"vscode:/vscode.git/clone" did not exist on "8bca4f87ac070f6e5ae2fc74c9635b2aaa9a2208"
pipeline_utils.py 102 KB
Newer Older
1
# coding=utf-8
2
# Copyright 2025 The HuggingFace Inc. team.
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright (c) 2022, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
16
import fnmatch
17
18
19
import importlib
import inspect
import os
20
import re
21
import sys
22
23
from dataclasses import dataclass
from pathlib import Path
24
from typing import Any, Callable, Dict, List, Optional, Union, get_args, get_origin
25
26

import numpy as np
Anh71me's avatar
Anh71me committed
27
import PIL.Image
28
import requests
29
import torch
30
from huggingface_hub import (
Marc Sun's avatar
Marc Sun committed
31
    DDUFEntry,
32
33
34
35
    ModelCard,
    create_repo,
    hf_hub_download,
    model_info,
Marc Sun's avatar
Marc Sun committed
36
    read_dduf_file,
37
38
    snapshot_download,
)
39
from huggingface_hub.utils import OfflineModeIsEnabled, validate_hf_hub_args
40
from packaging import version
41
from requests.exceptions import HTTPError
42
from tqdm.auto import tqdm
43
from typing_extensions import Self
44

45
from .. import __version__
46
from ..configuration_utils import ConfigMixin
47
48
from ..models import AutoencoderKL
from ..models.attention_processor import FusedAttnProcessor2_0
49
from ..models.modeling_utils import _LOW_CPU_MEM_USAGE_DEFAULT, ModelMixin
50
from ..quantizers import PipelineQuantizationConfig
51
from ..quantizers.bitsandbytes.utils import _check_bnb_status
52
53
54
from ..schedulers.scheduling_utils import SCHEDULER_CONFIG_NAME
from ..utils import (
    CONFIG_NAME,
55
    DEPRECATED_REVISION_ARGS,
56
    BaseOutput,
57
    PushToHubMixin,
58
59
    _get_detailed_type,
    _is_valid_type,
60
    is_accelerate_available,
61
    is_accelerate_version,
62
    is_hpu_available,
Mengqing Cao's avatar
Mengqing Cao committed
63
    is_torch_npu_available,
64
    is_torch_version,
65
    is_transformers_version,
66
    logging,
Patrick von Platen's avatar
Patrick von Platen committed
67
    numpy_to_pil,
68
)
69
from ..utils.hub_utils import _check_legacy_sharding_variant_format, load_or_create_model_card, populate_model_card
70
from ..utils.torch_utils import get_device, is_compiled_module
Mengqing Cao's avatar
Mengqing Cao committed
71
72
73
74
75


if is_torch_npu_available():
    import torch_npu  # noqa: F401

76
77
78
79
80
from .pipeline_loading_utils import (
    ALL_IMPORTABLE_CLASSES,
    CONNECTED_PIPES_KEYS,
    CUSTOM_PIPELINE_FILE_NAME,
    LOADABLE_CLASSES,
Marc Sun's avatar
Marc Sun committed
81
    _download_dduf_file,
82
    _fetch_class_library_tuple,
83
    _get_custom_components_and_folders,
84
    _get_custom_pipeline_class,
85
    _get_final_device_map,
86
    _get_ignore_patterns,
87
    _get_pipeline_class,
88
    _identify_model_variants,
Marc Sun's avatar
Marc Sun committed
89
    _maybe_raise_error_for_incorrect_transformers,
90
91
    _maybe_raise_warning_for_inpainting,
    _resolve_custom_pipeline_and_cls,
92
    _unwrap_model,
93
    _update_init_kwargs_with_connected_pipeline,
94
    filter_model_files,
95
96
97
98
99
    load_sub_model,
    maybe_raise_or_warn,
    variant_compatible_siblings,
    warn_deprecated_model_variant,
)
100
101


102
103
104
105
if is_accelerate_available():
    import accelerate


106
107
108
LIBRARIES = []
for library in LOADABLE_CLASSES:
    LIBRARIES.append(library)
109

110
111
SUPPORTED_DEVICE_MAP = ["balanced"]

112
113
114
115
116
117
118
119
120
121
logger = logging.get_logger(__name__)


@dataclass
class ImagePipelineOutput(BaseOutput):
    """
    Output class for image pipelines.

    Args:
        images (`List[PIL.Image.Image]` or `np.ndarray`)
Steven Liu's avatar
Steven Liu committed
122
123
            List of denoised PIL images of length `batch_size` or NumPy array of shape `(batch_size, height, width,
            num_channels)`.
124
125
126
127
128
129
130
131
132
133
134
135
    """

    images: Union[List[PIL.Image.Image], np.ndarray]


@dataclass
class AudioPipelineOutput(BaseOutput):
    """
    Output class for audio pipelines.

    Args:
        audios (`np.ndarray`)
Steven Liu's avatar
Steven Liu committed
136
            List of denoised audio samples of a NumPy array of shape `(batch_size, num_channels, sample_rate)`.
137
138
139
140
141
    """

    audios: np.ndarray


142
class DiffusionPipeline(ConfigMixin, PushToHubMixin):
143
    r"""
Steven Liu's avatar
Steven Liu committed
144
    Base class for all pipelines.
145

Steven Liu's avatar
Steven Liu committed
146
147
    [`DiffusionPipeline`] stores all components (models, schedulers, and processors) for diffusion pipelines and
    provides methods for loading, downloading and saving models. It also includes methods to:
148
149

        - move all PyTorch modules to the device of your choice
150
        - enable/disable the progress bar for the denoising iteration
151
152
153

    Class attributes:

Steven Liu's avatar
Steven Liu committed
154
155
        - **config_name** (`str`) -- The configuration filename that stores the class and module names of all the
          diffusion pipeline's components.
156
        - **_optional_components** (`List[str]`) -- List of all optional components that don't have to be passed to the
Steven Liu's avatar
Steven Liu committed
157
          pipeline to function (should be overridden by subclasses).
158
    """
159

160
    config_name = "model_index.json"
161
    model_cpu_offload_seq = None
162
    hf_device_map = None
163
    _optional_components = []
164
    _exclude_from_cpu_offload = []
165
    _load_connected_pipes = False
166
    _is_onnx = False
167
168
169
170

    def register_modules(self, **kwargs):
        for name, module in kwargs.items():
            # retrieve library
171
            if module is None or isinstance(module, (tuple, list)) and module[0] is None:
172
173
                register_dict = {name: (None, None)}
            else:
174
                library, class_name = _fetch_class_library_tuple(module)
175
176
177
178
179
180
181
182
                register_dict = {name: (library, class_name)}

            # save model index config
            self.register_to_config(**register_dict)

            # set models
            setattr(self, name, module)

183
    def __setattr__(self, name: str, value: Any):
184
        if name in self.__dict__ and hasattr(self.config, name):
185
186
            # We need to overwrite the config if name exists in config
            if isinstance(getattr(self.config, name), (tuple, list)):
187
                if value is not None and self.config[name][0] is not None:
188
                    class_library_tuple = _fetch_class_library_tuple(value)
189
190
191
192
193
194
195
196
197
                else:
                    class_library_tuple = (None, None)

                self.register_to_config(**{name: class_library_tuple})
            else:
                self.register_to_config(**{name: value})

        super().__setattr__(name, value)

198
199
200
    def save_pretrained(
        self,
        save_directory: Union[str, os.PathLike],
201
        safe_serialization: bool = True,
202
        variant: Optional[str] = None,
203
        max_shard_size: Optional[Union[int, str]] = None,
204
205
        push_to_hub: bool = False,
        **kwargs,
206
207
    ):
        """
Steven Liu's avatar
Steven Liu committed
208
209
210
        Save all saveable variables of the pipeline to a directory. A pipeline variable can be saved and loaded if its
        class implements both a save and loading method. The pipeline is easily reloaded using the
        [`~DiffusionPipeline.from_pretrained`] class method.
211
212
213

        Arguments:
            save_directory (`str` or `os.PathLike`):
Steven Liu's avatar
Steven Liu committed
214
                Directory to save a pipeline to. Will be created if it doesn't exist.
215
            safe_serialization (`bool`, *optional*, defaults to `True`):
Steven Liu's avatar
Steven Liu committed
216
                Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
217
            variant (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
218
                If specified, weights are saved in the format `pytorch_model.<variant>.bin`.
219
            max_shard_size (`int` or `str`, defaults to `None`):
220
221
222
223
224
225
                The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size
                lower than this size. If expressed as a string, needs to be digits followed by a unit (like `"5GB"`).
                If expressed as an integer, the unit is bytes. Note that this limit will be decreased after a certain
                period of time (starting from Oct 2024) to allow users to upgrade to the latest version of `diffusers`.
                This is to establish a common default size for this argument across different libraries in the Hugging
                Face ecosystem (`transformers`, and `accelerate`, for example).
226
227
228
229
            push_to_hub (`bool`, *optional*, defaults to `False`):
                Whether or not to push your model to the Hugging Face model hub after saving it. You can specify the
                repository you want to push to with `repo_id` (will default to the name of `save_directory` in your
                namespace).
Marc Sun's avatar
Marc Sun committed
230

231
232
            kwargs (`Dict[str, Any]`, *optional*):
                Additional keyword arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method.
233
234
        """
        model_index_dict = dict(self.config)
235
236
        model_index_dict.pop("_class_name", None)
        model_index_dict.pop("_diffusers_version", None)
237
        model_index_dict.pop("_module", None)
238
        model_index_dict.pop("_name_or_path", None)
239

240
241
        if push_to_hub:
            commit_message = kwargs.pop("commit_message", None)
242
            private = kwargs.pop("private", None)
243
244
245
246
247
            create_pr = kwargs.pop("create_pr", False)
            token = kwargs.pop("token", None)
            repo_id = kwargs.pop("repo_id", save_directory.split(os.path.sep)[-1])
            repo_id = create_repo(repo_id, exist_ok=True, private=private, token=token).repo_id

248
249
250
251
252
253
254
255
256
257
258
259
260
261
        expected_modules, optional_kwargs = self._get_signature_keys(self)

        def is_saveable_module(name, value):
            if name not in expected_modules:
                return False
            if name in self._optional_components and value[0] is None:
                return False
            return True

        model_index_dict = {k: v for k, v in model_index_dict.items() if is_saveable_module(k, v)}
        for pipeline_component_name in model_index_dict.keys():
            sub_model = getattr(self, pipeline_component_name)
            model_cls = sub_model.__class__

262
263
264
            # Dynamo wraps the original model in a private class.
            # I didn't find a public API to get the original class.
            if is_compiled_module(sub_model):
265
                sub_model = _unwrap_model(sub_model)
266
267
                model_cls = sub_model.__class__

268
269
270
            save_method_name = None
            # search for the model's base class in LOADABLE_CLASSES
            for library_name, library_classes in LOADABLE_CLASSES.items():
271
272
273
274
275
276
277
                if library_name in sys.modules:
                    library = importlib.import_module(library_name)
                else:
                    logger.info(
                        f"{library_name} is not installed. Cannot save {pipeline_component_name} as {library_classes} from {library_name}"
                    )

