".github/vscode:/vscode.git/clone" did not exist on "336b5dd59024ee5434fe8daabfa0762a68b63e60"
pipeline_utils.py 94.3 KB
Newer Older
1
# coding=utf-8
Patrick von Platen's avatar
Patrick von Platen committed
2
# Copyright 2023 The HuggingFace Inc. team.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Copyright (c) 2022, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

17
import fnmatch
18
19
20
import importlib
import inspect
import os
21
import re
22
import sys
23
import warnings
24
25
from dataclasses import dataclass
from pathlib import Path
26
from typing import Any, Callable, Dict, List, Optional, Union
27
28

import numpy as np
Anh71me's avatar
Anh71me committed
29
import PIL.Image
30
import torch
31
from huggingface_hub import ModelCard, create_repo, hf_hub_download, model_info, snapshot_download
32
from packaging import version
33
from requests.exceptions import HTTPError
34
35
from tqdm.auto import tqdm

36
37
import diffusers

38
from .. import __version__
39
40
41
42
43
from ..configuration_utils import ConfigMixin
from ..models.modeling_utils import _LOW_CPU_MEM_USAGE_DEFAULT
from ..schedulers.scheduling_utils import SCHEDULER_CONFIG_NAME
from ..utils import (
    CONFIG_NAME,
44
    DEPRECATED_REVISION_ARGS,
45
46
    DIFFUSERS_CACHE,
    HF_HUB_OFFLINE,
47
    SAFETENSORS_WEIGHTS_NAME,
48
49
50
51
52
    WEIGHTS_NAME,
    BaseOutput,
    deprecate,
    get_class_from_dynamic_module,
    is_accelerate_available,
53
    is_accelerate_version,
54
55
56
    is_torch_version,
    is_transformers_available,
    logging,
Patrick von Platen's avatar
Patrick von Platen committed
57
    numpy_to_pil,
58
)
Dhruv Nair's avatar
Dhruv Nair committed
59
from ..utils.torch_utils import is_compiled_module
60
61
62
63
64


if is_transformers_available():
    import transformers
    from transformers import PreTrainedModel
65
66
67
68
    from transformers.utils import FLAX_WEIGHTS_NAME as TRANSFORMERS_FLAX_WEIGHTS_NAME
    from transformers.utils import SAFE_WEIGHTS_NAME as TRANSFORMERS_SAFE_WEIGHTS_NAME
    from transformers.utils import WEIGHTS_NAME as TRANSFORMERS_WEIGHTS_NAME

69
from ..utils import FLAX_WEIGHTS_NAME, ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, PushToHubMixin
70
71


72
73
74
75
if is_accelerate_available():
    import accelerate


76
77
78
79
INDEX_FILE = "diffusion_pytorch_model.bin"
CUSTOM_PIPELINE_FILE_NAME = "pipeline.py"
DUMMY_MODULES_FOLDER = "diffusers.utils"
TRANSFORMERS_DUMMY_MODULES_FOLDER = "transformers.utils"
80
CONNECTED_PIPES_KEYS = ["prior"]
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117


logger = logging.get_logger(__name__)


LOADABLE_CLASSES = {
    "diffusers": {
        "ModelMixin": ["save_pretrained", "from_pretrained"],
        "SchedulerMixin": ["save_pretrained", "from_pretrained"],
        "DiffusionPipeline": ["save_pretrained", "from_pretrained"],
        "OnnxRuntimeModel": ["save_pretrained", "from_pretrained"],
    },
    "transformers": {
        "PreTrainedTokenizer": ["save_pretrained", "from_pretrained"],
        "PreTrainedTokenizerFast": ["save_pretrained", "from_pretrained"],
        "PreTrainedModel": ["save_pretrained", "from_pretrained"],
        "FeatureExtractionMixin": ["save_pretrained", "from_pretrained"],
        "ProcessorMixin": ["save_pretrained", "from_pretrained"],
        "ImageProcessingMixin": ["save_pretrained", "from_pretrained"],
    },
    "onnxruntime.training": {
        "ORTModule": ["save_pretrained", "from_pretrained"],
    },
}

ALL_IMPORTABLE_CLASSES = {}
for library in LOADABLE_CLASSES:
    ALL_IMPORTABLE_CLASSES.update(LOADABLE_CLASSES[library])


@dataclass
class ImagePipelineOutput(BaseOutput):
    """
    Output class for image pipelines.

    Args:
        images (`List[PIL.Image.Image]` or `np.ndarray`)
Steven Liu's avatar
Steven Liu committed
118
119
            List of denoised PIL images of length `batch_size` or NumPy array of shape `(batch_size, height, width,
            num_channels)`.
120
121
122
123
124
125
126
127
128
129
130
131
    """

    images: Union[List[PIL.Image.Image], np.ndarray]


@dataclass
class AudioPipelineOutput(BaseOutput):
    """
    Output class for audio pipelines.

    Args:
        audios (`np.ndarray`)
Steven Liu's avatar
Steven Liu committed
132
            List of denoised audio samples of a NumPy array of shape `(batch_size, num_channels, sample_rate)`.
133
134
135
136
137
    """

    audios: np.ndarray


138
def is_safetensors_compatible(filenames, variant=None, passed_components=None) -> bool:
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
    """
    Checking for safetensors compatibility:
    - By default, all models are saved with the default pytorch serialization, so we use the list of default pytorch
      files to know which safetensors files are needed.
    - The model is safetensors compatible only if there is a matching safetensors file for every default pytorch file.

    Converting default pytorch serialized filenames to safetensors serialized filenames:
    - For models from the diffusers library, just replace the ".bin" extension with ".safetensors"
    - For models from the transformers library, the filename changes from "pytorch_model" to "model", and the ".bin"
      extension is replaced with ".safetensors"
    """
    pt_filenames = []

    sf_filenames = set()

154
155
    passed_components = passed_components or []

156
157
158
    for filename in filenames:
        _, extension = os.path.splitext(filename)

159
160
161
        if len(filename.split("/")) == 2 and filename.split("/")[0] in passed_components:
            continue

162
163
164
165
166
167
168
169
170
171
        if extension == ".bin":
            pt_filenames.append(filename)
        elif extension == ".safetensors":
            sf_filenames.add(filename)

    for filename in pt_filenames:
        #  filename = 'foo/bar/baz.bam' -> path = 'foo/bar', filename = 'baz', extention = '.bam'
        path, filename = os.path.split(filename)
        filename, extension = os.path.splitext(filename)

172
173
        if filename.startswith("pytorch_model"):
            filename = filename.replace("pytorch_model", "model")
174
        else:
175
176
177
178
179
180
181
182
183
184
            filename = filename

        expected_sf_filename = os.path.join(path, filename)
        expected_sf_filename = f"{expected_sf_filename}.safetensors"

        if expected_sf_filename not in sf_filenames:
            logger.warning(f"{expected_sf_filename} not found")
            return False

    return True
185
186


187
def variant_compatible_siblings(filenames, variant=None) -> Union[List[os.PathLike], str]:
188
189
190
191
192
193
194
    weight_names = [
        WEIGHTS_NAME,
        SAFETENSORS_WEIGHTS_NAME,
        FLAX_WEIGHTS_NAME,
        ONNX_WEIGHTS_NAME,
        ONNX_EXTERNAL_WEIGHTS_NAME,
    ]
195
196
197
198
199
200
201
202

    if is_transformers_available():
        weight_names += [TRANSFORMERS_WEIGHTS_NAME, TRANSFORMERS_SAFE_WEIGHTS_NAME, TRANSFORMERS_FLAX_WEIGHTS_NAME]

    # model_pytorch, diffusion_model_pytorch, ...
    weight_prefixes = [w.split(".")[0] for w in weight_names]
    # .bin, .safetensors, ...
    weight_suffixs = [w.split(".")[-1] for w in weight_names]
203
    # -00001-of-00002
204
    transformers_index_format = r"\d{5}-of-\d{5}"
205
206

    if variant is not None:
207
        # `diffusion_pytorch_model.fp16.bin` as well as `model.fp16-00001-of-00002.safetensors`
208
        variant_file_re = re.compile(
209
            rf"({'|'.join(weight_prefixes)})\.({variant}|{variant}-{transformers_index_format})\.({'|'.join(weight_suffixs)})$"
210
211
212
        )
        # `text_encoder/pytorch_model.bin.index.fp16.json`
        variant_index_re = re.compile(
213
            rf"({'|'.join(weight_prefixes)})\.({'|'.join(weight_suffixs)})\.index\.{variant}\.json$"
214
        )
215

216
    # `diffusion_pytorch_model.bin` as well as `model-00001-of-00002.safetensors`
217
    non_variant_file_re = re.compile(
218
        rf"({'|'.join(weight_prefixes)})(-{transformers_index_format})?\.({'|'.join(weight_suffixs)})$"
219
    )
220
    # `text_encoder/pytorch_model.bin.index.json`
221
    non_variant_index_re = re.compile(rf"({'|'.join(weight_prefixes)})\.({'|'.join(weight_suffixs)})\.index\.json")
222
223

    if variant is not None:
224
225
226
        variant_weights = {f for f in filenames if variant_file_re.match(f.split("/")[-1]) is not None}
        variant_indexes = {f for f in filenames if variant_index_re.match(f.split("/")[-1]) is not None}
        variant_filenames = variant_weights | variant_indexes
227
228
229
    else:
        variant_filenames = set()

230
231
232
    non_variant_weights = {f for f in filenames if non_variant_file_re.match(f.split("/")[-1]) is not None}
    non_variant_indexes = {f for f in filenames if non_variant_index_re.match(f.split("/")[-1]) is not None}
    non_variant_filenames = non_variant_weights | non_variant_indexes
233

234
    # all variant filenames will be used by default
235
    usable_filenames = set(variant_filenames)
236
237
238
239
240
241
242
243
244
245

    def convert_to_variant(filename):
        if "index" in filename:
            variant_filename = filename.replace("index", f"index.{variant}")
        elif re.compile(f"^(.*?){transformers_index_format}").match(filename) is not None:
            variant_filename = f"{filename.split('-')[0]}.{variant}-{'-'.join(filename.split('-')[1:])}"
        else:
            variant_filename = f"{filename.split('.')[0]}.{variant}.{filename.split('.')[1]}"
        return variant_filename

