m, torch.nn.Module) and hasattr(m, "set_attention_slice")]
1804

1805
1806
        for module in modules:
            module.set_attention_slice(slice_size)
1807

1808
1809
1810
    @classmethod
    def from_pipe(cls, pipeline, **kwargs):
        r"""
1811
1812
        Create a new pipeline from a given pipeline. This method is useful to create a new pipeline from the existing
        pipeline components without reallocating additional memory.
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826

        Arguments:
            pipeline (`DiffusionPipeline`):
                The pipeline from which to create a new pipeline.

        Returns:
            `DiffusionPipeline`:
                A new pipeline with the same weights and configurations as `pipeline`.

        Examples:

        ```py
        >>> from diffusers import StableDiffusionPipeline, StableDiffusionSAGPipeline

1827
        >>> pipe = StableDiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5")
1828
1829
1830
1831
1832
        >>> new_pipe = StableDiffusionSAGPipeline.from_pipe(pipe)
        ```
        """

        original_config = dict(pipeline.config)
1833
        torch_dtype = kwargs.pop("torch_dtype", torch.float32)
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870

        # derive the pipeline class to instantiate
        custom_pipeline = kwargs.pop("custom_pipeline", None)
        custom_revision = kwargs.pop("custom_revision", None)

        if custom_pipeline is not None:
            pipeline_class = _get_custom_pipeline_class(custom_pipeline, revision=custom_revision)
        else:
            pipeline_class = cls

        expected_modules, optional_kwargs = cls._get_signature_keys(pipeline_class)
        # true_optional_modules are optional components with default value in signature so it is ok not to pass them to `__init__`
        # e.g. `image_encoder` for StableDiffusionPipeline
        parameters = inspect.signature(cls.__init__).parameters
        true_optional_modules = set(
            {k for k, v in parameters.items() if v.default != inspect._empty and k in expected_modules}
        )

        # get the class of each component based on its type hint
        # e.g. {"unet": UNet2DConditionModel, "text_encoder": CLIPTextMode}
        component_types = pipeline_class._get_signature_types()

        pretrained_model_name_or_path = original_config.pop("_name_or_path", None)
        # allow users pass modules in `kwargs` to override the original pipeline's components
        passed_class_obj = {k: kwargs.pop(k) for k in expected_modules if k in kwargs}

        original_class_obj = {}
        for name, component in pipeline.components.items():
            if name in expected_modules and name not in passed_class_obj:
                # for model components, we will not switch over if the class does not matches the type hint in the new pipeline's signature
                if (
                    not isinstance(component, ModelMixin)
                    or type(component) in component_types[name]
                    or (component is None and name in cls._optional_components)
                ):
                    original_class_obj[name] = component
                else:
1871
                    logger.warning(
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
                        f"component {name} is not switched over to new pipeline because type does not match the expected."
                        f" {name} is {type(component)} while the new pipeline expect {component_types[name]}."
                        f" please pass the component of the correct type to the new pipeline. `from_pipe(..., {name}={name})`"
                    )

        # allow users pass optional kwargs to override the original pipelines config attribute
        passed_pipe_kwargs = {k: kwargs.pop(k) for k in optional_kwargs if k in kwargs}
        original_pipe_kwargs = {
            k: original_config[k]
            for k in original_config.keys()
            if k in optional_kwargs and k not in passed_pipe_kwargs
        }

        # config attribute that were not expected by pipeline is stored as its private attribute
        # (i.e. when the original pipeline was also instantiated with `from_pipe` from another pipeline that has this config)
        # in this case, we will pass them as optional arguments if they can be accepted by the new pipeline
        additional_pipe_kwargs = [
            k[1:]
            for k in original_config.keys()
            if k.startswith("_") and k[1:] in optional_kwargs and k[1:] not in passed_pipe_kwargs
        ]
        for k in additional_pipe_kwargs:
            original_pipe_kwargs[k] = original_config.pop(f"_{k}")

        pipeline_kwargs = {
            **passed_class_obj,
            **original_class_obj,
            **passed_pipe_kwargs,
            **original_pipe_kwargs,
            **kwargs,
        }