278
279
280
281
282
283
284
285
286
                for base_class, save_load_methods in library_classes.items():
                    class_candidate = getattr(library, base_class, None)
                    if class_candidate is not None and issubclass(model_cls, class_candidate):
                        # if we found a suitable base class in LOADABLE_CLASSES then grab its save method
                        save_method_name = save_load_methods[0]
                        break
                if save_method_name is not None:
                    break

287
            if save_method_name is None:
288
289
290
                logger.warning(
                    f"self.{pipeline_component_name}={sub_model} of type {type(sub_model)} cannot be saved."
                )
291
292
293
294
                # make sure that unsaveable components are not tried to be loaded afterward
                self.register_to_config(**{pipeline_component_name: (None, None)})
                continue

295
296
297
298
299
            save_method = getattr(sub_model, save_method_name)

            # Call the save method with the argument safe_serialization only if it's supported
            save_method_signature = inspect.signature(save_method)
            save_method_accept_safe = "safe_serialization" in save_method_signature.parameters
300
            save_method_accept_variant = "variant" in save_method_signature.parameters
301
            save_method_accept_max_shard_size = "max_shard_size" in save_method_signature.parameters
302
303

            save_kwargs = {}
304
            if save_method_accept_safe:
305
306
307
                save_kwargs["safe_serialization"] = safe_serialization
            if save_method_accept_variant:
                save_kwargs["variant"] = variant
308
309
            if save_method_accept_max_shard_size and max_shard_size is not None:
                # max_shard_size is expected to not be None in ModelMixin
310
                save_kwargs["max_shard_size"] = max_shard_size
311
312

            save_method(os.path.join(save_directory, pipeline_component_name), **save_kwargs)
313

314
315
316
        # finally save the config
        self.save_config(save_directory)

317
        if push_to_hub:
318
319
320
321
322
            # Create a new empty model card and eventually tag it
            model_card = load_or_create_model_card(repo_id, token=token, is_pipeline=True)
            model_card = populate_model_card(model_card)
            model_card.save(os.path.join(save_directory, "README.md"))

323
324
325
326
327
328
329
330
            self._upload_folder(
                save_directory,
                repo_id,
                token=token,
                commit_message=commit_message,
                create_pr=create_pr,
            )

331
    def to(self, *args, **kwargs) -> Self:
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
        r"""
        Performs Pipeline dtype and/or device conversion. A torch.dtype and torch.device are inferred from the
        arguments of `self.to(*args, **kwargs).`

        <Tip>

            If the pipeline already has the correct torch.dtype and torch.device, then it is returned as is. Otherwise,
            the returned pipeline is a copy of self with the desired torch.dtype and torch.device.

        </Tip>


        Here are the ways to call `to`:

        - `to(dtype, silence_dtype_warnings=False) → DiffusionPipeline` to return a pipeline with the specified
          [`dtype`](https://pytorch.org/docs/stable/tensor_attributes.html#torch.dtype)
        - `to(device, silence_dtype_warnings=False) → DiffusionPipeline` to return a pipeline with the specified
          [`device`](https://pytorch.org/docs/stable/tensor_attributes.html#torch.device)
        - `to(device=None, dtype=None, silence_dtype_warnings=False) → DiffusionPipeline` to return a pipeline with the
          specified [`device`](https://pytorch.org/docs/stable/tensor_attributes.html#torch.device) and
          [`dtype`](https://pytorch.org/docs/stable/tensor_attributes.html#torch.dtype)

        Arguments:
            dtype (`torch.dtype`, *optional*):
                Returns a pipeline with the specified
                [`dtype`](https://pytorch.org/docs/stable/tensor_attributes.html#torch.dtype)
            device (`torch.Device`, *optional*):
                Returns a pipeline with the specified
                [`device`](https://pytorch.org/docs/stable/tensor_attributes.html#torch.device)
            silence_dtype_warnings (`str`, *optional*, defaults to `False`):
                Whether to omit warnings if the target `dtype` is not compatible with the target `device`.

        Returns:
            [`DiffusionPipeline`]: The pipeline converted to specified `dtype` and/or `dtype`.
        """
367
368
        dtype = kwargs.pop("dtype", None)
        device = kwargs.pop("device", None)
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
        silence_dtype_warnings = kwargs.pop("silence_dtype_warnings", False)

        dtype_arg = None
        device_arg = None
        if len(args) == 1:
            if isinstance(args[0], torch.dtype):
                dtype_arg = args[0]
            else:
                device_arg = torch.device(args[0]) if args[0] is not None else None
        elif len(args) == 2:
            if isinstance(args[0], torch.dtype):
                raise ValueError(
                    "When passing two arguments, make sure the first corresponds to `device` and the second to `dtype`."
                )
            device_arg = torch.device(args[0]) if args[0] is not None else None
            dtype_arg = args[1]
        elif len(args) > 2:
            raise ValueError("Please make sure to pass at most two arguments (`device` and `dtype`) `.to(...)`")

        if dtype is not None and dtype_arg is not None:
            raise ValueError(
                "You have passed `dtype` both as an argument and as a keyword argument. Please only pass one of the two."
            )

        dtype = dtype or dtype_arg

        if device is not None and device_arg is not None:
            raise ValueError(
                "You have passed `device` both as an argument and as a keyword argument. Please only pass one of the two."
            )

        device = device or device_arg
Aryan's avatar
Aryan committed
401
        device_type = torch.device(device).type if device is not None else None
402
        pipeline_has_bnb = any(any((_check_bnb_status(module))) for _, module in self.components.items())
403

404
405
406
407
408
        # throw warning if pipeline is in "offloaded"-mode but user tries to manually set to GPU.
        def module_is_sequentially_offloaded(module):
            if not is_accelerate_available() or is_accelerate_version("<", "0.14.0"):
                return False

409
410
411
412
413
            _, _, is_loaded_in_8bit_bnb = _check_bnb_status(module)

            if is_loaded_in_8bit_bnb:
                return False

414
415
416
417
418
            return hasattr(module, "_hf_hook") and (
                isinstance(module._hf_hook, accelerate.hooks.AlignDevicesHook)
                or hasattr(module._hf_hook, "hooks")
                and isinstance(module._hf_hook.hooks[0], accelerate.hooks.AlignDevicesHook)
            )
419
420
421
422
423
424
425
426
427
428
429

        def module_is_offloaded(module):
            if not is_accelerate_available() or is_accelerate_version("<", "0.17.0.dev0"):
                return False

            return hasattr(module, "_hf_hook") and isinstance(module._hf_hook, accelerate.hooks.CpuOffload)

        # .to("cuda") would raise an error if the pipeline is sequentially offloaded, so we raise our own to make it clearer
        pipeline_is_sequentially_offloaded = any(
            module_is_sequentially_offloaded(module) for _, module in self.components.items()
        )
430
431
432
433
434
435
436

        is_pipeline_device_mapped = self.hf_device_map is not None and len(self.hf_device_map) > 1
        if is_pipeline_device_mapped:
            raise ValueError(
                "It seems like you have activated a device mapping strategy on the pipeline which doesn't allow explicit device placement using `to()`. You can call `reset_device_map()` to remove the existing device map from the pipeline."
            )

437
        if device_type in ["cuda", "xpu"]:
438
439
440
441
442
443
444
445
446
            if pipeline_is_sequentially_offloaded and not pipeline_has_bnb:
                raise ValueError(
                    "It seems like you have activated sequential model offloading by calling `enable_sequential_cpu_offload`, but are now attempting to move the pipeline to GPU. This is not compatible with offloading. Please, move your pipeline `.to('cpu')` or consider removing the move altogether if you use sequential offloading."
                )
            # PR: https://github.com/huggingface/accelerate/pull/3223/
            elif pipeline_has_bnb and is_accelerate_version("<", "1.1.0.dev0"):
                raise ValueError(
                    "You are trying to call `.to('cuda')` on a pipeline that has models quantized with `bitsandbytes`. Your current `accelerate` installation does not support it. Please upgrade the installation."
                )
447
448
449

        # Display a warning in this case (the operation succeeds but the benefits are lost)
        pipeline_is_offloaded = any(module_is_offloaded(module) for _, module in self.components.items())
450
        if pipeline_is_offloaded and device_type in ["cuda", "xpu"]:
451
452
453
454
            logger.warning(
                f"It seems like you have activated model offloading by calling `enable_model_cpu_offload`, but are now manually moving the pipeline to GPU. It is strongly recommended against doing so as memory gains from offloading are likely to be lost. Offloading automatically takes care of moving the individual components {', '.join(self.components.keys())} to GPU when needed. To make sure offloading works as expected, you should consider moving the pipeline back to CPU: `pipeline.to('cpu')` or removing the move altogether if you use offloading."
            )

455
456
457
458
459
460
461
462
463
464
465
466
467
468
        # Enable generic support for Intel Gaudi accelerator using GPU/HPU migration
        if device_type == "hpu" and kwargs.pop("hpu_migration", True) and is_hpu_available():
            os.environ["PT_HPU_GPU_MIGRATION"] = "1"
            logger.debug("Environment variable set: PT_HPU_GPU_MIGRATION=1")

            import habana_frameworks.torch  # noqa: F401

            # HPU hardware check
            if not (hasattr(torch, "hpu") and torch.hpu.is_available()):
                raise ValueError("You are trying to call `.to('hpu')` but HPU device is unavailable.")

            os.environ["PT_HPU_MAX_COMPOUND_OP_SIZE"] = "1"
            logger.debug("Environment variable set: PT_HPU_MAX_COMPOUND_OP_SIZE=1")

469
        module_names, _ = self._get_signature_keys(self)
470
471
        modules = [getattr(self, n, None) for n in module_names]
        modules = [m for m in modules if isinstance(m, torch.nn.Module)]
472

473
        is_offloaded = pipeline_is_offloaded or pipeline_is_sequentially_offloaded
474
        for module in modules:
475
            _, is_loaded_in_4bit_bnb, is_loaded_in_8bit_bnb = _check_bnb_status(module)
Aryan's avatar
Aryan committed
476
            is_group_offloaded = self._maybe_raise_error_if_group_offload_active(module=module)
Patrick von Platen's avatar
Patrick von Platen committed
477

478
            if (is_loaded_in_4bit_bnb or is_loaded_in_8bit_bnb) and dtype is not None:
Patrick von Platen's avatar
Patrick von Platen committed
479
                logger.warning(
480
                    f"The module '{module.__class__.__name__}' has been loaded in `bitsandbytes` {'4bit' if is_loaded_in_4bit_bnb else '8bit'} and conversion to {dtype} is not supported. Module is still in {'4bit' if is_loaded_in_4bit_bnb else '8bit'} precision."
Patrick von Platen's avatar
Patrick von Platen committed
481
482
                )