246
    for f in non_variant_filenames:
247
        variant_filename = convert_to_variant(f)
248
249
250
251
252
253
        if variant_filename not in usable_filenames:
            usable_filenames.add(f)

    return usable_filenames, variant_filenames


254
255
256
257
258
259
def warn_deprecated_model_variant(pretrained_model_name_or_path, use_auth_token, variant, revision, model_filenames):
    info = model_info(
        pretrained_model_name_or_path,
        use_auth_token=use_auth_token,
        revision=None,
    )
260
    filenames = {sibling.rfilename for sibling in info.siblings}
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
    comp_model_filenames, _ = variant_compatible_siblings(filenames, variant=revision)
    comp_model_filenames = [".".join(f.split(".")[:1] + f.split(".")[2:]) for f in comp_model_filenames]

    if set(comp_model_filenames) == set(model_filenames):
        warnings.warn(
            f"You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'` even though you can load it via `variant=`{revision}`. Loading model variants via `revision='{revision}'` is deprecated and will be removed in diffusers v1. Please use `variant='{revision}'` instead.",
            FutureWarning,
        )
    else:
        warnings.warn(
            f"You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant='{revision}'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have the required variant filenames in the 'main' branch. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title '{pretrained_model_name_or_path} is missing {revision} files' so that the correct variant file can be added.",
            FutureWarning,
        )


def maybe_raise_or_warn(
    library_name, library, class_name, importable_classes, passed_class_obj, name, is_pipeline_module
):
    """Simple helper method to raise or warn in case incorrect module has been passed"""
    if not is_pipeline_module:
        library = importlib.import_module(library_name)
        class_obj = getattr(library, class_name)
        class_candidates = {c: getattr(library, c, None) for c in importable_classes.keys()}

        expected_class_obj = None
        for class_name, class_candidate in class_candidates.items():
            if class_candidate is not None and issubclass(class_obj, class_candidate):
                expected_class_obj = class_candidate

290
291
292
293
294
295
296
297
        # Dynamo wraps the original model in a private class.
        # I didn't find a public API to get the original class.
        sub_model = passed_class_obj[name]
        model_cls = sub_model.__class__
        if is_compiled_module(sub_model):
            model_cls = sub_model._orig_mod.__class__

        if not issubclass(model_cls, expected_class_obj):
298
            raise ValueError(
299
                f"{passed_class_obj[name]} is of type: {model_cls}, but should be" f" {expected_class_obj}"
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
            )
    else:
        logger.warning(
            f"You have passed a non-standard module {passed_class_obj[name]}. We cannot verify whether it"
            " has the correct type"
        )


def get_class_obj_and_candidates(library_name, class_name, importable_classes, pipelines, is_pipeline_module):
    """Simple helper method to retrieve class object of module as well as potential parent class objects"""
    if is_pipeline_module:
        pipeline_module = getattr(pipelines, library_name)

        class_obj = getattr(pipeline_module, class_name)
        class_candidates = {c: class_obj for c in importable_classes.keys()}
    else:
        # else we just import it from the library.
        library = importlib.import_module(library_name)

        class_obj = getattr(library, class_name)
        class_candidates = {c: getattr(library, c, None) for c in importable_classes.keys()}

    return class_obj, class_candidates


325
326
327
def _get_pipeline_class(
    class_obj, config, load_connected_pipeline=False, custom_pipeline=None, cache_dir=None, revision=None
):
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
    if custom_pipeline is not None:
        if custom_pipeline.endswith(".py"):
            path = Path(custom_pipeline)
            # decompose into folder & file
            file_name = path.name
            custom_pipeline = path.parent.absolute()
        else:
            file_name = CUSTOM_PIPELINE_FILE_NAME

        return get_class_from_dynamic_module(
            custom_pipeline, module_file=file_name, cache_dir=cache_dir, revision=revision
        )

    if class_obj != DiffusionPipeline:
        return class_obj

    diffusers_module = importlib.import_module(class_obj.__module__.split(".")[0])
345
    class_name = config["_class_name"]
346
    class_name = class_name[4:] if class_name.startswith("Flax") else class_name
347
348

    pipeline_cls = getattr(diffusers_module, class_name)
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363

    if load_connected_pipeline:
        from .auto_pipeline import _get_connected_pipeline

        connected_pipeline_cls = _get_connected_pipeline(pipeline_cls)
        if connected_pipeline_cls is not None:
            logger.info(
                f"Loading connected pipeline {connected_pipeline_cls.__name__} instead of {pipeline_cls.__name__} as specified via `load_connected_pipeline=True`"
            )
        else:
            logger.info(f"{pipeline_cls.__name__} has no connected pipeline class. Loading {pipeline_cls.__name__}.")

        pipeline_cls = connected_pipeline_cls or pipeline_cls

    return pipeline_cls
364
365


366
367
368
369
370
371
372
373
374
375
376
def load_sub_model(
    library_name: str,
    class_name: str,
    importable_classes: List[Any],
    pipelines: Any,
    is_pipeline_module: bool,
    pipeline_class: Any,
    torch_dtype: torch.dtype,
    provider: Any,
    sess_options: Any,
    device_map: Optional[Union[Dict[str, torch.device], str]],
377
378
379
    max_memory: Optional[Dict[Union[int, str], Union[int, str]]],
    offload_folder: Optional[Union[str, os.PathLike]],
    offload_state_dict: bool,
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
    model_variants: Dict[str, str],
    name: str,
    from_flax: bool,
    variant: str,
    low_cpu_mem_usage: bool,
    cached_folder: Union[str, os.PathLike],
):
    """Helper method to load the module `name` from `library_name` and `class_name`"""
    # retrieve class candidates
    class_obj, class_candidates = get_class_obj_and_candidates(
        library_name, class_name, importable_classes, pipelines, is_pipeline_module
    )

    load_method_name = None
    # retrive load method name
    for class_name, class_candidate in class_candidates.items():
        if class_candidate is not None and issubclass(class_obj, class_candidate):
            load_method_name = importable_classes[class_name][1]

    # if load method name is None, then we have a dummy module -> raise Error
    if load_method_name is None:
        none_module = class_obj.__module__
        is_dummy_path = none_module.startswith(DUMMY_MODULES_FOLDER) or none_module.startswith(
            TRANSFORMERS_DUMMY_MODULES_FOLDER
        )
        if is_dummy_path and "dummy" in none_module:
            # call class_obj for nice error message of missing requirements
            class_obj()

        raise ValueError(
            f"The component {class_obj} of {pipeline_class} cannot be loaded as it does not seem to have"
            f" any of the loading methods defined in {ALL_IMPORTABLE_CLASSES}."
        )

    load_method = getattr(class_obj, load_method_name)

    # add kwargs to loading method
    loading_kwargs = {}
    if issubclass(class_obj, torch.nn.Module):
        loading_kwargs["torch_dtype"] = torch_dtype
    if issubclass(class_obj, diffusers.OnnxRuntimeModel):
        loading_kwargs["provider"] = provider
        loading_kwargs["sess_options"] = sess_options

    is_diffusers_model = issubclass(class_obj, diffusers.ModelMixin)

    if is_transformers_available():
        transformers_version = version.parse(version.parse(transformers.__version__).base_version)
    else:
        transformers_version = "N/A"

    is_transformers_model = (
        is_transformers_available()
        and issubclass(class_obj, PreTrainedModel)
        and transformers_version >= version.parse("4.20.0")
    )

    # When loading a transformers model, if the device_map is None, the weights will be initialized as opposed to diffusers.
    # To make default loading faster we set the `low_cpu_mem_usage=low_cpu_mem_usage` flag which is `True` by default.
    # This makes sure that the weights won't be initialized which significantly speeds up loading.
    if is_diffusers_model or is_transformers_model:
        loading_kwargs["device_map"] = device_map
442
443
444
        loading_kwargs["max_memory"] = max_memory
        loading_kwargs["offload_folder"] = offload_folder
        loading_kwargs["offload_state_dict"] = offload_state_dict
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
        loading_kwargs["variant"] = model_variants.pop(name, None)
        if from_flax:
            loading_kwargs["from_flax"] = True

        # the following can be deleted once the minimum required `transformers` version
        # is higher than 4.27
        if (
            is_transformers_model
            and loading_kwargs["variant"] is not None
            and transformers_version < version.parse("4.27.0")
        ):
            raise ImportError(
                f"When passing `variant='{variant}'`, please make sure to upgrade your `transformers` version to at least 4.27.0.dev0"
            )
        elif is_transformers_model and loading_kwargs["variant"] is None:
            loading_kwargs.pop("variant")

        # if `from_flax` and model is transformer model, can currently not load with `low_cpu_mem_usage`
        if not (from_flax and is_transformers_model):
            loading_kwargs["low_cpu_mem_usage"] = low_cpu_mem_usage
        else:
            loading_kwargs["low_cpu_mem_usage"] = False

    # check if the module is in a subdirectory
    if os.path.isdir(os.path.join(cached_folder, name)):
        loaded_sub_model = load_method(os.path.join(cached_folder, name), **loading_kwargs)
    else:
        # else load from the root directory
        loaded_sub_model = load_method(cached_folder, **loading_kwargs)

    return loaded_sub_model


478
class DiffusionPipeline(ConfigMixin, PushToHubMixin):
479
    r"""
Steven Liu's avatar
Steven Liu committed
480
    Base class for all pipelines.
481

Steven Liu's avatar
Steven Liu committed
482
483
    [`DiffusionPipeline`] stores all components (models, schedulers, and processors) for diffusion pipelines and
    provides methods for loading, downloading and saving models. It also includes methods to:
484
485

        - move all PyTorch modules to the device of your choice
486
        - enable/disable the progress bar for the denoising iteration
487
488
489

    Class attributes:

Steven Liu's avatar
Steven Liu committed
490
491
        - **config_name** (`str`) -- The configuration filename that stores the class and module names of all the
          diffusion pipeline's components.
492
        - **_optional_components** (`List[str]`) -- List of all optional components that don't have to be passed to the
Steven Liu's avatar
Steven Liu committed
493
          pipeline to function (should be overridden by subclasses).
494
495
    """
    config_name = "model_index.json"
496
    model_cpu_offload_seq = None
497
    _optional_components = []
498
    _exclude_from_cpu_offload = []
499
    _load_connected_pipes = False
500
    _is_onnx = False
501
502
503
504
505
506
507
508
509
510

    def register_modules(self, **kwargs):
        # import it here to avoid circular import
        from diffusers import pipelines

        for name, module in kwargs.items():
            # retrieve library
            if module is None:
                register_dict = {name: (None, None)}
            else:
511
                # register the config from the original module, not the dynamo compiled one
512
                if is_compiled_module(module):
513
514
515
                    not_compiled_module = module._orig_mod
                else:
                    not_compiled_module = module
516

517
                library = not_compiled_module.__module__.split(".")[0]
518
519

                # check if the module is a pipeline module
520
                module_path_items = not_compiled_module.__module__.split(".")
521
522
                pipeline_dir = module_path_items[-2] if len(module_path_items) > 2 else None

523
                path = not_compiled_module.__module__.split(".")
524
525
526
527
528
                is_pipeline_module = pipeline_dir in path and hasattr(pipelines, pipeline_dir)

                # if library is not in LOADABLE_CLASSES, then it is a custom module.
                # Or if it's a pipeline module, then the module is inside the pipeline
                # folder so we set the library to module name.
529
                if is_pipeline_module:
530
                    library = pipeline_dir
531
                elif library not in LOADABLE_CLASSES:
532
                    library = not_compiled_module.__module__
533
534