        # store unused config as private attribute in the new pipeline
        unused_original_config = {
            f"{'' if k.startswith('_') else '_'}{k}": v for k, v in original_config.items() if k not in pipeline_kwargs
        }

        missing_modules = (
            set(expected_modules)
            - set(pipeline._optional_components)
            - set(pipeline_kwargs.keys())
            - set(true_optional_modules)
        )

        if len(missing_modules) > 0:
            raise ValueError(
                f"Pipeline {pipeline_class} expected {expected_modules}, but only {set(list(passed_class_obj.keys()) + list(original_class_obj.keys()))} were passed"
            )

        new_pipeline = pipeline_class(**pipeline_kwargs)
        if pretrained_model_name_or_path is not None:
            new_pipeline.register_to_config(_name_or_path=pretrained_model_name_or_path)
        new_pipeline.register_to_config(**unused_original_config)

        if torch_dtype is not None:
            new_pipeline.to(dtype=torch_dtype)

        return new_pipeline

Aryan's avatar
Aryan committed
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
    def _maybe_raise_error_if_group_offload_active(
        self, raise_error: bool = False, module: Optional[torch.nn.Module] = None
    ) -> bool:
        from ..hooks.group_offloading import _is_group_offload_enabled

        components = self.components.values() if module is None else [module]
        components = [component for component in components if isinstance(component, torch.nn.Module)]
        for component in components:
            if _is_group_offload_enabled(component):
                if raise_error:
                    raise ValueError(
                        "You are trying to apply model/sequential CPU offloading to a pipeline that contains components "
                        "with group offloading enabled. This is not supported. Please disable group offloading for "
                        "components of the pipeline to use other offloading methods."
                    )
                return True
        return False

1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011

class StableDiffusionMixin:
    r"""
    Helper for DiffusionPipeline with vae and unet.(mainly for LDM such as stable diffusion)
    """

    def enable_vae_slicing(self):
        r"""
        Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
        compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
        """
        self.vae.enable_slicing()

    def disable_vae_slicing(self):
        r"""
        Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
        computing decoding in one step.
        """
        self.vae.disable_slicing()

    def enable_vae_tiling(self):
        r"""
        Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
        compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
        processing larger images.
        """
        self.vae.enable_tiling()

    def disable_vae_tiling(self):
        r"""
        Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
        computing decoding in one step.
        """
        self.vae.disable_tiling()

    def enable_freeu(self, s1: float, s2: float, b1: float, b2: float):
        r"""Enables the FreeU mechanism as in https://arxiv.org/abs/2309.11497.

        The suffixes after the scaling factors represent the stages where they are being applied.

        Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of the values
        that are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL.

        Args:
            s1 (`float`):
                Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to
                mitigate "oversmoothing effect" in the enhanced denoising process.
            s2 (`float`):
                Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to
                mitigate "oversmoothing effect" in the enhanced denoising process.
            b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features.
            b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features.
        """
        if not hasattr(self, "unet"):
            raise ValueError("The pipeline must have `unet` for using FreeU.")
        self.unet.enable_freeu(s1=s1, s2=s2, b1=b1, b2=b2)

    def disable_freeu(self):
        """Disables the FreeU mechanism if enabled."""
        self.unet.disable_freeu()

    def fuse_qkv_projections(self, unet: bool = True, vae: bool = True):
        """
2012
2013
        Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value)
        are fused. For cross-attention modules, key and value projection matrices are fused.
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067

        <Tip warning={true}>

        This API is 🧪 experimental.

        </Tip>

        Args:
            unet (`bool`, defaults to `True`): To apply fusion on the UNet.
            vae (`bool`, defaults to `True`): To apply fusion on the VAE.
        """
        self.fusing_unet = False
        self.fusing_vae = False

        if unet:
            self.fusing_unet = True
            self.unet.fuse_qkv_projections()
            self.unet.set_attn_processor(FusedAttnProcessor2_0())

        if vae:
            if not isinstance(self.vae, AutoencoderKL):
                raise ValueError("`fuse_qkv_projections()` is only supported for the VAE of type `AutoencoderKL`.")

            self.fusing_vae = True
            self.vae.fuse_qkv_projections()
            self.vae.set_attn_processor(FusedAttnProcessor2_0())

    def unfuse_qkv_projections(self, unet: bool = True, vae: bool = True):
        """Disable QKV projection fusion if enabled.

        <Tip warning={true}>

        This API is 🧪 experimental.

        </Tip>

        Args:
            unet (`bool`, defaults to `True`): To apply fusion on the UNet.
            vae (`bool`, defaults to `True`): To apply fusion on the VAE.

        """
        if unet:
            if not self.fusing_unet:
                logger.warning("The UNet was not initially fused for QKV projections. Doing nothing.")
            else:
                self.unet.unfuse_qkv_projections()
                self.fusing_unet = False

        if vae:
            if not self.fusing_vae:
                logger.warning("The VAE was not initially fused for QKV projections. Doing nothing.")
            else:
                self.vae.unfuse_qkv_projections()
                self.fusing_vae = False