483
            if is_loaded_in_8bit_bnb and device is not None:
Patrick von Platen's avatar
Patrick von Platen committed
484
                logger.warning(
485
                    f"The module '{module.__class__.__name__}' has been loaded in `bitsandbytes` 8bit and moving it to {device} via `.to()` is not supported. Module is still on {module.device}."
Patrick von Platen's avatar
Patrick von Platen committed
486
                )
487

Aryan's avatar
Aryan committed
488
489
490
491
492
493
494
495
496
497
            # Note: we also handle this at the ModelMixin level. The reason for doing it here too is that modeling
            # components can be from outside diffusers too, but still have group offloading enabled.
            if (
                self._maybe_raise_error_if_group_offload_active(raise_error=False, module=module)
                and device is not None
            ):
                logger.warning(
                    f"The module '{module.__class__.__name__}' is group offloaded and moving it to {device} via `.to()` is not supported."
                )

498
499
500
501
            # This can happen for `transformer` models. CPU placement was added in
            # https://github.com/huggingface/transformers/pull/33122. So, we guard this accordingly.
            if is_loaded_in_4bit_bnb and device is not None and is_transformers_version(">", "4.44.0"):
                module.to(device=device)
Aryan's avatar
Aryan committed
502
            elif not is_loaded_in_4bit_bnb and not is_loaded_in_8bit_bnb and not is_group_offloaded:
503
                module.to(device, dtype)
Patrick von Platen's avatar
Patrick von Platen committed
504

505
506
            if (
                module.dtype == torch.float16
507
                and str(device) in ["cpu"]
508
509
510
511
                and not silence_dtype_warnings
                and not is_offloaded
            ):
                logger.warning(
512
                    "Pipelines loaded with `dtype=torch.float16` cannot run with `cpu` device. It"
513
514
515
516
517
                    " is not recommended to move them to `cpu` as running them will fail. Please make"
                    " sure to use an accelerator to run the pipeline in inference, due to the lack of"
                    " support for`float16` operations on this device in PyTorch. Please, remove the"
                    " `torch_dtype=torch.float16` argument, or use another device for inference."
                )
518
519
520
521
522
523
524
525
        return self

    @property
    def device(self) -> torch.device:
        r"""
        Returns:
            `torch.device`: The torch device on which the pipeline is located.
        """
526
        module_names, _ = self._get_signature_keys(self)
527
528
529
530
531
        modules = [getattr(self, n, None) for n in module_names]
        modules = [m for m in modules if isinstance(m, torch.nn.Module)]

        for module in modules:
            return module.device
532

533
534
        return torch.device("cpu")

535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
    @property
    def dtype(self) -> torch.dtype:
        r"""
        Returns:
            `torch.dtype`: The torch dtype on which the pipeline is located.
        """
        module_names, _ = self._get_signature_keys(self)
        modules = [getattr(self, n, None) for n in module_names]
        modules = [m for m in modules if isinstance(m, torch.nn.Module)]

        for module in modules:
            return module.dtype

        return torch.float32

550
    @classmethod
551
    @validate_hf_hub_args
552
    def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs) -> Self:
553
        r"""
Steven Liu's avatar
Steven Liu committed
554
        Instantiate a PyTorch diffusion pipeline from pretrained pipeline weights.
555

Steven Liu's avatar
Steven Liu committed
556
        The pipeline is set in evaluation mode (`model.eval()`) by default.
557

Steven Liu's avatar
Steven Liu committed
558
        If you get the error message below, you need to finetune the weights for your downstream task:
559

Steven Liu's avatar
Steven Liu committed
560
        ```
561
        Some weights of UNet2DConditionModel were not initialized from the model checkpoint at stable-diffusion-v1-5/stable-diffusion-v1-5 and are newly initialized because the shapes did not match:
Steven Liu's avatar
Steven Liu committed
562
563
564
        - conv_in.weight: found shape torch.Size([320, 4, 3, 3]) in the checkpoint and torch.Size([320, 9, 3, 3]) in the model instantiated
        You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
        ```
565
566
567
568
569

        Parameters:
            pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*):
                Can be either:

Steven Liu's avatar
Steven Liu committed
570
571
572
573
574
                    - A string, the *repo id* (for example `CompVis/ldm-text2im-large-256`) of a pretrained pipeline
                      hosted on the Hub.
                    - A path to a *directory* (for example `./my_pipeline_directory/`) containing pipeline weights
                      saved using
                    [`~DiffusionPipeline.save_pretrained`].
Marc Sun's avatar
Marc Sun committed
575
                    - A path to a *directory* (for example `./my_pipeline_directory/`) containing a dduf file
576
577
578
579
580
581
            torch_dtype (`torch.dtype` or `dict[str, Union[str, torch.dtype]]`, *optional*):
                Override the default `torch.dtype` and load the model with another dtype. To load submodels with
                different dtype pass a `dict` (for example `{'transformer': torch.bfloat16, 'vae': torch.float16}`).
                Set the default dtype for unspecified components with `default` (for example `{'transformer':
                torch.bfloat16, 'default': torch.float16}`). If a component is not specified and no default is set,
                `torch.float32` is used.
582
583
584
585
            custom_pipeline (`str`, *optional*):

                <Tip warning={true}>

Steven Liu's avatar
Steven Liu committed
586
                🧪 This is an experimental feature and may change in the future.
587
588
589
590
591

                </Tip>

                Can be either:

Steven Liu's avatar
Steven Liu committed
592
593
594
                    - A string, the *repo id* (for example `hf-internal-testing/diffusers-dummy-pipeline`) of a custom
                      pipeline hosted on the Hub. The repository must contain a file called pipeline.py that defines
                      the custom pipeline.
595
                    - A string, the *file name* of a community pipeline hosted on GitHub under
Steven Liu's avatar
Steven Liu committed
596
597
598
599
600
601
                      [Community](https://github.com/huggingface/diffusers/tree/main/examples/community). Valid file
                      names must match the file name and not the pipeline script (`clip_guided_stable_diffusion`
                      instead of `clip_guided_stable_diffusion.py`). Community pipelines are always loaded from the
                      current main branch of GitHub.
                    - A path to a directory (`./my_pipeline_directory/`) containing a custom pipeline. The directory
                      must contain a file called `pipeline.py` that defines the custom pipeline.
602
603
604
605
606
607
608

                For more information on how to load and create custom pipelines, please have a look at [Loading and
                Adding Custom
                Pipelines](https://huggingface.co/docs/diffusers/using-diffusers/custom_pipeline_overview)
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
609
            cache_dir (`Union[str, os.PathLike]`, *optional*):
Steven Liu's avatar
Steven Liu committed
610
611
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
612

613
            proxies (`Dict[str, str]`, *optional*):
Steven Liu's avatar
Steven Liu committed
614
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
615
616
617
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            output_loading_info(`bool`, *optional*, defaults to `False`):
                Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
Steven Liu's avatar
Steven Liu committed
618
619
620
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
621
            token (`str` or *bool*, *optional*):
Steven Liu's avatar
Steven Liu committed
622
623
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
624
            revision (`str`, *optional*, defaults to `"main"`):
Steven Liu's avatar
Steven Liu committed
625
626
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
627
            custom_revision (`str`, *optional*):
628
                The specific model version to use. It can be a branch name, a tag name, or a commit id similar to
629
630
                `revision` when loading a custom pipeline from the Hub. Defaults to the latest stable 🤗 Diffusers
                version.
631
            mirror (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
632
633
634
                Mirror source to resolve accessibility issues if you’re downloading a model in China. We do not
                guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
                information.
635
            device_map (`str` or `Dict[str, Union[int, str, torch.device]]`, *optional*):
Steven Liu's avatar
Steven Liu committed
636
637
                A map that specifies where each submodule should go. It doesn’t need to be defined for each
                parameter/buffer name; once a given module name is inside, every submodule of it will be sent to the
638
639
                same device.

Steven Liu's avatar
Steven Liu committed
640
                Set `device_map="auto"` to have 🤗 Accelerate automatically compute the most optimized `device_map`. For
641
642
                more information about each option see [designing a device
                map](https://hf.co/docs/accelerate/main/en/usage_guides/big_modeling#designing-a-device-map).
643
            max_memory (`Dict`, *optional*):
Steven Liu's avatar
Steven Liu committed
644
645
                A dictionary device identifier for the maximum memory. Will default to the maximum memory available for
                each GPU and the available CPU RAM if unset.
646
            offload_folder (`str` or `os.PathLike`, *optional*):
Steven Liu's avatar
Steven Liu committed
647
                The path to offload weights if device_map contains the value `"disk"`.
648
            offload_state_dict (`bool`, *optional*):
Steven Liu's avatar
Steven Liu committed
649
650
651
                If `True`, temporarily offloads the CPU state dict to the hard drive to avoid running out of CPU RAM if
                the weight of the CPU state dict + the biggest shard of the checkpoint does not fit. Defaults to `True`
                when there is some disk offload.
652
            low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
Steven Liu's avatar
Steven Liu committed
653
654
655
656
                Speed up model loading only loading the pretrained weights and not initializing the weights. This also
                tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
                Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
                argument to `True` will raise an error.
657
            use_safetensors (`bool`, *optional*, defaults to `None`):
Steven Liu's avatar
Steven Liu committed
658
659
660
                If set to `None`, the safetensors weights are downloaded if they're available **and** if the
                safetensors library is installed. If set to `True`, the model is forcibly loaded from safetensors
                weights. If set to `False`, safetensors weights are not loaded.
661
662
663
664
665
            use_onnx (`bool`, *optional*, defaults to `None`):
                If set to `True`, ONNX weights will always be downloaded if present. If set to `False`, ONNX weights
                will never be downloaded. By default `use_onnx` defaults to the `_is_onnx` class attribute which is
                `False` for non-ONNX pipelines and `True` for ONNX pipelines. ONNX weights include both files ending
                with `.onnx` and `.pb`.
666
            kwargs (remaining dictionary of keyword arguments, *optional*):
Steven Liu's avatar
Steven Liu committed
667
668
669
                Can be used to overwrite load and saveable variables (the pipeline components of the specific pipeline
                class). The overwritten components are passed directly to the pipelines `__init__` method. See example
                below for more information.
670
            variant (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
671
672
                Load weights from a specified variant filename such as `"fp16"` or `"ema"`. This is ignored when
                loading `from_flax`.
Marc Sun's avatar
Marc Sun committed
673
674
            dduf_file(`str`, *optional*):
                Load weights from the specified dduf file.
675
676
677

        <Tip>

Steven Liu's avatar
Steven Liu committed
678
679
        To use private or [gated](https://huggingface.co/docs/hub/models-gated#gated-models) models, log-in with
        `huggingface-cli login`.
680
681
682
683
684
685
686
687
688
689
690
691
692
693

        </Tip>

        Examples:

        ```py
        >>> from diffusers import DiffusionPipeline

        >>> # Download pipeline from huggingface.co and cache.
        >>> pipeline = DiffusionPipeline.from_pretrained("CompVis/ldm-text2im-large-256")