                # retrieve class_name
535
                class_name = not_compiled_module.__class__.__name__
536
537
538
539
540
541
542
543
544

                register_dict = {name: (library, class_name)}

            # save model index config
            self.register_to_config(**register_dict)

            # set models
            setattr(self, name, module)

545
    def __setattr__(self, name: str, value: Any):
546
        if name in self.__dict__ and hasattr(self.config, name):
547
548
            # We need to overwrite the config if name exists in config
            if isinstance(getattr(self.config, name), (tuple, list)):
549
                if value is not None and self.config[name][0] is not None:
550
551
552
553
554
555
556
557
558
559
                    class_library_tuple = (value.__module__.split(".")[0], value.__class__.__name__)
                else:
                    class_library_tuple = (None, None)

                self.register_to_config(**{name: class_library_tuple})
            else:
                self.register_to_config(**{name: value})

        super().__setattr__(name, value)

560
561
562
    def save_pretrained(
        self,
        save_directory: Union[str, os.PathLike],
563
        safe_serialization: bool = True,
564
        variant: Optional[str] = None,
565
566
        push_to_hub: bool = False,
        **kwargs,
567
568
    ):
        """
Steven Liu's avatar
Steven Liu committed
569
570
571
        Save all saveable variables of the pipeline to a directory. A pipeline variable can be saved and loaded if its
        class implements both a save and loading method. The pipeline is easily reloaded using the
        [`~DiffusionPipeline.from_pretrained`] class method.
572
573
574

        Arguments:
            save_directory (`str` or `os.PathLike`):
Steven Liu's avatar
Steven Liu committed
575
                Directory to save a pipeline to. Will be created if it doesn't exist.
576
            safe_serialization (`bool`, *optional*, defaults to `True`):
Steven Liu's avatar
Steven Liu committed
577
                Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
578
            variant (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
579
                If specified, weights are saved in the format `pytorch_model.<variant>.bin`.
580
581
582
583
584
585
            push_to_hub (`bool`, *optional*, defaults to `False`):
                Whether or not to push your model to the Hugging Face model hub after saving it. You can specify the
                repository you want to push to with `repo_id` (will default to the name of `save_directory` in your
                namespace).
            kwargs (`Dict[str, Any]`, *optional*):
                Additional keyword arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method.
586
587
        """
        model_index_dict = dict(self.config)
588
589
        model_index_dict.pop("_class_name", None)
        model_index_dict.pop("_diffusers_version", None)
590
        model_index_dict.pop("_module", None)
591
        model_index_dict.pop("_name_or_path", None)
592

593
594
595
596
597
598
599
600
        if push_to_hub:
            commit_message = kwargs.pop("commit_message", None)
            private = kwargs.pop("private", False)
            create_pr = kwargs.pop("create_pr", False)
            token = kwargs.pop("token", None)
            repo_id = kwargs.pop("repo_id", save_directory.split(os.path.sep)[-1])
            repo_id = create_repo(repo_id, exist_ok=True, private=private, token=token).repo_id

601
602
603
604
605
606
607
608
609
610
611
612
613
614
        expected_modules, optional_kwargs = self._get_signature_keys(self)

        def is_saveable_module(name, value):
            if name not in expected_modules:
                return False
            if name in self._optional_components and value[0] is None:
                return False
            return True

        model_index_dict = {k: v for k, v in model_index_dict.items() if is_saveable_module(k, v)}
        for pipeline_component_name in model_index_dict.keys():
            sub_model = getattr(self, pipeline_component_name)
            model_cls = sub_model.__class__

615
616
617
618
619
620
            # Dynamo wraps the original model in a private class.
            # I didn't find a public API to get the original class.
            if is_compiled_module(sub_model):
                sub_model = sub_model._orig_mod
                model_cls = sub_model.__class__

621
622
623
            save_method_name = None
            # search for the model's base class in LOADABLE_CLASSES
            for library_name, library_classes in LOADABLE_CLASSES.items():
624
625
626
627
628
629
630
                if library_name in sys.modules:
                    library = importlib.import_module(library_name)
                else:
                    logger.info(
                        f"{library_name} is not installed. Cannot save {pipeline_component_name} as {library_classes} from {library_name}"
                    )

631
632
633
634
635
636
637
638
639
                for base_class, save_load_methods in library_classes.items():
                    class_candidate = getattr(library, base_class, None)
                    if class_candidate is not None and issubclass(model_cls, class_candidate):
                        # if we found a suitable base class in LOADABLE_CLASSES then grab its save method
                        save_method_name = save_load_methods[0]
                        break
                if save_method_name is not None:
                    break

640
641
642
643
644
645
            if save_method_name is None:
                logger.warn(f"self.{pipeline_component_name}={sub_model} of type {type(sub_model)} cannot be saved.")
                # make sure that unsaveable components are not tried to be loaded afterward
                self.register_to_config(**{pipeline_component_name: (None, None)})
                continue

646
647
648
649
650
            save_method = getattr(sub_model, save_method_name)

            # Call the save method with the argument safe_serialization only if it's supported
            save_method_signature = inspect.signature(save_method)
            save_method_accept_safe = "safe_serialization" in save_method_signature.parameters
651
652
653
            save_method_accept_variant = "variant" in save_method_signature.parameters

            save_kwargs = {}
654
            if save_method_accept_safe:
655
656
657
658
659
                save_kwargs["safe_serialization"] = safe_serialization
            if save_method_accept_variant:
                save_kwargs["variant"] = variant

            save_method(os.path.join(save_directory, pipeline_component_name), **save_kwargs)
660

661
662
663
        # finally save the config
        self.save_config(save_directory)

664
665
666
667
668
669
670
671
672
        if push_to_hub:
            self._upload_folder(
                save_directory,
                repo_id,
                token=token,
                commit_message=commit_message,
                create_pr=create_pr,
            )

673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
    def to(self, *args, **kwargs):
        r"""
        Performs Pipeline dtype and/or device conversion. A torch.dtype and torch.device are inferred from the
        arguments of `self.to(*args, **kwargs).`

        <Tip>

            If the pipeline already has the correct torch.dtype and torch.device, then it is returned as is. Otherwise,
            the returned pipeline is a copy of self with the desired torch.dtype and torch.device.

        </Tip>


        Here are the ways to call `to`:

        - `to(dtype, silence_dtype_warnings=False) → DiffusionPipeline` to return a pipeline with the specified
          [`dtype`](https://pytorch.org/docs/stable/tensor_attributes.html#torch.dtype)
        - `to(device, silence_dtype_warnings=False) → DiffusionPipeline` to return a pipeline with the specified
          [`device`](https://pytorch.org/docs/stable/tensor_attributes.html#torch.device)
        - `to(device=None, dtype=None, silence_dtype_warnings=False) → DiffusionPipeline` to return a pipeline with the
          specified [`device`](https://pytorch.org/docs/stable/tensor_attributes.html#torch.device) and
          [`dtype`](https://pytorch.org/docs/stable/tensor_attributes.html#torch.dtype)

        Arguments:
            dtype (`torch.dtype`, *optional*):
                Returns a pipeline with the specified
                [`dtype`](https://pytorch.org/docs/stable/tensor_attributes.html#torch.dtype)
            device (`torch.Device`, *optional*):
                Returns a pipeline with the specified
                [`device`](https://pytorch.org/docs/stable/tensor_attributes.html#torch.device)
            silence_dtype_warnings (`str`, *optional*, defaults to `False`):
                Whether to omit warnings if the target `dtype` is not compatible with the target `device`.

        Returns:
            [`DiffusionPipeline`]: The pipeline converted to specified `dtype` and/or `dtype`.
        """

        torch_dtype = kwargs.pop("torch_dtype", None)
        if torch_dtype is not None:
            deprecate("torch_dtype", "0.25.0", "")
        torch_device = kwargs.pop("torch_device", None)
        if torch_device is not None:
            deprecate("torch_device", "0.25.0", "")

        dtype_kwarg = kwargs.pop("dtype", None)
        device_kwarg = kwargs.pop("device", None)
        silence_dtype_warnings = kwargs.pop("silence_dtype_warnings", False)

        if torch_dtype is not None and dtype_kwarg is not None:
            raise ValueError(
                "You have passed both `torch_dtype` and `dtype` as a keyword argument. Please make sure to only pass `dtype`."
            )

        dtype = torch_dtype or dtype_kwarg

        if torch_device is not None and device_kwarg is not None:
            raise ValueError(
                "You have passed both `torch_device` and `device` as a keyword argument. Please make sure to only pass `device`."
            )

        device = torch_device or device_kwarg

        dtype_arg = None
        device_arg = None
        if len(args) == 1:
            if isinstance(args[0], torch.dtype):
                dtype_arg = args[0]
            else:
                device_arg = torch.device(args[0]) if args[0] is not None else None
        elif len(args) == 2:
            if isinstance(args[0], torch.dtype):
                raise ValueError(
                    "When passing two arguments, make sure the first corresponds to `device` and the second to `dtype`."
                )
            device_arg = torch.device(args[0]) if args[0] is not None else None
            dtype_arg = args[1]
        elif len(args) > 2:
            raise ValueError("Please make sure to pass at most two arguments (`device` and `dtype`) `.to(...)`")

        if dtype is not None and dtype_arg is not None:
            raise ValueError(
                "You have passed `dtype` both as an argument and as a keyword argument. Please only pass one of the two."
            )

        dtype = dtype or dtype_arg

        if device is not None and device_arg is not None:
            raise ValueError(
                "You have passed `device` both as an argument and as a keyword argument. Please only pass one of the two."
            )

        device = device or device_arg
765

766
767
768
769
770
        # throw warning if pipeline is in "offloaded"-mode but user tries to manually set to GPU.
        def module_is_sequentially_offloaded(module):
            if not is_accelerate_available() or is_accelerate_version("<", "0.14.0"):
                return False

Patrick von Platen's avatar
Patrick von Platen committed
771
772
773
            return hasattr(module, "_hf_hook") and not isinstance(
                module._hf_hook, (accelerate.hooks.CpuOffload, accelerate.hooks.AlignDevicesHook)
            )
774
775
776
777
778
779
780
781
782
783
784

        def module_is_offloaded(module):
            if not is_accelerate_available() or is_accelerate_version("<", "0.17.0.dev0"):
                return False

            return hasattr(module, "_hf_hook") and isinstance(module._hf_hook, accelerate.hooks.CpuOffload)

        # .to("cuda") would raise an error if the pipeline is sequentially offloaded, so we raise our own to make it clearer
        pipeline_is_sequentially_offloaded = any(
            module_is_sequentially_offloaded(module) for _, module in self.components.items()
        )
785
        if pipeline_is_sequentially_offloaded and device and torch.device(device).type == "cuda":
786
787
788
789
790
791
            raise ValueError(
                "It seems like you have activated sequential model offloading by calling `enable_sequential_cpu_offload`, but are now attempting to move the pipeline to GPU. This is not compatible with offloading. Please, move your pipeline `.to('cpu')` or consider removing the move altogether if you use sequential offloading."
            )

        # Display a warning in this case (the operation succeeds but the benefits are lost)
        pipeline_is_offloaded = any(module_is_offloaded(module) for _, module in self.components.items())
792
        if pipeline_is_offloaded and device and torch.device(device).type == "cuda":
793
794
795
796
            logger.warning(
                f"It seems like you have activated model offloading by calling `enable_model_cpu_offload`, but are now manually moving the pipeline to GPU. It is strongly recommended against doing so as memory gains from offloading are likely to be lost. Offloading automatically takes care of moving the individual components {', '.join(self.components.keys())} to GPU when needed. To make sure offloading works as expected, you should consider moving the pipeline back to CPU: `pipeline.to('cpu')` or removing the move altogether if you use offloading."
            )

797
        module_names, _ = self._get_signature_keys(self)
798
799
        modules = [getattr(self, n, None) for n in module_names]
        modules = [m for m in modules if isinstance(m, torch.nn.Module)]
800

801
        is_offloaded = pipeline_is_offloaded or pipeline_is_sequentially_offloaded
802
        for module in modules:
Patrick von Platen's avatar
Patrick von Platen committed
803
804
            is_loaded_in_8bit = hasattr(module, "is_loaded_in_8bit") and module.is_loaded_in_8bit

805
            if is_loaded_in_8bit and dtype is not None:
Patrick von Platen's avatar
Patrick von Platen committed
806
807
808
809
                logger.warning(
                    f"The module '{module.__class__.__name__}' has been loaded in 8bit and conversion to {torch_dtype} is not yet supported. Module is still in 8bit precision."
                )

810
            if is_loaded_in_8bit and device is not None:
Patrick von Platen's avatar
Patrick von Platen committed
811
812
813
814
                logger.warning(
                    f"The module '{module.__class__.__name__}' has been loaded in 8bit and moving it to {torch_dtype} via `.to()` is not yet supported. Module is still on {module.device}."
                )
            else:
815
                module.to(device, dtype)
Patrick von Platen's avatar
Patrick von Platen committed
816

817
818
            if (
                module.dtype == torch.float16
819
                and str(device) in ["cpu"]
820
821
822
823
                and not silence_dtype_warnings
                and not is_offloaded
            ):
                logger.warning(
824
                    "Pipelines loaded with `dtype=torch.float16` cannot run with `cpu` device. It"
825
826
827
828
829
                    " is not recommended to move them to `cpu` as running them will fail. Please make"
                    " sure to use an accelerator to run the pipeline in inference, due to the lack of"
                    " support for`float16` operations on this device in PyTorch. Please, remove the"
                    " `torch_dtype=torch.float16` argument, or use another device for inference."
                )
830
831
832
833
834
835
836
837
        return self

    @property
    def device(self) -> torch.device:
        r"""
        Returns:
            `torch.device`: The torch device on which the pipeline is located.
        """
838
        module_names, _ = self._get_signature_keys(self)
839
840
841
842
843
        modules = [getattr(self, n, None) for n in module_names]
        modules = [m for m in modules if isinstance(m, torch.nn.Module)]

        for module in modules:
            return module.device
844

845
846
        return torch.device("cpu")

847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
    @property
    def dtype(self) -> torch.dtype:
        r"""
        Returns:
            `torch.dtype`: The torch dtype on which the pipeline is located.
        """
        module_names, _ = self._get_signature_keys(self)
        modules = [getattr(self, n, None) for n in module_names]
        modules = [m for m in modules if isinstance(m, torch.nn.Module)]

        for module in modules:
            return module.dtype

        return torch.float32

862
863
864
    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs):
        r"""
Steven Liu's avatar
Steven Liu committed
865
        Instantiate a PyTorch diffusion pipeline from pretrained pipeline weights.
866

Steven Liu's avatar
Steven Liu committed
867
        The pipeline is set in evaluation mode (`model.eval()`) by default.
868

Steven Liu's avatar
Steven Liu committed
869
        If you get the error message below, you need to finetune the weights for your downstream task:
870

Steven Liu's avatar
Steven Liu committed
871
872
873
874
875
        ```
        Some weights of UNet2DConditionModel were not initialized from the model checkpoint at runwayml/stable-diffusion-v1-5 and are newly initialized because the shapes did not match:
        - conv_in.weight: found shape torch.Size([320, 4, 3, 3]) in the checkpoint and torch.Size([320, 9, 3, 3]) in the model instantiated
        You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
        ```
876
877
878
879
880

        Parameters:
            pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*):
                Can be either:

Steven Liu's avatar
Steven Liu committed
881
882
883
884
885
                    - A string, the *repo id* (for example `CompVis/ldm-text2im-large-256`) of a pretrained pipeline
                      hosted on the Hub.
                    - A path to a *directory* (for example `./my_pipeline_directory/`) containing pipeline weights
                      saved using
                    [`~DiffusionPipeline.save_pretrained`].
886
            torch_dtype (`str` or `torch.dtype`, *optional*):
Steven Liu's avatar
Steven Liu committed
887
888
                Override the default `torch.dtype` and load the model with another dtype. If "auto" is passed, the
                dtype is automatically derived from the model's weights.
889
890
891
892
            custom_pipeline (`str`, *optional*):

                <Tip warning={true}>

Steven Liu's avatar
Steven Liu committed
893
                🧪 This is an experimental feature and may change in the future.
894
895
896
897
898

                </Tip>

                Can be either:

Steven Liu's avatar
Steven Liu committed
899
900
901
                    - A string, the *repo id* (for example `hf-internal-testing/diffusers-dummy-pipeline`) of a custom
                      pipeline hosted on the Hub. The repository must contain a file called pipeline.py that defines
                      the custom pipeline.
902
                    - A string, the *file name* of a community pipeline hosted on GitHub under
Steven Liu's avatar
Steven Liu committed
903
904
905
906
907
908
                      [Community](https://github.com/huggingface/diffusers/tree/main/examples/community). Valid file
                      names must match the file name and not the pipeline script (`clip_guided_stable_diffusion`
                      instead of `clip_guided_stable_diffusion.py`). Community pipelines are always loaded from the
                      current main branch of GitHub.
                    - A path to a directory (`./my_pipeline_directory/`) containing a custom pipeline. The directory
                      must contain a file called `pipeline.py` that defines the custom pipeline.
909
910
911
912
913
914
915

                For more information on how to load and create custom pipelines, please have a look at [Loading and
                Adding Custom
                Pipelines](https://huggingface.co/docs/diffusers/using-diffusers/custom_pipeline_overview)
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
916
            cache_dir (`Union[str, os.PathLike]`, *optional*):
Steven Liu's avatar
Steven Liu committed
917
918
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
919
            resume_download (`bool`, *optional*, defaults to `False`):
Steven Liu's avatar
Steven Liu committed
920
921
                Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
                incompletely downloaded files are deleted.
922
            proxies (`Dict[str, str]`, *optional*):
Steven Liu's avatar
Steven Liu committed
923
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
924
925
926
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            output_loading_info(`bool`, *optional*, defaults to `False`):
                Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
Steven Liu's avatar
Steven Liu committed
927
928
929
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
930
            use_auth_token (`str` or *bool*, *optional*):
Steven Liu's avatar
Steven Liu committed
931
932
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
933
            revision (`str`, *optional*, defaults to `"main"`):
Steven Liu's avatar
Steven Liu committed
934
935
936
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
            custom_revision (`str`, *optional*, defaults to `"main"`):
937
                The specific model version to use. It can be a branch name, a tag name, or a commit id similar to
Steven Liu's avatar
Steven Liu committed
938
939
                `revision` when loading a custom pipeline from the Hub. It can be a 🤗 Diffusers version when loading a
                custom pipeline from GitHub, otherwise it defaults to `"main"` when loading from the Hub.
940
            mirror (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
941
942
943
                Mirror source to resolve accessibility issues if you’re downloading a model in China. We do not
                guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
                information.
944
            device_map (`str` or `Dict[str, Union[int, str, torch.device]]`, *optional*):
Steven Liu's avatar
Steven Liu committed
945
946
                A map that specifies where each submodule should go. It doesn’t need to be defined for each
                parameter/buffer name; once a given module name is inside, every submodule of it will be sent to the
947
948
                same device.

Steven Liu's avatar
Steven Liu committed
949
                Set `device_map="auto"` to have 🤗 Accelerate automatically compute the most optimized `device_map`. For
950
951
                more information about each option see [designing a device
                map](https://hf.co/docs/accelerate/main/en/usage_guides/big_modeling#designing-a-device-map).
952
            max_memory (`Dict`, *optional*):
Steven Liu's avatar
Steven Liu committed
953
954
                A dictionary device identifier for the maximum memory. Will default to the maximum memory available for
                each GPU and the available CPU RAM if unset.
955
            offload_folder (`str` or `os.PathLike`, *optional*):
Steven Liu's avatar
Steven Liu committed
956
                The path to offload weights if device_map contains the value `"disk"`.
957
            offload_state_dict (`bool`, *optional*):
Steven Liu's avatar
Steven Liu committed
958
959
960
                If `True`, temporarily offloads the CPU state dict to the hard drive to avoid running out of CPU RAM if
                the weight of the CPU state dict + the biggest shard of the checkpoint does not fit. Defaults to `True`
                when there is some disk offload.
961
            low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
Steven Liu's avatar
Steven Liu committed
962
963
964
965
                Speed up model loading only loading the pretrained weights and not initializing the weights. This also
                tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
                Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
                argument to `True` will raise an error.
966
            use_safetensors (`bool`, *optional*, defaults to `None`):
Steven Liu's avatar
Steven Liu committed
967
968
969
                If set to `None`, the safetensors weights are downloaded if they're available **and** if the
                safetensors library is installed. If set to `True`, the model is forcibly loaded from safetensors
                weights. If set to `False`, safetensors weights are not loaded.
970
971
972
973
974
            use_onnx (`bool`, *optional*, defaults to `None`):
                If set to `True`, ONNX weights will always be downloaded if present. If set to `False`, ONNX weights
                will never be downloaded. By default `use_onnx` defaults to the `_is_onnx` class attribute which is
                `False` for non-ONNX pipelines and `True` for ONNX pipelines. ONNX weights include both files ending
                with `.onnx` and `.pb`.
975
            kwargs (remaining dictionary of keyword arguments, *optional*):
Steven Liu's avatar
Steven Liu committed
976
977
978
                Can be used to overwrite load and saveable variables (the pipeline components of the specific pipeline
                class). The overwritten components are passed directly to the pipelines `__init__` method. See example
                below for more information.
979
            variant (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
980
981
                Load weights from a specified variant filename such as `"fp16"` or `"ema"`. This is ignored when
                loading `from_flax`.
982
983
984

        <Tip>

Steven Liu's avatar
Steven Liu committed
985
986
        To use private or [gated](https://huggingface.co/docs/hub/models-gated#gated-models) models, log-in with
        `huggingface-cli login`.
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016

        </Tip>

        Examples:

        ```py
        >>> from diffusers import DiffusionPipeline

        >>> # Download pipeline from huggingface.co and cache.
        >>> pipeline = DiffusionPipeline.from_pretrained("CompVis/ldm-text2im-large-256")

        >>> # Download pipeline that requires an authorization token
        >>> # For more information on access tokens, please refer to this section
        >>> # of the documentation](https://huggingface.co/docs/hub/security-tokens)
        >>> pipeline = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")

        >>> # Use a different scheduler
        >>> from diffusers import LMSDiscreteScheduler