        >>> # Download pipeline that requires an authorization token
        >>> # For more information on access tokens, please refer to this section
        >>> # of the documentation](https://huggingface.co/docs/hub/security-tokens)
694
        >>> pipeline = DiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5")
695
696
697
698
699
700
701
702

        >>> # Use a different scheduler
        >>> from diffusers import LMSDiscreteScheduler

        >>> scheduler = LMSDiscreteScheduler.from_config(pipeline.scheduler.config)
        >>> pipeline.scheduler = scheduler
        ```
        """
703
704
705
        # Copy the kwargs to re-use during loading connected pipeline.
        kwargs_copied = kwargs.copy()

706
        cache_dir = kwargs.pop("cache_dir", None)
707
708
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
709
710
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
711
        revision = kwargs.pop("revision", None)
712
        from_flax = kwargs.pop("from_flax", False)
713
        torch_dtype = kwargs.pop("torch_dtype", None)
714
715
716
717
        custom_pipeline = kwargs.pop("custom_pipeline", None)
        custom_revision = kwargs.pop("custom_revision", None)
        provider = kwargs.pop("provider", None)
        sess_options = kwargs.pop("sess_options", None)
718
        provider_options = kwargs.pop("provider_options", None)
719
        device_map = kwargs.pop("device_map", None)
720
721
        max_memory = kwargs.pop("max_memory", None)
        offload_folder = kwargs.pop("offload_folder", None)
722
        offload_state_dict = kwargs.pop("offload_state_dict", None)
723
        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT)
724
        variant = kwargs.pop("variant", None)
Marc Sun's avatar
Marc Sun committed
725
        dduf_file = kwargs.pop("dduf_file", None)
726
        use_safetensors = kwargs.pop("use_safetensors", None)
727
        use_onnx = kwargs.pop("use_onnx", None)
728
        load_connected_pipeline = kwargs.pop("load_connected_pipeline", False)
729
        quantization_config = kwargs.pop("quantization_config", None)
730

731
        if torch_dtype is not None and not isinstance(torch_dtype, dict) and not isinstance(torch_dtype, torch.dtype):
732
733
734
735
736
            torch_dtype = torch.float32
            logger.warning(
                f"Passed `torch_dtype` {torch_dtype} is not a `torch.dtype`. Defaulting to `torch.float32`."
            )

737
738
739
740
741
742
743
744
745
        if low_cpu_mem_usage and not is_accelerate_available():
            low_cpu_mem_usage = False
            logger.warning(
                "Cannot initialize model with low cpu memory usage because `accelerate` was not found in the"
                " environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install"
                " `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip"
                " install accelerate\n```\n."
            )

746
747
748
        if quantization_config is not None and not isinstance(quantization_config, PipelineQuantizationConfig):
            raise ValueError("`quantization_config` must be an instance of `PipelineQuantizationConfig`.")

749
750
751
752
753
754
        if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"):
            raise NotImplementedError(
                "Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set"
                " `low_cpu_mem_usage=False`."
            )

755
756
757
758
759
760
        if device_map is not None and not is_torch_version(">=", "1.9.0"):
            raise NotImplementedError(
                "Loading and dispatching requires torch >= 1.9.0. Please either update your PyTorch version or set"
                " `device_map=None`."
            )

761
        if device_map is not None and not is_accelerate_available():
762
            raise NotImplementedError(
763
764
765
766
767
768
769
770
771
                "Using `device_map` requires the `accelerate` library. Please install it using: `pip install accelerate`."
            )

        if device_map is not None and not isinstance(device_map, str):
            raise ValueError("`device_map` must be a string.")

        if device_map is not None and device_map not in SUPPORTED_DEVICE_MAP:
            raise NotImplementedError(
                f"{device_map} not supported. Supported strategies are: {', '.join(SUPPORTED_DEVICE_MAP)}"
772
773
            )

774
775
776
777
        if device_map is not None and device_map in SUPPORTED_DEVICE_MAP:
            if is_accelerate_version("<", "0.28.0"):
                raise NotImplementedError("Device placement requires `accelerate` version `0.28.0` or later.")

778
779
780
781
782
783
        if low_cpu_mem_usage is False and device_map is not None:
            raise ValueError(
                f"You cannot set `low_cpu_mem_usage` to False while using device_map={device_map} for loading and"
                " dispatching. Please make sure to set `low_cpu_mem_usage=True`."
            )

Marc Sun's avatar
Marc Sun committed
784
785
786
787
788
789
        if dduf_file:
            if custom_pipeline:
                raise NotImplementedError("Custom pipelines are not supported with DDUF at the moment.")
            if load_connected_pipeline:
                raise NotImplementedError("Connected pipelines are not supported with DDUF at the moment.")

790
791
792
        # 1. Download the checkpoints and configs
        # use snapshot download here to get it working from from_pretrained
        if not os.path.isdir(pretrained_model_name_or_path):
Patrick von Platen's avatar
Patrick von Platen committed
793
794
795
796
797
            if pretrained_model_name_or_path.count("/") > 1:
                raise ValueError(
                    f'The provided pretrained_model_name_or_path "{pretrained_model_name_or_path}"'
                    " is neither a valid local path nor a valid repo id. Please check the parameter."
                )
798
            cached_folder = cls.download(
799
800
801
802
803
                pretrained_model_name_or_path,
                cache_dir=cache_dir,
                force_download=force_download,
                proxies=proxies,
                local_files_only=local_files_only,
804
                token=token,
805
                revision=revision,
806
                from_flax=from_flax,
807
                use_safetensors=use_safetensors,
808
                use_onnx=use_onnx,
809
                custom_pipeline=custom_pipeline,
810
                custom_revision=custom_revision,
811
                variant=variant,
Marc Sun's avatar
Marc Sun committed
812
                dduf_file=dduf_file,
813
                load_connected_pipeline=load_connected_pipeline,
814
                **kwargs,
815
816
817
818
            )
        else:
            cached_folder = pretrained_model_name_or_path

819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
        # The variant filenames can have the legacy sharding checkpoint format that we check and throw
        # a warning if detected.
        if variant is not None and _check_legacy_sharding_variant_format(folder=cached_folder, variant=variant):
            warn_msg = (
                f"Warning: The repository contains sharded checkpoints for variant '{variant}' maybe in a deprecated format. "
                "Please check your files carefully:\n\n"
                "- Correct format example: diffusion_pytorch_model.fp16-00003-of-00003.safetensors\n"
                "- Deprecated format example: diffusion_pytorch_model-00001-of-00002.fp16.safetensors\n\n"
                "If you find any files in the deprecated format:\n"
                "1. Remove all existing checkpoint files for this variant.\n"
                "2. Re-obtain the correct files by running `save_pretrained()`.\n\n"
                "This will ensure you're using the most up-to-date and compatible checkpoint format."
            )
            logger.warning(warn_msg)

Marc Sun's avatar
Marc Sun committed
834
835
836
837
838
839
840
841
842
843
844
        dduf_entries = None
        if dduf_file:
            dduf_file_path = os.path.join(cached_folder, dduf_file)
            dduf_entries = read_dduf_file(dduf_file_path)
            # The reader contains already all the files needed, no need to check it again
            cached_folder = ""

        config_dict = cls.load_config(cached_folder, dduf_entries=dduf_entries)

        if dduf_file:
            _maybe_raise_error_for_incorrect_transformers(config_dict)
845

Patrick von Platen's avatar
Patrick von Platen committed
846
847
848
        # pop out "_ignore_files" as it is only needed for download
        config_dict.pop("_ignore_files", None)

849
        # 2. Define which model components should load variants
850
851
852
853
        # We retrieve the information by matching whether variant model checkpoints exist in the subfolders.
        # Example: `diffusion_pytorch_model.safetensors` -> `diffusion_pytorch_model.fp16.safetensors`
        # with variant being `"fp16"`.
        model_variants = _identify_model_variants(folder=cached_folder, variant=variant, config=config_dict)
854
855
856
        if len(model_variants) == 0 and variant is not None:
            error_message = f"You are trying to load the model files of the `variant={variant}`, but no such modeling files are available."
            raise ValueError(error_message)
857

858
        # 3. Load the pipeline class, if using custom module then load it from the hub
859
        # if we load from explicit class, let's use it
860
861
862
        custom_pipeline, custom_class_name = _resolve_custom_pipeline_and_cls(
            folder=cached_folder, config=config_dict, custom_pipeline=custom_pipeline
        )
863
        pipeline_class = _get_pipeline_class(
864
            cls,
865
            config=config_dict,
866
867
            load_connected_pipeline=load_connected_pipeline,
            custom_pipeline=custom_pipeline,
868
            class_name=custom_class_name,
869
870
            cache_dir=cache_dir,
            revision=custom_revision,
871
        )
872

873
874
875
        if device_map is not None and pipeline_class._load_connected_pipes:
            raise NotImplementedError("`device_map` is not yet supported for connected pipelines.")

876
        # DEPRECATED: To be removed in 1.0.0
877
878
879
880
881
882
883
        # we are deprecating the `StableDiffusionInpaintPipelineLegacy` pipeline which gets loaded
        # when a user requests for a `StableDiffusionInpaintPipeline` with `diffusers` version being <= 0.5.1.
        _maybe_raise_warning_for_inpainting(
            pipeline_class=pipeline_class,
            pretrained_model_name_or_path=pretrained_model_name_or_path,
            config=config_dict,
        )
884

885
886
887
        # 4. Define expected modules given pipeline signature
        # and define non-None initialized modules (=`init_kwargs`)

888
889
890
891
        # some modules can be passed directly to the init
        # in this case they are already instantiated in `kwargs`
        # extract them here
        expected_modules, optional_kwargs = cls._get_signature_keys(pipeline_class)
892
        expected_types = pipeline_class._get_signature_types()
893
894
895
896
        passed_class_obj = {k: kwargs.pop(k) for k in expected_modules if k in kwargs}
        passed_pipe_kwargs = {k: kwargs.pop(k) for k in optional_kwargs if k in kwargs}
        init_dict, unused_kwargs, _ = pipeline_class.extract_init_dict(config_dict, **kwargs)

897
898
899
900
901
902
        # define init kwargs and make sure that optional component modules are filtered out
        init_kwargs = {
            k: init_dict.pop(k)
            for k in optional_kwargs
            if k in init_dict and k not in pipeline_class._optional_components
        }
903
904
905
906
907
908
909
910
911
912
913
914
        init_kwargs = {**init_kwargs, **passed_pipe_kwargs}

        # remove `null` components
        def load_module(name, value):
            if value[0] is None:
                return False
            if name in passed_class_obj and passed_class_obj[name] is None:
                return False
            return True

        init_dict = {k: v for k, v in init_dict.items() if load_module(k, v)}

915
916
917
918
919
920
921
922
        # Special case: safety_checker must be loaded separately when using `from_flax`
        if from_flax and "safety_checker" in init_dict and "safety_checker" not in passed_class_obj:
            raise NotImplementedError(
                "The safety checker cannot be automatically loaded when loading weights `from_flax`."
                " Please, pass `safety_checker=None` to `from_pretrained`, and load the safety checker"
                " separately if you need it."
            )