        >>> scheduler = LMSDiscreteScheduler.from_config(pipeline.scheduler.config)
        >>> pipeline.scheduler = scheduler
        ```
        """
        cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
        resume_download = kwargs.pop("resume_download", False)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
        use_auth_token = kwargs.pop("use_auth_token", None)
        revision = kwargs.pop("revision", None)
1017
        from_flax = kwargs.pop("from_flax", False)
1018
1019
1020
1021
1022
1023
        torch_dtype = kwargs.pop("torch_dtype", None)
        custom_pipeline = kwargs.pop("custom_pipeline", None)
        custom_revision = kwargs.pop("custom_revision", None)
        provider = kwargs.pop("provider", None)
        sess_options = kwargs.pop("sess_options", None)
        device_map = kwargs.pop("device_map", None)
1024
1025
1026
        max_memory = kwargs.pop("max_memory", None)
        offload_folder = kwargs.pop("offload_folder", None)
        offload_state_dict = kwargs.pop("offload_state_dict", False)
1027
        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT)
1028
        variant = kwargs.pop("variant", None)
1029
        use_safetensors = kwargs.pop("use_safetensors", None)
1030
        use_onnx = kwargs.pop("use_onnx", None)
1031
        load_connected_pipeline = kwargs.pop("load_connected_pipeline", False)
1032
1033
1034
1035

        # 1. Download the checkpoints and configs
        # use snapshot download here to get it working from from_pretrained
        if not os.path.isdir(pretrained_model_name_or_path):
Patrick von Platen's avatar
Patrick von Platen committed
1036
1037
1038
1039
1040
            if pretrained_model_name_or_path.count("/") > 1:
                raise ValueError(
                    f'The provided pretrained_model_name_or_path "{pretrained_model_name_or_path}"'
                    " is neither a valid local path nor a valid repo id. Please check the parameter."
                )
1041
            cached_folder = cls.download(
1042
1043
1044
1045
1046
1047
1048
1049
                pretrained_model_name_or_path,
                cache_dir=cache_dir,
                resume_download=resume_download,
                force_download=force_download,
                proxies=proxies,
                local_files_only=local_files_only,
                use_auth_token=use_auth_token,
                revision=revision,
1050
                from_flax=from_flax,
1051
                use_safetensors=use_safetensors,
1052
                use_onnx=use_onnx,
1053
                custom_pipeline=custom_pipeline,
1054
                custom_revision=custom_revision,
1055
                variant=variant,
1056
                load_connected_pipeline=load_connected_pipeline,
1057
                **kwargs,
1058
1059
1060
1061
            )
        else:
            cached_folder = pretrained_model_name_or_path

1062
1063
        config_dict = cls.load_config(cached_folder)

Patrick von Platen's avatar
Patrick von Platen committed
1064
1065
1066
        # pop out "_ignore_files" as it is only needed for download
        config_dict.pop("_ignore_files", None)

1067
1068
1069
        # 2. Define which model components should load variants
        # We retrieve the information by matching whether variant
        # model checkpoints exist in the subfolders
1070
1071
1072
1073
1074
        model_variants = {}
        if variant is not None:
            for folder in os.listdir(cached_folder):
                folder_path = os.path.join(cached_folder, folder)
                is_folder = os.path.isdir(folder_path) and folder in config_dict
1075
1076
1077
                variant_exists = is_folder and any(
                    p.split(".")[1].startswith(variant) for p in os.listdir(folder_path)
                )
1078
1079
1080
                if variant_exists:
                    model_variants[folder] = variant

1081
        # 3. Load the pipeline class, if using custom module then load it from the hub
1082
        # if we load from explicit class, let's use it
1083
        pipeline_class = _get_pipeline_class(
1084
1085
1086
1087
1088
1089
            cls,
            config_dict,
            load_connected_pipeline=load_connected_pipeline,
            custom_pipeline=custom_pipeline,
            cache_dir=cache_dir,
            revision=custom_revision,
1090
        )
1091

1092
        # DEPRECATED: To be removed in 1.0.0
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
        if pipeline_class.__name__ == "StableDiffusionInpaintPipeline" and version.parse(
            version.parse(config_dict["_diffusers_version"]).base_version
        ) <= version.parse("0.5.1"):
            from diffusers import StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy

            pipeline_class = StableDiffusionInpaintPipelineLegacy

            deprecation_message = (
                "You are using a legacy checkpoint for inpainting with Stable Diffusion, therefore we are loading the"
                f" {StableDiffusionInpaintPipelineLegacy} class instead of {StableDiffusionInpaintPipeline}. For"
                " better inpainting results, we strongly suggest using Stable Diffusion's official inpainting"
                " checkpoint: https://huggingface.co/runwayml/stable-diffusion-inpainting instead or adapting your"
                f" checkpoint {pretrained_model_name_or_path} to the format of"
                " https://huggingface.co/runwayml/stable-diffusion-inpainting. Note that we do not actively maintain"
                " the {StableDiffusionInpaintPipelineLegacy} class and will likely remove it in version 1.0.0."
            )
            deprecate("StableDiffusionInpaintPipelineLegacy", "1.0.0", deprecation_message, standard_warn=False)

1111
1112
1113
        # 4. Define expected modules given pipeline signature
        # and define non-None initialized modules (=`init_kwargs`)

1114
1115
1116
1117
1118
1119
1120
1121
1122
        # some modules can be passed directly to the init
        # in this case they are already instantiated in `kwargs`
        # extract them here
        expected_modules, optional_kwargs = cls._get_signature_keys(pipeline_class)
        passed_class_obj = {k: kwargs.pop(k) for k in expected_modules if k in kwargs}
        passed_pipe_kwargs = {k: kwargs.pop(k) for k in optional_kwargs if k in kwargs}

        init_dict, unused_kwargs, _ = pipeline_class.extract_init_dict(config_dict, **kwargs)

1123
1124
1125
1126
1127
1128
        # define init kwargs and make sure that optional component modules are filtered out
        init_kwargs = {
            k: init_dict.pop(k)
            for k in optional_kwargs
            if k in init_dict and k not in pipeline_class._optional_components
        }
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
        init_kwargs = {**init_kwargs, **passed_pipe_kwargs}

        # remove `null` components
        def load_module(name, value):
            if value[0] is None:
                return False
            if name in passed_class_obj and passed_class_obj[name] is None:
                return False
            return True

        init_dict = {k: v for k, v in init_dict.items() if load_module(k, v)}

1141
1142
1143
1144
1145
1146
1147
1148
        # Special case: safety_checker must be loaded separately when using `from_flax`
        if from_flax and "safety_checker" in init_dict and "safety_checker" not in passed_class_obj:
            raise NotImplementedError(
                "The safety checker cannot be automatically loaded when loading weights `from_flax`."
                " Please, pass `safety_checker=None` to `from_pretrained`, and load the safety checker"
                " separately if you need it."
            )

1149
        # 5. Throw nice warnings / errors for fast accelerate loading
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
        if len(unused_kwargs) > 0:
            logger.warning(
                f"Keyword arguments {unused_kwargs} are not expected by {pipeline_class.__name__} and will be ignored."
            )

        if low_cpu_mem_usage and not is_accelerate_available():
            low_cpu_mem_usage = False
            logger.warning(
                "Cannot initialize model with low cpu memory usage because `accelerate` was not found in the"
                " environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install"
                " `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip"
                " install accelerate\n```\n."
            )

        if device_map is not None and not is_torch_version(">=", "1.9.0"):
            raise NotImplementedError(
                "Loading and dispatching requires torch >= 1.9.0. Please either update your PyTorch version or set"
                " `device_map=None`."
            )

        if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"):
            raise NotImplementedError(
                "Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set"
                " `low_cpu_mem_usage=False`."
            )

        if low_cpu_mem_usage is False and device_map is not None:
            raise ValueError(
                f"You cannot set `low_cpu_mem_usage` to False while using device_map={device_map} for loading and"
                " dispatching. Please make sure to set `low_cpu_mem_usage=True`."
            )

        # import it here to avoid circular import
        from diffusers import pipelines

1185
        # 6. Load each module in the pipeline
1186
        for name, (library_name, class_name) in logging.tqdm(init_dict.items(), desc="Loading pipeline components..."):
1187
            # 6.1 - now that JAX/Flax is an official framework of the library, we might load from Flax names
1188
            class_name = class_name[4:] if class_name.startswith("Flax") else class_name
1189

1190
            # 6.2 Define all importable classes
1191
            is_pipeline_module = hasattr(pipelines, library_name)
1192
            importable_classes = ALL_IMPORTABLE_CLASSES
1193
1194
            loaded_sub_model = None

1195
            # 6.3 Use passed sub model or load class_name from library_name
1196
            if name in passed_class_obj:
1197
1198
1199
1200
1201
                # if the model is in a pipeline module, then we load it from the pipeline
                # check that passed_class_obj has correct parent class
                maybe_raise_or_warn(
                    library_name, library, class_name, importable_classes, passed_class_obj, name, is_pipeline_module
                )
1202
1203
1204

                loaded_sub_model = passed_class_obj[name]
            else:
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
                # load sub model
                loaded_sub_model = load_sub_model(
                    library_name=library_name,
                    class_name=class_name,
                    importable_classes=importable_classes,
                    pipelines=pipelines,
                    is_pipeline_module=is_pipeline_module,
                    pipeline_class=pipeline_class,
                    torch_dtype=torch_dtype,
                    provider=provider,
                    sess_options=sess_options,
                    device_map=device_map,
1217
1218
1219
                    max_memory=max_memory,
                    offload_folder=offload_folder,
                    offload_state_dict=offload_state_dict,
1220
1221
1222
1223
1224
1225
                    model_variants=model_variants,
                    name=name,
                    from_flax=from_flax,
                    variant=variant,
                    low_cpu_mem_usage=low_cpu_mem_usage,
                    cached_folder=cached_folder,
1226
                )
1227
1228
1229
                logger.info(
                    f"Loaded {name} as {class_name} from `{name}` subfolder of {pretrained_model_name_or_path}."
                )
1230
1231
1232

            init_kwargs[name] = loaded_sub_model  # UNet(...), # DiffusionSchedule(...)

1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
        if pipeline_class._load_connected_pipes and os.path.isfile(os.path.join(cached_folder, "README.md")):
            modelcard = ModelCard.load(os.path.join(cached_folder, "README.md"))
            connected_pipes = {prefix: getattr(modelcard.data, prefix, [None])[0] for prefix in CONNECTED_PIPES_KEYS}
            load_kwargs = {
                "cache_dir": cache_dir,
                "resume_download": resume_download,
                "force_download": force_download,
                "proxies": proxies,
                "local_files_only": local_files_only,
                "use_auth_token": use_auth_token,
                "revision": revision,
                "torch_dtype": torch_dtype,
                "custom_pipeline": custom_pipeline,
                "custom_revision": custom_revision,
                "provider": provider,
                "sess_options": sess_options,
                "device_map": device_map,
                "max_memory": max_memory,
                "offload_folder": offload_folder,
                "offload_state_dict": offload_state_dict,
                "low_cpu_mem_usage": low_cpu_mem_usage,
                "variant": variant,
                "use_safetensors": use_safetensors,
            }
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268

            def get_connected_passed_kwargs(prefix):
                connected_passed_class_obj = {
                    k.replace(f"{prefix}_", ""): w for k, w in passed_class_obj.items() if k.split("_")[0] == prefix
                }
                connected_passed_pipe_kwargs = {
                    k.replace(f"{prefix}_", ""): w for k, w in passed_pipe_kwargs.items() if k.split("_")[0] == prefix
                }

                connected_passed_kwargs = {**connected_passed_class_obj, **connected_passed_pipe_kwargs}
                return connected_passed_kwargs

1269
            connected_pipes = {
1270
1271
1272
                prefix: DiffusionPipeline.from_pretrained(
                    repo_id, **load_kwargs.copy(), **get_connected_passed_kwargs(prefix)
                )
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
                for prefix, repo_id in connected_pipes.items()
                if repo_id is not None
            }

            for prefix, connected_pipe in connected_pipes.items():
                # add connected pipes to `init_kwargs` with <prefix>_<component_name>, e.g. "prior_text_encoder"
                init_kwargs.update(
                    {"_".join([prefix, name]): component for name, component in connected_pipe.components.items()}
                )

1283
        # 7. Potentially add passed objects if expected
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
        missing_modules = set(expected_modules) - set(init_kwargs.keys())
        passed_modules = list(passed_class_obj.keys())
        optional_modules = pipeline_class._optional_components
        if len(missing_modules) > 0 and missing_modules <= set(passed_modules + optional_modules):
            for module in missing_modules:
                init_kwargs[module] = passed_class_obj.get(module, None)
        elif len(missing_modules) > 0:
            passed_modules = set(list(init_kwargs.keys()) + list(passed_class_obj.keys())) - optional_kwargs
            raise ValueError(
                f"Pipeline {pipeline_class} expected {expected_modules}, but only {passed_modules} were passed."
            )

1296
        # 8. Instantiate the pipeline
1297
        model = pipeline_class(**init_kwargs)
1298
1299
1300

        # 9. Save where the model was instantiated from
        model.register_to_config(_name_or_path=pretrained_model_name_or_path)
1301
1302
        return model

1303
1304
1305
1306
    @property
    def name_or_path(self) -> str:
        return getattr(self.config, "_name_or_path", None)

1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
    @property
    def _execution_device(self):
        r"""
        Returns the device on which the pipeline's models will be executed. After calling
        [`~DiffusionPipeline.enable_sequential_cpu_offload`] the execution device can only be inferred from
        Accelerate's module hooks.
        """
        for name, model in self.components.items():
            if not isinstance(model, torch.nn.Module) or name in self._exclude_from_cpu_offload:
                continue

            if not hasattr(model, "_hf_hook"):
                return self.device
            for module in model.modules():
                if (
                    hasattr(module, "_hf_hook")
                    and hasattr(module._hf_hook, "execution_device")
                    and module._hf_hook.execution_device is not None
                ):
                    return torch.device(module._hf_hook.execution_device)
        return self.device

1329
    def enable_model_cpu_offload(self, gpu_id: Optional[int] = None, device: Union[torch.device, str] = "cuda"):
1330
1331
1332
1333
1334
        r"""
        Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared
        to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward`
        method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with
        `enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`.
1335
1336
1337
1338
1339
1340
1341

        Arguments:
            gpu_id (`int`, *optional*):
                The ID of the accelerator that shall be used in inference. If not specified, it will default to 0.
            device (`torch.Device` or `str`, *optional*, defaults to "cuda"):
                The PyTorch device type of the accelerator that shall be used in inference. If not specified, it will
                default to "cuda".
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
        """
        if self.model_cpu_offload_seq is None:
            raise ValueError(
                "Model CPU offload cannot be enabled because no `model_cpu_offload_seq` class attribute is set."
            )

        if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"):
            from accelerate import cpu_offload_with_hook
        else:
            raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.")

1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
        torch_device = torch.device(device)
        device_index = torch_device.index

        if gpu_id is not None and device_index is not None:
            raise ValueError(
                f"You have passed both `gpu_id`={gpu_id} and an index as part of the passed device `device`={device}"
                f"Cannot pass both. Please make sure to either not define `gpu_id` or not pass the index as part of the device: `device`={torch_device.type}"
            )

        # _offload_gpu_id should be set to passed gpu_id (or id in passed `device`) or default to previously set id or default to 0
        self._offload_gpu_id = gpu_id or torch_device.index or self._offload_gpu_id or 0

        device_type = torch_device.type
        device = torch.device(f"{device_type}:{self._offload_gpu_id}")
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378

        if self.device.type != "cpu":
            self.to("cpu", silence_dtype_warnings=True)
            device_mod = getattr(torch, self.device.type, None)
            if hasattr(device_mod, "empty_cache") and device_mod.is_available():
                device_mod.empty_cache()  # otherwise we don't see the memory savings (but they probably exist)

        all_model_components = {k: v for k, v in self.components.items() if isinstance(v, torch.nn.Module)}

        self._all_hooks = []
        hook = None
        for model_str in self.model_cpu_offload_seq.split("->"):
1379
            model = all_model_components.pop(model_str, None)
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
            if not isinstance(model, torch.nn.Module):
                continue

            _, hook = cpu_offload_with_hook(model, device, prev_module_hook=hook)
            self._all_hooks.append(hook)

        # CPU offload models that are not in the seq chain unless they are explicitly excluded
        # these models will stay on CPU until maybe_free_model_hooks is called
        # some models cannot be in the seq chain because they are iteratively called, such as controlnet
        for name, model in all_model_components.items():
            if not isinstance(model, torch.nn.Module):
                continue

            if name in self._exclude_from_cpu_offload:
                model.to(device)
            else:
                _, hook = cpu_offload_with_hook(model, device)
                self._all_hooks.append(hook)

    def maybe_free_model_hooks(self):
        r"""
1401
1402
1403
1404
        Function that offloads all components, removes all model hooks that were added when using
        `enable_model_cpu_offload` and then applies them again. In case the model has not been offloaded this function
        is a no-op. Make sure to add this function to the end of the `__call__` function of your pipeline so that it
        functions correctly when applying enable_model_cpu_offload.
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
        """
        if not hasattr(self, "_all_hooks") or len(self._all_hooks) == 0:
            # `enable_model_cpu_offload` has not be called, so silently do nothing
            return

        for hook in self._all_hooks:
            # offload model and remove hook from model
            hook.offload()
            hook.remove()

        # make sure the model is in the same state as before calling it
        self.enable_model_cpu_offload()

1418
    def enable_sequential_cpu_offload(self, gpu_id: Optional[int] = None, device: Union[torch.device, str] = "cuda"):
1419
        r"""
1420
1421
1422
1423
        Offloads all models to CPU using 🤗 Accelerate, significantly reducing memory usage. When called, the state
        dicts of all `torch.nn.Module` components (except those in `self._exclude_from_cpu_offload`) are saved to CPU
        and then moved to `torch.device('meta')` and loaded to GPU only when their specific submodule has its `forward`
        method called. Offloading happens on a submodule basis. Memory savings are higher than with
1424
        `enable_model_cpu_offload`, but performance is lower.
1425
1426
1427
1428
1429
1430
1431

        Arguments:
            gpu_id (`int`, *optional*):
                The ID of the accelerator that shall be used in inference. If not specified, it will default to 0.
            device (`torch.Device` or `str`, *optional*, defaults to "cuda"):
                The PyTorch device type of the accelerator that shall be used in inference. If not specified, it will
                default to "cuda".
1432
1433
1434
1435
1436
1437
        """
        if is_accelerate_available() and is_accelerate_version(">=", "0.14.0"):
            from accelerate import cpu_offload
        else:
            raise ImportError("`enable_sequential_cpu_offload` requires `accelerate v0.14.0` or higher")

1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
        torch_device = torch.device(device)
        device_index = torch_device.index

        if gpu_id is not None and device_index is not None:
            raise ValueError(
                f"You have passed both `gpu_id`={gpu_id} and an index as part of the passed device `device`={device}"
                f"Cannot pass both. Please make sure to either not define `gpu_id` or not pass the index as part of the device: `device`={torch_device.type}"
            )

        # _offload_gpu_id should be set to passed gpu_id (or id in passed `device`) or default to previously set id or default to 0
        self._offload_gpu_id = gpu_id or torch_device.index or self._offload_gpu_id or 0

        device_type = torch_device.type
        device = torch.device(f"{device_type}:{self._offload_gpu_id}")
1452
1453
1454

        if self.device.type != "cpu":
            self.to("cpu", silence_dtype_warnings=True)
1455
1456
1457
            device_mod = getattr(torch, self.device.type, None)
            if hasattr(device_mod, "empty_cache") and device_mod.is_available():
                device_mod.empty_cache()  # otherwise we don't see the memory savings (but they probably exist)
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470

        for name, model in self.components.items():
            if not isinstance(model, torch.nn.Module):
                continue

            if name in self._exclude_from_cpu_offload:
                model.to(device)
            else:
                # make sure to offload buffers if not all high level weights
                # are of type nn.Module
                offload_buffers = len(model._parameters) > 0
                cpu_offload(model, device, offload_buffers=offload_buffers)

1471
1472
1473
    @classmethod
    def download(cls, pretrained_model_name, **kwargs) -> Union[str, os.PathLike]:
        r"""
Steven Liu's avatar
Steven Liu committed
1474
        Download and cache a PyTorch diffusion pipeline from pretrained pipeline weights.
1475
1476

        Parameters:
Steven Liu's avatar
Steven Liu committed
1477
            pretrained_model_name (`str` or `os.PathLike`, *optional*):
Steven Liu's avatar
Steven Liu committed
1478
                A string, the *repository id* (for example `CompVis/ldm-text2im-large-256`) of a pretrained pipeline
Steven Liu's avatar
Steven Liu committed
1479
                hosted on the Hub.
1480
1481
1482
            custom_pipeline (`str`, *optional*):
                Can be either:

Steven Liu's avatar
Steven Liu committed
1483
                    - A string, the *repository id* (for example `CompVis/ldm-text2im-large-256`) of a pretrained
Steven Liu's avatar
Steven Liu committed
1484
1485
                      pipeline hosted on the Hub. The repository must contain a file called `pipeline.py` that defines
                      the custom pipeline.
1486
1487

                    - A string, the *file name* of a community pipeline hosted on GitHub under
Steven Liu's avatar
Steven Liu committed
1488
1489
1490
1491
                      [Community](https://github.com/huggingface/diffusers/tree/main/examples/community). Valid file
                      names must match the file name and not the pipeline script (`clip_guided_stable_diffusion`
                      instead of `clip_guided_stable_diffusion.py`). Community pipelines are always loaded from the
                      current `main` branch of GitHub.
1492

Steven Liu's avatar
Steven Liu committed
1493
1494
                    - A path to a *directory* (`./my_pipeline_directory/`) containing a custom pipeline. The directory
                      must contain a file called `pipeline.py` that defines the custom pipeline.
1495

Steven Liu's avatar
Steven Liu committed
1496
                <Tip warning={true}>
1497

Steven Liu's avatar
Steven Liu committed
1498
                🧪 This is an experimental feature and may change in the future.
1499