923
        # 5. Throw nice warnings / errors for fast accelerate loading
924
925
926
927
928
929
930
931
        if len(unused_kwargs) > 0:
            logger.warning(
                f"Keyword arguments {unused_kwargs} are not expected by {pipeline_class.__name__} and will be ignored."
            )

        # import it here to avoid circular import
        from diffusers import pipelines

932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
        # 6. device map delegation
        final_device_map = None
        if device_map is not None:
            final_device_map = _get_final_device_map(
                device_map=device_map,
                pipeline_class=pipeline_class,
                passed_class_obj=passed_class_obj,
                init_dict=init_dict,
                library=library,
                max_memory=max_memory,
                torch_dtype=torch_dtype,
                cached_folder=cached_folder,
                force_download=force_download,
                proxies=proxies,
                local_files_only=local_files_only,
                token=token,
                revision=revision,
            )

        # 7. Load each module in the pipeline
        current_device_map = None
953
        for name, (library_name, class_name) in logging.tqdm(init_dict.items(), desc="Loading pipeline components..."):
954
            # 7.1 device_map shenanigans
955
956
957
958
959
960
961
            if final_device_map is not None and len(final_device_map) > 0:
                component_device = final_device_map.get(name, None)
                if component_device is not None:
                    current_device_map = {"": component_device}
                else:
                    current_device_map = None

962
            # 7.2 - now that JAX/Flax is an official framework of the library, we might load from Flax names
963
            class_name = class_name[4:] if class_name.startswith("Flax") else class_name
964

965
            # 7.3 Define all importable classes
966
            is_pipeline_module = hasattr(pipelines, library_name)
967
            importable_classes = ALL_IMPORTABLE_CLASSES
968
969
            loaded_sub_model = None

970
            # 7.4 Use passed sub model or load class_name from library_name
971
            if name in passed_class_obj:
972
973
974
975
976
                # if the model is in a pipeline module, then we load it from the pipeline
                # check that passed_class_obj has correct parent class
                maybe_raise_or_warn(
                    library_name, library, class_name, importable_classes, passed_class_obj, name, is_pipeline_module
                )
977
978
979

                loaded_sub_model = passed_class_obj[name]
            else:
980
                # load sub model
981
982
983
984
985
                sub_model_dtype = (
                    torch_dtype.get(name, torch_dtype.get("default", torch.float32))
                    if isinstance(torch_dtype, dict)
                    else torch_dtype
                )
986
987
988
989
990
991
992
                loaded_sub_model = load_sub_model(
                    library_name=library_name,
                    class_name=class_name,
                    importable_classes=importable_classes,
                    pipelines=pipelines,
                    is_pipeline_module=is_pipeline_module,
                    pipeline_class=pipeline_class,
993
                    torch_dtype=sub_model_dtype,
994
995
                    provider=provider,
                    sess_options=sess_options,
996
                    device_map=current_device_map,
997
998
999
                    max_memory=max_memory,
                    offload_folder=offload_folder,
                    offload_state_dict=offload_state_dict,
1000
1001
1002
1003
1004
1005
                    model_variants=model_variants,
                    name=name,
                    from_flax=from_flax,
                    variant=variant,
                    low_cpu_mem_usage=low_cpu_mem_usage,
                    cached_folder=cached_folder,
1006
                    use_safetensors=use_safetensors,
Marc Sun's avatar
Marc Sun committed
1007
                    dduf_entries=dduf_entries,
1008
                    provider_options=provider_options,
1009
                    quantization_config=quantization_config,
1010
                )
1011
1012
1013
                logger.info(
                    f"Loaded {name} as {class_name} from `{name}` subfolder of {pretrained_model_name_or_path}."
                )
1014
1015
1016

            init_kwargs[name] = loaded_sub_model  # UNet(...), # DiffusionSchedule(...)

1017
        # 8. Handle connected pipelines.
1018
        if pipeline_class._load_connected_pipes and os.path.isfile(os.path.join(cached_folder, "README.md")):
1019
1020
1021
1022
1023
1024
1025
            init_kwargs = _update_init_kwargs_with_connected_pipeline(
                init_kwargs=init_kwargs,
                passed_pipe_kwargs=passed_pipe_kwargs,
                passed_class_objs=passed_class_obj,
                folder=cached_folder,
                **kwargs_copied,
            )
1026

1027
        # 9. Potentially add passed objects if expected
1028
1029
1030
1031
1032
1033
1034
        missing_modules = set(expected_modules) - set(init_kwargs.keys())
        passed_modules = list(passed_class_obj.keys())
        optional_modules = pipeline_class._optional_components
        if len(missing_modules) > 0 and missing_modules <= set(passed_modules + optional_modules):
            for module in missing_modules:
                init_kwargs[module] = passed_class_obj.get(module, None)
        elif len(missing_modules) > 0:
1035
            passed_modules = set(list(init_kwargs.keys()) + list(passed_class_obj.keys())) - set(optional_kwargs)
1036
1037
1038
1039
            raise ValueError(
                f"Pipeline {pipeline_class} expected {expected_modules}, but only {passed_modules} were passed."
            )

1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
        # 10. Type checking init arguments
        for kw, arg in init_kwargs.items():
            # Too complex to validate with type annotation alone
            if "scheduler" in kw:
                continue
            # Many tokenizer annotations don't include its "Fast" variant, so skip this
            # e.g T5Tokenizer but not T5TokenizerFast
            elif "tokenizer" in kw:
                continue
            elif (
                arg is not None  # Skip if None
                and not expected_types[kw] == (inspect.Signature.empty,)  # Skip if no type annotations
                and not _is_valid_type(arg, expected_types[kw])  # Check type
            ):
                logger.warning(f"Expected types for {kw}: {expected_types[kw]}, got {_get_detailed_type(arg)}.")

        # 11. Instantiate the pipeline
1057
        model = pipeline_class(**init_kwargs)
1058

1059
        # 12. Save where the model was instantiated from
1060
        model.register_to_config(_name_or_path=pretrained_model_name_or_path)
1061
1062
        if device_map is not None:
            setattr(model, "hf_device_map", final_device_map)
1063
1064
        return model

1065
1066
1067
1068
    @property
    def name_or_path(self) -> str:
        return getattr(self.config, "_name_or_path", None)

1069
1070
1071
1072
1073
1074
1075
    @property
    def _execution_device(self):
        r"""
        Returns the device on which the pipeline's models will be executed. After calling
        [`~DiffusionPipeline.enable_sequential_cpu_offload`] the execution device can only be inferred from
        Accelerate's module hooks.
        """
Aryan's avatar
Aryan committed
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
        from ..hooks.group_offloading import _get_group_onload_device

        # When apply group offloading at the leaf_level, we're in the same situation as accelerate's sequential
        # offloading. We need to return the onload device of the group offloading hooks so that the intermediates
        # required for computation (latents, prompt embeddings, etc.) can be created on the correct device.
        for name, model in self.components.items():
            if not isinstance(model, torch.nn.Module):
                continue
            try:
                return _get_group_onload_device(model)
            except ValueError:
                pass

1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
        for name, model in self.components.items():
            if not isinstance(model, torch.nn.Module) or name in self._exclude_from_cpu_offload:
                continue

            if not hasattr(model, "_hf_hook"):
                return self.device
            for module in model.modules():
                if (
                    hasattr(module, "_hf_hook")
                    and hasattr(module._hf_hook, "execution_device")
                    and module._hf_hook.execution_device is not None
                ):
                    return torch.device(module._hf_hook.execution_device)
        return self.device

1104
1105
1106
1107
1108
1109
    def remove_all_hooks(self):
        r"""
        Removes all hooks that were added when using `enable_sequential_cpu_offload` or `enable_model_cpu_offload`.
        """
        for _, model in self.components.items():
            if isinstance(model, torch.nn.Module) and hasattr(model, "_hf_hook"):
1110
                accelerate.hooks.remove_hook_from_module(model, recurse=True)
1111
1112
        self._all_hooks = []

1113
    def enable_model_cpu_offload(self, gpu_id: Optional[int] = None, device: Union[torch.device, str] = None):
1114
1115
        r"""
        Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared
1116
1117
1118
1119
        to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the accelerator when its
        `forward` method is called, and the model remains in accelerator until the next model runs. Memory savings are
        lower than with `enable_sequential_cpu_offload`, but performance is much better due to the iterative execution
        of the `unet`.
1120
1121
1122
1123

        Arguments:
            gpu_id (`int`, *optional*):
                The ID of the accelerator that shall be used in inference. If not specified, it will default to 0.
1124
            device (`torch.Device` or `str`, *optional*, defaults to None):
1125
                The PyTorch device type of the accelerator that shall be used in inference. If not specified, it will
1126
                automatically detect the available accelerator and use.
1127
        """
Aryan's avatar
Aryan committed
1128
1129
        self._maybe_raise_error_if_group_offload_active(raise_error=True)

1130
1131
1132
1133
1134
1135
        is_pipeline_device_mapped = self.hf_device_map is not None and len(self.hf_device_map) > 1
        if is_pipeline_device_mapped:
            raise ValueError(
                "It seems like you have activated a device mapping strategy on the pipeline so calling `enable_model_cpu_offload() isn't allowed. You can call `reset_device_map()` first and then call `enable_model_cpu_offload()`."
            )

1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
        if self.model_cpu_offload_seq is None:
            raise ValueError(
                "Model CPU offload cannot be enabled because no `model_cpu_offload_seq` class attribute is set."
            )

        if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"):
            from accelerate import cpu_offload_with_hook
        else:
            raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.")