Steven Liu's avatar
Steven Liu committed
1500
                </Tip>
1501

Steven Liu's avatar
Steven Liu committed
1502
1503
                For more information on how to load and create custom pipelines, take a look at [How to contribute a
                community pipeline](https://huggingface.co/docs/diffusers/main/en/using-diffusers/contribute_pipeline).
1504
1505
1506
1507
1508

            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            resume_download (`bool`, *optional*, defaults to `False`):
Steven Liu's avatar
Steven Liu committed
1509
                Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
Steven Liu's avatar
Steven Liu committed
1510
                incompletely downloaded files are deleted.
1511
            proxies (`Dict[str, str]`, *optional*):
Steven Liu's avatar
Steven Liu committed
1512
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
1513
1514
1515
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            output_loading_info(`bool`, *optional*, defaults to `False`):
                Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
Steven Liu's avatar
Steven Liu committed
1516
1517
1518
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
1519
            use_auth_token (`str` or *bool*, *optional*):
Steven Liu's avatar
Steven Liu committed
1520
1521
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
1522
            revision (`str`, *optional*, defaults to `"main"`):
Steven Liu's avatar
Steven Liu committed
1523
1524
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
Steven Liu's avatar
Steven Liu committed
1525
            custom_revision (`str`, *optional*, defaults to `"main"`):
1526
                The specific model version to use. It can be a branch name, a tag name, or a commit id similar to
Steven Liu's avatar
Steven Liu committed
1527
1528
                `revision` when loading a custom pipeline from the Hub. It can be a 🤗 Diffusers version when loading a
                custom pipeline from GitHub, otherwise it defaults to `"main"` when loading from the Hub.
1529
            mirror (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
1530
1531
1532
                Mirror source to resolve accessibility issues if you're downloading a model in China. We do not
                guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
                information.
1533
            variant (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
1534
1535
                Load weights from a specified variant filename such as `"fp16"` or `"ema"`. This is ignored when
                loading `from_flax`.
1536
1537
1538
1539
1540
1541
1542
1543
1544
            use_safetensors (`bool`, *optional*, defaults to `None`):
                If set to `None`, the safetensors weights are downloaded if they're available **and** if the
                safetensors library is installed. If set to `True`, the model is forcibly loaded from safetensors
                weights. If set to `False`, safetensors weights are not loaded.
            use_onnx (`bool`, *optional*, defaults to `False`):
                If set to `True`, ONNX weights will always be downloaded if present. If set to `False`, ONNX weights
                will never be downloaded. By default `use_onnx` defaults to the `_is_onnx` class attribute which is
                `False` for non-ONNX pipelines and `True` for ONNX pipelines. ONNX weights include both files ending
                with `.onnx` and `.pb`.
Steven Liu's avatar
Steven Liu committed
1545
1546
1547
1548

        Returns:
            `os.PathLike`:
                A path to the downloaded pipeline.
1549
1550
1551

        <Tip>

Steven Liu's avatar
Steven Liu committed
1552
1553
        To use private or [gated models](https://huggingface.co/docs/hub/models-gated#gated-models), log-in with
        `huggingface-cli login`.
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566

        </Tip>

        """
        cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
        resume_download = kwargs.pop("resume_download", False)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
        use_auth_token = kwargs.pop("use_auth_token", None)
        revision = kwargs.pop("revision", None)
        from_flax = kwargs.pop("from_flax", False)
        custom_pipeline = kwargs.pop("custom_pipeline", None)
1567
        custom_revision = kwargs.pop("custom_revision", None)
1568
        variant = kwargs.pop("variant", None)
1569
        use_safetensors = kwargs.pop("use_safetensors", None)
1570
        use_onnx = kwargs.pop("use_onnx", None)
1571
        load_connected_pipeline = kwargs.pop("load_connected_pipeline", False)
1572
1573
1574

        allow_pickle = False
        if use_safetensors is None:
1575
            use_safetensors = True
1576
            allow_pickle = True
1577
1578
1579
1580

        allow_patterns = None
        ignore_patterns = None

1581
        model_info_call_error: Optional[Exception] = None
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
        if not local_files_only:
            try:
                info = model_info(
                    pretrained_model_name,
                    use_auth_token=use_auth_token,
                    revision=revision,
                )
            except HTTPError as e:
                logger.warn(f"Couldn't connect to the Hub: {e}.\nWill try to load from local cache.")
                local_files_only = True
1592
                model_info_call_error = e  # save error to reraise it if model is not cached locally
1593

1594
1595
1596
1597
1598
        if not local_files_only:
            config_file = hf_hub_download(
                pretrained_model_name,
                cls.config_name,
                cache_dir=cache_dir,
1599
                revision=revision,
1600
1601
1602
1603
1604
1605
1606
                proxies=proxies,
                force_download=force_download,
                resume_download=resume_download,
                use_auth_token=use_auth_token,
            )

            config_dict = cls._dict_from_json_file(config_file)
Patrick von Platen's avatar
Patrick von Platen committed
1607
1608
1609

            ignore_filenames = config_dict.pop("_ignore_files", [])

1610
1611
1612
            # retrieve all folder_names that contain relevant files
            folder_names = [k for k, v in config_dict.items() if isinstance(v, list)]

1613
            filenames = {sibling.rfilename for sibling in info.siblings}
1614
1615
            model_filenames, variant_filenames = variant_compatible_siblings(filenames, variant=variant)

1616
1617
1618
1619
            if len(variant_filenames) == 0 and variant is not None:
                deprecation_message = (
                    f"You are trying to load the model files of the `variant={variant}`, but no such modeling files are available."
                    f"The default model files: {model_filenames} will be loaded instead. Make sure to not load from `variant={variant}`"
1620
                    "if such variant modeling files are not available. Doing so will lead to an error in v0.24.0 as defaulting to non-variant"
1621
1622
                    "modeling files is deprecated."
                )
1623
                deprecate("no variant default", "0.24.0", deprecation_message, standard_warn=False)
1624

Patrick von Platen's avatar
Patrick von Platen committed
1625
1626
1627
1628
            # remove ignored filenames
            model_filenames = set(model_filenames) - set(ignore_filenames)
            variant_filenames = set(variant_filenames) - set(ignore_filenames)

1629
1630
1631
            # if the whole pipeline is cached we don't have to ping the Hub
            if revision in DEPRECATED_REVISION_ARGS and version.parse(
                version.parse(__version__).base_version
Patrick von Platen's avatar
Patrick von Platen committed
1632
            ) >= version.parse("0.22.0"):
1633
1634
1635
1636
                warn_deprecated_model_variant(
                    pretrained_model_name, use_auth_token, variant, revision, model_filenames
                )

1637
            model_folder_names = {os.path.split(f)[0] for f in model_filenames if os.path.split(f)[0] in folder_names}
1638
1639
1640
1641
1642
1643

            # all filenames compatible with variant will be added
            allow_patterns = list(model_filenames)

            # allow all patterns from non-model folders
            # this enables downloading schedulers, tokenizers, ...
1644
            allow_patterns += [f"{k}/*" for k in folder_names if k not in model_folder_names]
1645
            # also allow downloading config.json files with the model
1646
            allow_patterns += [os.path.join(k, "config.json") for k in model_folder_names]
1647
1648
1649
1650
1651
1652
1653
1654

            allow_patterns += [
                SCHEDULER_CONFIG_NAME,
                CONFIG_NAME,
                cls.config_name,
                CUSTOM_PIPELINE_FILE_NAME,
            ]

1655
1656
            # retrieve passed components that should not be downloaded
            pipeline_class = _get_pipeline_class(
1657
1658
1659
1660
1661
1662
                cls,
                config_dict,
                load_connected_pipeline=load_connected_pipeline,
                custom_pipeline=custom_pipeline,
                cache_dir=cache_dir,
                revision=custom_revision,
1663
1664
1665
1666
            )
            expected_components, _ = cls._get_signature_keys(pipeline_class)
            passed_components = [k for k in expected_components if k in kwargs]

1667
1668
1669
            if (
                use_safetensors
                and not allow_pickle
1670
1671
1672
                and not is_safetensors_compatible(
                    model_filenames, variant=variant, passed_components=passed_components
                )
1673
1674
1675
1676
            ):
                raise EnvironmentError(
                    f"Could not found the necessary `safetensors` weights in {model_filenames} (variant={variant})"
                )
1677
1678
            if from_flax:
                ignore_patterns = ["*.bin", "*.safetensors", "*.onnx", "*.pb"]
1679
1680
1681
            elif use_safetensors and is_safetensors_compatible(
                model_filenames, variant=variant, passed_components=passed_components
            ):
1682
1683
                ignore_patterns = ["*.bin", "*.msgpack"]

1684
1685
1686
1687
                use_onnx = use_onnx if use_onnx is not None else pipeline_class._is_onnx
                if not use_onnx:
                    ignore_patterns += ["*.onnx", "*.pb"]

1688
1689
                safetensors_variant_filenames = {f for f in variant_filenames if f.endswith(".safetensors")}
                safetensors_model_filenames = {f for f in model_filenames if f.endswith(".safetensors")}
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
                if (
                    len(safetensors_variant_filenames) > 0
                    and safetensors_model_filenames != safetensors_variant_filenames
                ):
                    logger.warn(
                        f"\nA mixture of {variant} and non-{variant} filenames will be loaded.\nLoaded {variant} filenames:\n[{', '.join(safetensors_variant_filenames)}]\nLoaded non-{variant} filenames:\n[{', '.join(safetensors_model_filenames - safetensors_variant_filenames)}\nIf this behavior is not expected, please check your folder structure."
                    )
            else:
                ignore_patterns = ["*.safetensors", "*.msgpack"]

1700
1701
1702
1703
                use_onnx = use_onnx if use_onnx is not None else pipeline_class._is_onnx
                if not use_onnx:
                    ignore_patterns += ["*.onnx", "*.pb"]

1704
1705
                bin_variant_filenames = {f for f in variant_filenames if f.endswith(".bin")}
                bin_model_filenames = {f for f in model_filenames if f.endswith(".bin")}
1706
1707
1708
1709
1710
                if len(bin_variant_filenames) > 0 and bin_model_filenames != bin_variant_filenames:
                    logger.warn(
                        f"\nA mixture of {variant} and non-{variant} filenames will be loaded.\nLoaded {variant} filenames:\n[{', '.join(bin_variant_filenames)}]\nLoaded non-{variant} filenames:\n[{', '.join(bin_model_filenames - bin_variant_filenames)}\nIf this behavior is not expected, please check your folder structure."
                    )

1711
1712
1713
1714
            # Don't download any objects that are passed
            allow_patterns = [
                p for p in allow_patterns if not (len(p.split("/")) == 2 and p.split("/")[0] in passed_components)
            ]
1715
1716
1717
1718

            if pipeline_class._load_connected_pipes:
                allow_patterns.append("README.md")

1719
1720
1721
            # Don't download index files of forbidden patterns either
            ignore_patterns = ignore_patterns + [f"{i}.index.*json" for i in ignore_patterns]

1722
1723
1724
1725
1726
            re_ignore_pattern = [re.compile(fnmatch.translate(p)) for p in ignore_patterns]
            re_allow_pattern = [re.compile(fnmatch.translate(p)) for p in allow_patterns]

            expected_files = [f for f in filenames if not any(p.match(f) for p in re_ignore_pattern)]
            expected_files = [f for f in expected_files if any(p.match(f) for p in re_allow_pattern)]
1727

1728
1729
            snapshot_folder = Path(config_file).parent
            pipeline_is_cached = all((snapshot_folder / f).is_file() for f in expected_files)
1730

1731
            if pipeline_is_cached and not force_download:
1732
1733
1734
                # if the pipeline is cached, we can directly return it
                # else call snapshot_download
                return snapshot_folder
1735

1736
1737
1738
        user_agent = {"pipeline_class": cls.__name__}
        if custom_pipeline is not None and not custom_pipeline.endswith(".py"):
            user_agent["custom_pipeline"] = custom_pipeline
1739
1740

        # download all allow_patterns - ignore_patterns
1741
        try:
1742
            cached_folder = snapshot_download(
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
                pretrained_model_name,
                cache_dir=cache_dir,
                resume_download=resume_download,
                proxies=proxies,
                local_files_only=local_files_only,
                use_auth_token=use_auth_token,
                revision=revision,
                allow_patterns=allow_patterns,
                ignore_patterns=ignore_patterns,
                user_agent=user_agent,
            )
1754

1755
1756
            # retrieve pipeline class from local file
            cls_name = cls.load_config(os.path.join(cached_folder, "model_index.json")).get("_class_name", None)
1757
1758
            cls_name = cls_name[4:] if cls_name.startswith("Flax") else cls_name

1759
1760
1761
            pipeline_class = getattr(diffusers, cls_name, None)

            if pipeline_class is not None and pipeline_class._load_connected_pipes:
1762
1763
1764
                modelcard = ModelCard.load(os.path.join(cached_folder, "README.md"))
                connected_pipes = sum([getattr(modelcard.data, k, []) for k in CONNECTED_PIPES_KEYS], [])
                for connected_pipe_repo_id in connected_pipes:
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
                    download_kwargs = {
                        "cache_dir": cache_dir,
                        "resume_download": resume_download,
                        "force_download": force_download,
                        "proxies": proxies,
                        "local_files_only": local_files_only,
                        "use_auth_token": use_auth_token,
                        "variant": variant,
                        "use_safetensors": use_safetensors,
                    }
                    DiffusionPipeline.download(connected_pipe_repo_id, **download_kwargs)
1776
1777
1778

            return cached_folder

1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
        except FileNotFoundError:
            # Means we tried to load pipeline with `local_files_only=True` but the files have not been found in local cache.
            # This can happen in two cases:
            # 1. If the user passed `local_files_only=True`                    => we raise the error directly
            # 2. If we forced `local_files_only=True` when `model_info` failed => we raise the initial error
            if model_info_call_error is None:
                # 1. user passed `local_files_only=True`
                raise
            else:
                # 2. we forced `local_files_only=True` when `model_info` failed
                raise EnvironmentError(
                    f"Cannot load model {pretrained_model_name}: model is not cached locally and an error occured"
                    " while trying to fetch metadata from the Hub. Please check out the root cause in the stacktrace"
                    " above."
                ) from model_info_call_error
1794

1795
1796
1797
1798
1799
    @staticmethod
    def _get_signature_keys(obj):
        parameters = inspect.signature(obj.__init__).parameters
        required_parameters = {k: v for k, v in parameters.items() if v.default == inspect._empty}
        optional_parameters = set({k for k, v in parameters.items() if v.default != inspect._empty})
1800
        expected_modules = set(required_parameters.keys()) - {"self"}
1801
1802
1803
1804
1805
1806
        return expected_modules, optional_parameters

    @property
    def components(self) -> Dict[str, Any]:
        r"""
        The `self.components` property can be useful to run different pipelines with the same weights and
Steven Liu's avatar
Steven Liu committed
1807
1808
1809
1810
        configurations without reallocating additional memory.

        Returns (`dict`):
            A dictionary containing all the modules needed to initialize the pipeline.
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833

        Examples:

        ```py
        >>> from diffusers import (
        ...     StableDiffusionPipeline,
        ...     StableDiffusionImg2ImgPipeline,
        ...     StableDiffusionInpaintPipeline,
        ... )

        >>> text2img = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
        >>> img2img = StableDiffusionImg2ImgPipeline(**text2img.components)
        >>> inpaint = StableDiffusionInpaintPipeline(**text2img.components)
        ```
        """
        expected_modules, optional_parameters = self._get_signature_keys(self)
        components = {
            k: getattr(self, k) for k in self.config.keys() if not k.startswith("_") and k not in optional_parameters
        }

        if set(components.keys()) != expected_modules:
            raise ValueError(
                f"{self} has been incorrectly initialized or {self.__class__} is incorrectly implemented. Expected"
1834
                f" {expected_modules} to be defined, but {components.keys()} are defined."
1835
1836
1837
1838
1839
1840
1841
            )

        return components

    @staticmethod
    def numpy_to_pil(images):
        """
Steven Liu's avatar
Steven Liu committed
1842
        Convert a NumPy image or a batch of images to a PIL image.
1843
        """
Patrick von Platen's avatar
Patrick von Platen committed
1844
        return numpy_to_pil(images)
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863

    def progress_bar(self, iterable=None, total=None):
        if not hasattr(self, "_progress_bar_config"):
            self._progress_bar_config = {}
        elif not isinstance(self._progress_bar_config, dict):
            raise ValueError(
                f"`self._progress_bar_config` should be of type `dict`, but is {type(self._progress_bar_config)}."
            )

        if iterable is not None:
            return tqdm(iterable, **self._progress_bar_config)
        elif total is not None:
            return tqdm(total=total, **self._progress_bar_config)
        else:
            raise ValueError("Either `total` or `iterable` has to be defined.")

    def set_progress_bar_config(self, **kwargs):
        self._progress_bar_config = kwargs

1864
    def enable_xformers_memory_efficient_attention(self, attention_op: Optional[Callable] = None):
1865
        r"""
1866
1867
1868
        Enable memory efficient attention from [xFormers](https://facebookresearch.github.io/xformers/). When this
        option is enabled, you should observe lower GPU memory usage and a potential speed up during inference. Speed
        up during training is not guaranteed.
1869

Steven Liu's avatar
Steven Liu committed
1870
        <Tip warning={true}>
1871

Steven Liu's avatar
Steven Liu committed
1872
1873
1874
1875
        ⚠️ When memory efficient attention and sliced attention are both enabled, memory efficient attention takes
        precedent.

        </Tip>
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895

        Parameters:
            attention_op (`Callable`, *optional*):
                Override the default `None` operator for use as `op` argument to the
                [`memory_efficient_attention()`](https://facebookresearch.github.io/xformers/components/ops.html#xformers.ops.memory_efficient_attention)
                function of xFormers.

        Examples:

        ```py
        >>> import torch
        >>> from diffusers import DiffusionPipeline
        >>> from xformers.ops import MemoryEfficientAttentionFlashAttentionOp

        >>> pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1", torch_dtype=torch.float16)
        >>> pipe = pipe.to("cuda")
        >>> pipe.enable_xformers_memory_efficient_attention(attention_op=MemoryEfficientAttentionFlashAttentionOp)
        >>> # Workaround for not accepting attention shape using VAE for Flash Attention
        >>> pipe.vae.enable_xformers_memory_efficient_attention(attention_op=None)
        ```
1896
        """
1897
        self.set_use_memory_efficient_attention_xformers(True, attention_op)
1898
1899
1900

    def disable_xformers_memory_efficient_attention(self):
        r"""
Steven Liu's avatar
Steven Liu committed
1901
        Disable memory efficient attention from [xFormers](https://facebookresearch.github.io/xformers/).
1902
1903
1904
        """
        self.set_use_memory_efficient_attention_xformers(False)

1905
1906
1907
    def set_use_memory_efficient_attention_xformers(
        self, valid: bool, attention_op: Optional[Callable] = None
    ) -> None:
1908
1909
1910
1911
1912
        # Recursively walk through all the children.
        # Any children which exposes the set_use_memory_efficient_attention_xformers method
        # gets the message
        def fn_recursive_set_mem_eff(module: torch.nn.Module):
            if hasattr(module, "set_use_memory_efficient_attention_xformers"):
1913
                module.set_use_memory_efficient_attention_xformers(valid, attention_op)
1914
1915
1916
1917

            for child in module.children():
                fn_recursive_set_mem_eff(child)

1918
1919
1920
        module_names, _ = self._get_signature_keys(self)
        modules = [getattr(self, n, None) for n in module_names]
        modules = [m for m in modules if isinstance(m, torch.nn.Module)]
1921

1922
1923
        for module in modules:
            fn_recursive_set_mem_eff(module)
1924
1925
1926

    def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"):
        r"""
1927
        Enable sliced attention computation. When this option is enabled, the attention module splits the input tensor
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
        in slices to compute attention in several steps. For more than one attention head, the computation is performed
        sequentially over each head. This is useful to save some memory in exchange for a small speed decrease.

        <Tip warning={true}>

        ⚠️ Don't enable attention slicing if you're already using `scaled_dot_product_attention` (SDPA) from PyTorch
        2.0 or xFormers. These attention computations are already very memory efficient so you won't need to enable
        this function. If you enable attention slicing with SDPA or xFormers, it can lead to serious slow downs!

        </Tip>
1938
1939
1940
1941

        Args:
            slice_size (`str` or `int`, *optional*, defaults to `"auto"`):
                When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
Alexander Pivovarov's avatar
Alexander Pivovarov committed
1942
                `"max"`, maximum amount of memory will be saved by running only one slice at a time. If a number is
1943
1944
                provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
                must be a multiple of `slice_size`.
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961

        Examples:

        ```py
        >>> import torch
        >>> from diffusers import StableDiffusionPipeline

        >>> pipe = StableDiffusionPipeline.from_pretrained(
        ...     "runwayml/stable-diffusion-v1-5",
        ...     torch_dtype=torch.float16,
        ...     use_safetensors=True,
        ... )

        >>> prompt = "a photo of an astronaut riding a horse on mars"
        >>> pipe.enable_attention_slicing()
        >>> image = pipe(prompt).images[0]
        ```
1962
1963
1964
1965
1966
        """
        self.set_attention_slice(slice_size)

    def disable_attention_slicing(self):
        r"""
Steven Liu's avatar
Steven Liu committed
1967
1968
        Disable sliced attention computation. If `enable_attention_slicing` was previously called, attention is
        computed in one step.
1969
1970
1971
1972
1973
        """
        # set slice_size = `None` to disable `attention slicing`
        self.enable_attention_slicing(None)

    def set_attention_slice(self, slice_size: Optional[int]):
1974
1975
1976
        module_names, _ = self._get_signature_keys(self)
        modules = [getattr(self, n, None) for n in module_names]
        modules = [m for m in modules if isinstance(m, torch.nn.Module) and hasattr(m, "set_attention_slice")]
1977

1978
1979
        for module in modules:
            module.set_attention_slice(slice_size)