1146
1147
        self.remove_all_hooks()

1148
1149
1150
1151
1152
        if device is None:
            device = get_device()
            if device == "cpu":
                raise RuntimeError("`enable_model_cpu_offload` requires accelerator, but not found")

1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
        torch_device = torch.device(device)
        device_index = torch_device.index

        if gpu_id is not None and device_index is not None:
            raise ValueError(
                f"You have passed both `gpu_id`={gpu_id} and an index as part of the passed device `device`={device}"
                f"Cannot pass both. Please make sure to either not define `gpu_id` or not pass the index as part of the device: `device`={torch_device.type}"
            )

        # _offload_gpu_id should be set to passed gpu_id (or id in passed `device`) or default to previously set id or default to 0
1163
        self._offload_gpu_id = gpu_id or torch_device.index or getattr(self, "_offload_gpu_id", 0)
1164
1165
1166

        device_type = torch_device.type
        device = torch.device(f"{device_type}:{self._offload_gpu_id}")
1167
        self._offload_device = device
1168

1169
1170
1171
1172
        self.to("cpu", silence_dtype_warnings=True)
        device_mod = getattr(torch, device.type, None)
        if hasattr(device_mod, "empty_cache") and device_mod.is_available():
            device_mod.empty_cache()  # otherwise we don't see the memory savings (but they probably exist)
1173
1174
1175

        all_model_components = {k: v for k, v in self.components.items() if isinstance(v, torch.nn.Module)}

1176
        self._all_hooks = []
1177
1178
        hook = None
        for model_str in self.model_cpu_offload_seq.split("->"):
1179
            model = all_model_components.pop(model_str, None)
1180

1181
1182
1183
            if not isinstance(model, torch.nn.Module):
                continue

1184
1185
1186
1187
1188
1189
1190
1191
            # This is because the model would already be placed on a CUDA device.
            _, _, is_loaded_in_8bit_bnb = _check_bnb_status(model)
            if is_loaded_in_8bit_bnb:
                logger.info(
                    f"Skipping the hook placement for the {model.__class__.__name__} as it is loaded in `bitsandbytes` 8bit."
                )
                continue

1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
            _, hook = cpu_offload_with_hook(model, device, prev_module_hook=hook)
            self._all_hooks.append(hook)

        # CPU offload models that are not in the seq chain unless they are explicitly excluded
        # these models will stay on CPU until maybe_free_model_hooks is called
        # some models cannot be in the seq chain because they are iteratively called, such as controlnet
        for name, model in all_model_components.items():
            if not isinstance(model, torch.nn.Module):
                continue

            if name in self._exclude_from_cpu_offload:
                model.to(device)
            else:
                _, hook = cpu_offload_with_hook(model, device)
                self._all_hooks.append(hook)

    def maybe_free_model_hooks(self):
        r"""
1210
1211
1212
1213
1214
1215
1216
1217
1218
        Method that performs the following:
        - Offloads all components.
        - Removes all model hooks that were added when using `enable_model_cpu_offload`, and then applies them again.
          In case the model has not been offloaded, this function is a no-op.
        - Resets stateful diffusers hooks of denoiser components if they were added with
          [`~hooks.HookRegistry.register_hook`].

        Make sure to add this function to the end of the `__call__` function of your pipeline so that it functions
        correctly when applying `enable_model_cpu_offload`.
1219
        """
1220
1221
1222
1223
        for component in self.components.values():
            if hasattr(component, "_reset_stateful_cache"):
                component._reset_stateful_cache()

1224
1225
1226
1227
1228
        if not hasattr(self, "_all_hooks") or len(self._all_hooks) == 0:
            # `enable_model_cpu_offload` has not be called, so silently do nothing
            return

        # make sure the model is in the same state as before calling it
1229
        self.enable_model_cpu_offload(device=getattr(self, "_offload_device", "cuda"))
1230

1231
    def enable_sequential_cpu_offload(self, gpu_id: Optional[int] = None, device: Union[torch.device, str] = None):
1232
        r"""
1233
1234
        Offloads all models to CPU using 🤗 Accelerate, significantly reducing memory usage. When called, the state
        dicts of all `torch.nn.Module` components (except those in `self._exclude_from_cpu_offload`) are saved to CPU
1235
1236
        and then moved to `torch.device('meta')` and loaded to accelerator only when their specific submodule has its
        `forward` method called. Offloading happens on a submodule basis. Memory savings are higher than with
1237
        `enable_model_cpu_offload`, but performance is lower.
1238
1239
1240
1241

        Arguments:
            gpu_id (`int`, *optional*):
                The ID of the accelerator that shall be used in inference. If not specified, it will default to 0.
1242
            device (`torch.Device` or `str`, *optional*, defaults to None):
1243
                The PyTorch device type of the accelerator that shall be used in inference. If not specified, it will
1244
                automatically detect the available accelerator and use.
1245
        """
Aryan's avatar
Aryan committed
1246
1247
        self._maybe_raise_error_if_group_offload_active(raise_error=True)

1248
1249
1250
1251
        if is_accelerate_available() and is_accelerate_version(">=", "0.14.0"):
            from accelerate import cpu_offload
        else:
            raise ImportError("`enable_sequential_cpu_offload` requires `accelerate v0.14.0` or higher")
1252
        self.remove_all_hooks()
1253

1254
1255
1256
1257
1258
1259
        is_pipeline_device_mapped = self.hf_device_map is not None and len(self.hf_device_map) > 1
        if is_pipeline_device_mapped:
            raise ValueError(
                "It seems like you have activated a device mapping strategy on the pipeline so calling `enable_sequential_cpu_offload() isn't allowed. You can call `reset_device_map()` first and then call `enable_sequential_cpu_offload()`."
            )

1260
1261
1262
1263
1264
        if device is None:
            device = get_device()
            if device == "cpu":
                raise RuntimeError("`enable_sequential_cpu_offload` requires accelerator, but not found")

1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
        torch_device = torch.device(device)
        device_index = torch_device.index

        if gpu_id is not None and device_index is not None:
            raise ValueError(
                f"You have passed both `gpu_id`={gpu_id} and an index as part of the passed device `device`={device}"
                f"Cannot pass both. Please make sure to either not define `gpu_id` or not pass the index as part of the device: `device`={torch_device.type}"
            )

        # _offload_gpu_id should be set to passed gpu_id (or id in passed `device`) or default to previously set id or default to 0
1275
        self._offload_gpu_id = gpu_id or torch_device.index or getattr(self, "_offload_gpu_id", 0)
1276
1277
1278

        device_type = torch_device.type
        device = torch.device(f"{device_type}:{self._offload_gpu_id}")
1279
        self._offload_device = device
1280
1281
1282

        if self.device.type != "cpu":
            self.to("cpu", silence_dtype_warnings=True)
1283
1284
1285
            device_mod = getattr(torch, self.device.type, None)
            if hasattr(device_mod, "empty_cache") and device_mod.is_available():
                device_mod.empty_cache()  # otherwise we don't see the memory savings (but they probably exist)
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298

        for name, model in self.components.items():
            if not isinstance(model, torch.nn.Module):
                continue

            if name in self._exclude_from_cpu_offload:
                model.to(device)
            else:
                # make sure to offload buffers if not all high level weights
                # are of type nn.Module
                offload_buffers = len(model._parameters) > 0
                cpu_offload(model, device, offload_buffers=offload_buffers)

1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
    def reset_device_map(self):
        r"""
        Resets the device maps (if any) to None.
        """
        if self.hf_device_map is None:
            return
        else:
            self.remove_all_hooks()
            for name, component in self.components.items():
                if isinstance(component, torch.nn.Module):
                    component.to("cpu")
            self.hf_device_map = None

1312
    @classmethod
1313
    @validate_hf_hub_args
1314
1315
    def download(cls, pretrained_model_name, **kwargs) -> Union[str, os.PathLike]:
        r"""
Steven Liu's avatar
Steven Liu committed
1316
        Download and cache a PyTorch diffusion pipeline from pretrained pipeline weights.
1317
1318

        Parameters:
Steven Liu's avatar
Steven Liu committed
1319
            pretrained_model_name (`str` or `os.PathLike`, *optional*):
Steven Liu's avatar
Steven Liu committed
1320
                A string, the *repository id* (for example `CompVis/ldm-text2im-large-256`) of a pretrained pipeline
Steven Liu's avatar
Steven Liu committed
1321
                hosted on the Hub.
1322
1323
1324
            custom_pipeline (`str`, *optional*):
                Can be either:

Steven Liu's avatar
Steven Liu committed
1325
                    - A string, the *repository id* (for example `CompVis/ldm-text2im-large-256`) of a pretrained
Steven Liu's avatar
Steven Liu committed
1326
1327
                      pipeline hosted on the Hub. The repository must contain a file called `pipeline.py` that defines
                      the custom pipeline.
1328
1329

                    - A string, the *file name* of a community pipeline hosted on GitHub under
Steven Liu's avatar
Steven Liu committed
1330
1331
1332
1333
                      [Community](https://github.com/huggingface/diffusers/tree/main/examples/community). Valid file
                      names must match the file name and not the pipeline script (`clip_guided_stable_diffusion`
                      instead of `clip_guided_stable_diffusion.py`). Community pipelines are always loaded from the
                      current `main` branch of GitHub.
1334

Steven Liu's avatar
Steven Liu committed
1335
1336
                    - A path to a *directory* (`./my_pipeline_directory/`) containing a custom pipeline. The directory
                      must contain a file called `pipeline.py` that defines the custom pipeline.
1337

Steven Liu's avatar
Steven Liu committed
1338
                <Tip warning={true}>
1339

Steven Liu's avatar
Steven Liu committed
1340
                🧪 This is an experimental feature and may change in the future.
1341

Steven Liu's avatar
Steven Liu committed
1342
                </Tip>
1343

Steven Liu's avatar
Steven Liu committed
1344
1345
                For more information on how to load and create custom pipelines, take a look at [How to contribute a
                community pipeline](https://huggingface.co/docs/diffusers/main/en/using-diffusers/contribute_pipeline).
1346
1347
1348
1349

            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
1350

1351
            proxies (`Dict[str, str]`, *optional*):
Steven Liu's avatar
Steven Liu committed
1352
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
1353
1354
1355
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            output_loading_info(`bool`, *optional*, defaults to `False`):
                Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
Steven Liu's avatar
Steven Liu committed
1356
1357
1358
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
1359
            token (`str` or *bool*, *optional*):
Steven Liu's avatar
Steven Liu committed
1360
1361
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
1362
            revision (`str`, *optional*, defaults to `"main"`):
Steven Liu's avatar
Steven Liu committed
1363
1364
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
Steven Liu's avatar
Steven Liu committed
1365
            custom_revision (`str`, *optional*, defaults to `"main"`):
1366
                The specific model version to use. It can be a branch name, a tag name, or a commit id similar to
Steven Liu's avatar
Steven Liu committed
1367
1368
                `revision` when loading a custom pipeline from the Hub. It can be a 🤗 Diffusers version when loading a
                custom pipeline from GitHub, otherwise it defaults to `"main"` when loading from the Hub.
1369
            mirror (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
1370
1371
1372
                Mirror source to resolve accessibility issues if you're downloading a model in China. We do not
                guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
                information.
1373
            variant (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
1374
1375
                Load weights from a specified variant filename such as `"fp16"` or `"ema"`. This is ignored when
                loading `from_flax`.
Marc Sun's avatar
Marc Sun committed
1376
1377
            dduf_file(`str`, *optional*):
                Load weights from the specified DDUF file.
1378
1379
1380
1381
1382
1383
1384
1385
1386
            use_safetensors (`bool`, *optional*, defaults to `None`):
                If set to `None`, the safetensors weights are downloaded if they're available **and** if the
                safetensors library is installed. If set to `True`, the model is forcibly loaded from safetensors
                weights. If set to `False`, safetensors weights are not loaded.
            use_onnx (`bool`, *optional*, defaults to `False`):
                If set to `True`, ONNX weights will always be downloaded if present. If set to `False`, ONNX weights
                will never be downloaded. By default `use_onnx` defaults to the `_is_onnx` class attribute which is
                `False` for non-ONNX pipelines and `True` for ONNX pipelines. ONNX weights include both files ending
                with `.onnx` and `.pb`.
1387
1388
1389
1390
            trust_remote_code (`bool`, *optional*, defaults to `False`):
                Whether or not to allow for custom pipelines and components defined on the Hub in their own files. This
                option should only be set to `True` for repositories you trust and in which you have read the code, as
                it will execute code present on the Hub on your local machine.
Steven Liu's avatar
Steven Liu committed
1391
1392
1393
1394

        Returns:
            `os.PathLike`:
                A path to the downloaded pipeline.
1395
1396
1397

        <Tip>

Steven Liu's avatar
Steven Liu committed
1398
1399
        To use private or [gated models](https://huggingface.co/docs/hub/models-gated#gated-models), log-in with
        `huggingface-cli login`.
1400
1401
1402
1403

        </Tip>

        """
1404
        cache_dir = kwargs.pop("cache_dir", None)
1405
1406
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
1407
1408
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
1409
1410
1411
        revision = kwargs.pop("revision", None)
        from_flax = kwargs.pop("from_flax", False)
        custom_pipeline = kwargs.pop("custom_pipeline", None)
1412
        custom_revision = kwargs.pop("custom_revision", None)
1413
        variant = kwargs.pop("variant", None)
1414
        use_safetensors = kwargs.pop("use_safetensors", None)
1415
        use_onnx = kwargs.pop("use_onnx", None)
1416
        load_connected_pipeline = kwargs.pop("load_connected_pipeline", False)
1417
        trust_remote_code = kwargs.pop("trust_remote_code", False)
Marc Sun's avatar
Marc Sun committed
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
        dduf_file: Optional[Dict[str, DDUFEntry]] = kwargs.pop("dduf_file", None)

        if dduf_file:
            if custom_pipeline:
                raise NotImplementedError("Custom pipelines are not supported with DDUF at the moment.")
            if load_connected_pipeline:
                raise NotImplementedError("Connected pipelines are not supported with DDUF at the moment.")
            return _download_dduf_file(
                pretrained_model_name=pretrained_model_name,
                dduf_file=dduf_file,
                pipeline_class_name=cls.__name__,
                cache_dir=cache_dir,
                proxies=proxies,
                local_files_only=local_files_only,
                token=token,
                revision=revision,
            )
1435

1436
1437
        allow_pickle = True if (use_safetensors is None or use_safetensors is False) else False
        use_safetensors = use_safetensors if use_safetensors is not None else True
1438
1439
1440
1441

        allow_patterns = None
        ignore_patterns = None

1442
        model_info_call_error: Optional[Exception] = None
1443
1444
        if not local_files_only:
            try:
1445
                info = model_info(pretrained_model_name, token=token, revision=revision)
1446
            except (HTTPError, OfflineModeIsEnabled, requests.ConnectionError) as e:
1447
                logger.warning(f"Couldn't connect to the Hub: {e}.\nWill try to load from local cache.")
1448
                local_files_only = True
1449
                model_info_call_error = e  # save error to reraise it if model is not cached locally
1450

1451
        if not local_files_only:
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
            config_file = hf_hub_download(
                pretrained_model_name,
                cls.config_name,
                cache_dir=cache_dir,
                revision=revision,
                proxies=proxies,
                force_download=force_download,
                token=token,
            )
            config_dict = cls._dict_from_json_file(config_file)
            ignore_filenames = config_dict.pop("_ignore_files", [])

1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
            filenames = {sibling.rfilename for sibling in info.siblings}
            if variant is not None and _check_legacy_sharding_variant_format(filenames=filenames, variant=variant):
                warn_msg = (
                    f"Warning: The repository contains sharded checkpoints for variant '{variant}' maybe in a deprecated format. "
                    "Please check your files carefully:\n\n"
                    "- Correct format example: diffusion_pytorch_model.fp16-00003-of-00003.safetensors\n"
                    "- Deprecated format example: diffusion_pytorch_model-00001-of-00002.fp16.safetensors\n\n"
                    "If you find any files in the deprecated format:\n"
                    "1. Remove all existing checkpoint files for this variant.\n"
                    "2. Re-obtain the correct files by running `save_pretrained()`.\n\n"
                    "This will ensure you're using the most up-to-date and compatible checkpoint format."
                )
                logger.warning(warn_msg)

1478
            filenames = set(filenames) - set(ignore_filenames)
1479
1480
            if revision in DEPRECATED_REVISION_ARGS and version.parse(
                version.parse(__version__).base_version
Patrick von Platen's avatar
Patrick von Platen committed
1481
            ) >= version.parse("0.22.0"):
1482
                warn_deprecated_model_variant(pretrained_model_name, token, variant, revision, filenames)
1483

1484
            custom_components, folder_names = _get_custom_components_and_folders(
1485
                pretrained_model_name, config_dict, filenames, variant
1486
            )
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
            custom_class_name = None
            if custom_pipeline is None and isinstance(config_dict["_class_name"], (list, tuple)):
                custom_pipeline = config_dict["_class_name"][0]
                custom_class_name = config_dict["_class_name"][1]

            load_pipe_from_hub = custom_pipeline is not None and f"{custom_pipeline}.py" in filenames
            load_components_from_hub = len(custom_components) > 0

            if load_pipe_from_hub and not trust_remote_code:
                raise ValueError(
                    f"The repository for {pretrained_model_name} contains custom code in {custom_pipeline}.py which must be executed to correctly "
                    f"load the model. You can inspect the repository content at https://hf.co/{pretrained_model_name}/blob/main/{custom_pipeline}.py.\n"
                    f"Please pass the argument `trust_remote_code=True` to allow custom code to be run."
                )

            if load_components_from_hub and not trust_remote_code:
                raise ValueError(
1504
1505
                    f"The repository for {pretrained_model_name} contains custom code in {'.py, '.join([os.path.join(k, v) for k, v in custom_components.items()])} which must be executed to correctly "
                    f"load the model. You can inspect the repository content at {', '.join([f'https://hf.co/{pretrained_model_name}/{k}/{v}.py' for k, v in custom_components.items()])}.\n"
1506
1507
1508
                    f"Please pass the argument `trust_remote_code=True` to allow custom code to be run."
                )

1509
1510
            # retrieve passed components that should not be downloaded
            pipeline_class = _get_pipeline_class(
1511
1512
1513
1514
                cls,
                config_dict,
                load_connected_pipeline=load_connected_pipeline,
                custom_pipeline=custom_pipeline,
1515
1516
1517
                repo_id=pretrained_model_name if load_pipe_from_hub else None,
                hub_revision=revision,
                class_name=custom_class_name,
1518
1519
                cache_dir=cache_dir,
                revision=custom_revision,
1520
1521
1522
1523
            )
            expected_components, _ = cls._get_signature_keys(pipeline_class)
            passed_components = [k for k in expected_components if k in kwargs]

1524
1525
1526
1527
            # retrieve the names of the folders containing model weights
            model_folder_names = {
                os.path.split(f)[0] for f in filter_model_files(filenames) if os.path.split(f)[0] in folder_names
            }
1528
1529
1530
1531
            # retrieve all patterns that should not be downloaded and error out when needed
            ignore_patterns = _get_ignore_patterns(
                passed_components,
                model_folder_names,
1532
                filenames,
1533
1534
1535
1536
1537
1538
1539
                use_safetensors,
                from_flax,
                allow_pickle,
                use_onnx,
                pipeline_class._is_onnx,
                variant,
            )
1540

1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
            model_filenames, variant_filenames = variant_compatible_siblings(
                filenames, variant=variant, ignore_patterns=ignore_patterns
            )

            # all filenames compatible with variant will be added
            allow_patterns = list(model_filenames)

            # allow all patterns from non-model folders
            # this enables downloading schedulers, tokenizers, ...
            allow_patterns += [f"{k}/*" for k in folder_names if k not in model_folder_names]
            # add custom component files
            allow_patterns += [f"{k}/{f}.py" for k, f in custom_components.items()]
            # add custom pipeline file
            allow_patterns += [f"{custom_pipeline}.py"] if f"{custom_pipeline}.py" in filenames else []
            # also allow downloading config.json files with the model
            allow_patterns += [os.path.join(k, "config.json") for k in model_folder_names]
            allow_patterns += [
                SCHEDULER_CONFIG_NAME,
                CONFIG_NAME,
                cls.config_name,
                CUSTOM_PIPELINE_FILE_NAME,
            ]

1564
1565
1566
1567
            # Don't download any objects that are passed
            allow_patterns = [
                p for p in allow_patterns if not (len(p.split("/")) == 2 and p.split("/")[0] in passed_components)
            ]
1568
1569
1570
1571

            if pipeline_class._load_connected_pipes:
                allow_patterns.append("README.md")

1572
1573
            # Don't download index files of forbidden patterns either
            ignore_patterns = ignore_patterns + [f"{i}.index.*json" for i in ignore_patterns]
1574
1575
1576
1577
1578
            re_ignore_pattern = [re.compile(fnmatch.translate(p)) for p in ignore_patterns]
            re_allow_pattern = [re.compile(fnmatch.translate(p)) for p in allow_patterns]

            expected_files = [f for f in filenames if not any(p.match(f) for p in re_ignore_pattern)]
            expected_files = [f for f in expected_files if any(p.match(f) for p in re_allow_pattern)]
1579

1580
1581
            snapshot_folder = Path(config_file).parent
            pipeline_is_cached = all((snapshot_folder / f).is_file() for f in expected_files)
1582

1583
            if pipeline_is_cached and not force_download:
1584
1585
1586
                # if the pipeline is cached, we can directly return it
                # else call snapshot_download
                return snapshot_folder
1587

1588
1589
1590
        user_agent = {"pipeline_class": cls.__name__}
        if custom_pipeline is not None and not custom_pipeline.endswith(".py"):
            user_agent["custom_pipeline"] = custom_pipeline
1591
1592

        # download all allow_patterns - ignore_patterns
1593
        try:
1594
            cached_folder = snapshot_download(
1595
1596
1597
1598
                pretrained_model_name,
                cache_dir=cache_dir,
                proxies=proxies,
                local_files_only=local_files_only,
1599
                token=token,
1600
1601
1602
1603
1604
                revision=revision,
                allow_patterns=allow_patterns,
                ignore_patterns=ignore_patterns,
                user_agent=user_agent,
            )
1605

1606
            cls_name = cls.load_config(os.path.join(cached_folder, "model_index.json")).get("_class_name", None)
1607
            cls_name = cls_name[4:] if isinstance(cls_name, str) and cls_name.startswith("Flax") else cls_name
1608

1609
1610
            diffusers_module = importlib.import_module(__name__.split(".")[0])
            pipeline_class = getattr(diffusers_module, cls_name, None) if isinstance(cls_name, str) else None
1611
1612

            if pipeline_class is not None and pipeline_class._load_connected_pipes:
1613
1614
1615
                modelcard = ModelCard.load(os.path.join(cached_folder, "README.md"))
                connected_pipes = sum([getattr(modelcard.data, k, []) for k in CONNECTED_PIPES_KEYS], [])
                for connected_pipe_repo_id in connected_pipes:
1616
1617
1618
1619
1620
                    download_kwargs = {
                        "cache_dir": cache_dir,
                        "force_download": force_download,
                        "proxies": proxies,
                        "local_files_only": local_files_only,
1621
                        "token": token,
1622
1623
1624
1625
                        "variant": variant,
                        "use_safetensors": use_safetensors,
                    }
                    DiffusionPipeline.download(connected_pipe_repo_id, **download_kwargs)
1626
1627
1628

            return cached_folder

1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
        except FileNotFoundError:
            # Means we tried to load pipeline with `local_files_only=True` but the files have not been found in local cache.
            # This can happen in two cases:
            # 1. If the user passed `local_files_only=True`                    => we raise the error directly
            # 2. If we forced `local_files_only=True` when `model_info` failed => we raise the initial error
            if model_info_call_error is None:
                # 1. user passed `local_files_only=True`
                raise
            else:
                # 2. we forced `local_files_only=True` when `model_info` failed
                raise EnvironmentError(
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
1640
                    f"Cannot load model {pretrained_model_name}: model is not cached locally and an error occurred"
1641
1642
1643
                    " while trying to fetch metadata from the Hub. Please check out the root cause in the stacktrace"
                    " above."
                ) from model_info_call_error
1644

1645
1646
    @classmethod
    def _get_signature_keys(cls, obj):
1647
1648
1649
        parameters = inspect.signature(obj.__init__).parameters
        required_parameters = {k: v for k, v in parameters.items() if v.default == inspect._empty}
        optional_parameters = set({k for k, v in parameters.items() if v.default != inspect._empty})
1650
        expected_modules = set(required_parameters.keys()) - {"self"}
1651
1652
1653
1654
1655
1656
1657

        optional_names = list(optional_parameters)
        for name in optional_names:
            if name in cls._optional_components:
                expected_modules.add(name)
                optional_parameters.remove(name)

1658
        return sorted(expected_modules), sorted(optional_parameters)
1659

1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
    @classmethod
    def _get_signature_types(cls):
        signature_types = {}
        for k, v in inspect.signature(cls.__init__).parameters.items():
            if inspect.isclass(v.annotation):
                signature_types[k] = (v.annotation,)
            elif get_origin(v.annotation) == Union:
                signature_types[k] = get_args(v.annotation)
            else:
                logger.warning(f"cannot get type annotation for Parameter {k} of {cls}.")
        return signature_types

1672
1673
1674
1675
    @property
    def components(self) -> Dict[str, Any]:
        r"""
        The `self.components` property can be useful to run different pipelines with the same weights and
Steven Liu's avatar
Steven Liu committed
1676
1677
1678
1679
        configurations without reallocating additional memory.

        Returns (`dict`):
            A dictionary containing all the modules needed to initialize the pipeline.
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689

        Examples:

        ```py
        >>> from diffusers import (
        ...     StableDiffusionPipeline,
        ...     StableDiffusionImg2ImgPipeline,
        ...     StableDiffusionInpaintPipeline,
        ... )

1690
        >>> text2img = StableDiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5")
1691
1692
1693
1694
1695
1696
1697
1698
1699
        >>> img2img = StableDiffusionImg2ImgPipeline(**text2img.components)
        >>> inpaint = StableDiffusionInpaintPipeline(**text2img.components)
        ```
        """
        expected_modules, optional_parameters = self._get_signature_keys(self)
        components = {
            k: getattr(self, k) for k in self.config.keys() if not k.startswith("_") and k not in optional_parameters
        }

1700
1701
1702
        actual = sorted(set(components.keys()))
        expected = sorted(expected_modules)
        if actual != expected:
1703
1704
            raise ValueError(
                f"{self} has been incorrectly initialized or {self.__class__} is incorrectly implemented. Expected"
1705
                f" {expected} to be defined, but {actual} are defined."
1706
1707
1708
1709
1710
1711
1712
            )

        return components

    @staticmethod
    def numpy_to_pil(images):
        """
Steven Liu's avatar
Steven Liu committed
1713
        Convert a NumPy image or a batch of images to a PIL image.
1714
        """
Patrick von Platen's avatar
Patrick von Platen committed
1715
        return numpy_to_pil(images)
1716

lsb's avatar
lsb committed
1717
    @torch.compiler.disable
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
    def progress_bar(self, iterable=None, total=None):
        if not hasattr(self, "_progress_bar_config"):
            self._progress_bar_config = {}
        elif not isinstance(self._progress_bar_config, dict):
            raise ValueError(
                f"`self._progress_bar_config` should be of type `dict`, but is {type(self._progress_bar_config)}."
            )

        if iterable is not None:
            return tqdm(iterable, **self._progress_bar_config)
        elif total is not None:
            return tqdm(total=total, **self._progress_bar_config)
        else:
            raise ValueError("Either `total` or `iterable` has to be defined.")

    def set_progress_bar_config(self, **kwargs):
        self._progress_bar_config = kwargs

1736
    def enable_xformers_memory_efficient_attention(self, attention_op: Optional[Callable] = None):
1737
        r"""
1738
1739
1740
        Enable memory efficient attention from [xFormers](https://facebookresearch.github.io/xformers/). When this
        option is enabled, you should observe lower GPU memory usage and a potential speed up during inference. Speed
        up during training is not guaranteed.
1741

Steven Liu's avatar
Steven Liu committed
1742
        <Tip warning={true}>
1743

Steven Liu's avatar
Steven Liu committed
1744
1745
1746
1747
        ⚠️ When memory efficient attention and sliced attention are both enabled, memory efficient attention takes
        precedent.

        </Tip>
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767

        Parameters:
            attention_op (`Callable`, *optional*):
                Override the default `None` operator for use as `op` argument to the
                [`memory_efficient_attention()`](https://facebookresearch.github.io/xformers/components/ops.html#xformers.ops.memory_efficient_attention)
                function of xFormers.

        Examples:

        ```py
        >>> import torch
        >>> from diffusers import DiffusionPipeline
        >>> from xformers.ops import MemoryEfficientAttentionFlashAttentionOp

        >>> pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1", torch_dtype=torch.float16)
        >>> pipe = pipe.to("cuda")
        >>> pipe.enable_xformers_memory_efficient_attention(attention_op=MemoryEfficientAttentionFlashAttentionOp)
        >>> # Workaround for not accepting attention shape using VAE for Flash Attention
        >>> pipe.vae.enable_xformers_memory_efficient_attention(attention_op=None)
        ```
1768
        """
1769
        self.set_use_memory_efficient_attention_xformers(True, attention_op)
1770
1771
1772

    def disable_xformers_memory_efficient_attention(self):
        r"""
Steven Liu's avatar
Steven Liu committed
1773
        Disable memory efficient attention from [xFormers](https://facebookresearch.github.io/xformers/).
1774
1775
1776
        """
        self.set_use_memory_efficient_attention_xformers(False)

1777
1778
1779
    def set_use_memory_efficient_attention_xformers(
        self, valid: bool, attention_op: Optional[Callable] = None
    ) -> None:
1780
1781
1782
1783
1784
        # Recursively walk through all the children.
        # Any children which exposes the set_use_memory_efficient_attention_xformers method
        # gets the message
        def fn_recursive_set_mem_eff(module: torch.nn.Module):
            if hasattr(module, "set_use_memory_efficient_attention_xformers"):
1785
                module.set_use_memory_efficient_attention_xformers(valid, attention_op)
1786
1787
1788
1789

            for child in module.children():
                fn_recursive_set_mem_eff(child)

1790
1791
1792
        module_names, _ = self._get_signature_keys(self)
        modules = [getattr(self, n, None) for n in module_names]
        modules = [m for m in modules if isinstance(m, torch.nn.Module)]
1793

1794
1795
        for module in modules:
            fn_recursive_set_mem_eff(module)
1796
1797
1798

    def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"):
        r"""
1799
        Enable sliced attention computation. When this option is enabled, the attention module splits the input tensor
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
        in slices to compute attention in several steps. For more than one attention head, the computation is performed
        sequentially over each head. This is useful to save some memory in exchange for a small speed decrease.

        <Tip warning={true}>

        ⚠️ Don't enable attention slicing if you're already using `scaled_dot_product_attention` (SDPA) from PyTorch
        2.0 or xFormers. These attention computations are already very memory efficient so you won't need to enable
        this function. If you enable attention slicing with SDPA or xFormers, it can lead to serious slow downs!

        </Tip>
1810
1811
1812
1813

        Args:
            slice_size (`str` or `int`, *optional*, defaults to `"auto"`):
                When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
Alexander Pivovarov's avatar
Alexander Pivovarov committed
1814
                `"max"`, maximum amount of memory will be saved by running only one slice at a time. If a number is
1815
1816
                provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
                must be a multiple of `slice_size`.
1817
1818
1819
1820
1821
1822
1823
1824

        Examples:

        ```py
        >>> import torch
        >>> from diffusers import StableDiffusionPipeline

        >>> pipe = StableDiffusionPipeline.from_pretrained(
1825
        ...     "stable-diffusion-v1-5/stable-diffusion-v1-5",
1826
1827
1828
1829
1830
1831
1832
1833
        ...     torch_dtype=torch.float16,
        ...     use_safetensors=True,
        ... )

        >>> prompt = "a photo of an astronaut riding a horse on mars"
        >>> pipe.enable_attention_slicing()
        >>> image = pipe(prompt).images[0]
        ```
1834
1835
1836
1837
1838
        """
        self.set_attention_slice(slice_size)

    def disable_attention_slicing(self):
        r"""
Steven Liu's avatar
Steven Liu committed
1839
1840
        Disable sliced attention computation. If `enable_attention_slicing` was previously called, attention is
        computed in one step.
1841
1842
1843
1844
1845
        """
        # set slice_size = `None` to disable `attention slicing`
        self.enable_attention_slicing(None)

    def set_attention_slice(self, slice_size: Optional[int]):
1846
1847
1848
        module_names, _ = self._get_signature_keys(self)
        modules = [getattr(self, n, None) for n in module_names]
        modules = [m for m in modules if isinstance(m, torch.nn.Module) and hasattr(m, "set_attention_slice")]
1849

1850
1851
        for module in modules:
            module.set_attention_slice(slice_size)
1852

1853
1854
1855
    @classmethod
    def from_pipe(cls, pipeline, **kwargs):
        r"""
1856
1857
        Create a new pipeline from a given pipeline. This method is useful to create a new pipeline from the existing
        pipeline components without reallocating additional memory.
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871

        Arguments:
            pipeline (`DiffusionPipeline`):
                The pipeline from which to create a new pipeline.

        Returns:
            `DiffusionPipeline`:
                A new pipeline with the same weights and configurations as `pipeline`.

        Examples:

        ```py
        >>> from diffusers import StableDiffusionPipeline, StableDiffusionSAGPipeline

1872
        >>> pipe = StableDiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5")
1873
1874
1875
1876
1877
        >>> new_pipe = StableDiffusionSAGPipeline.from_pipe(pipe)
        ```
        """

        original_config = dict(pipeline.config)
1878
        torch_dtype = kwargs.pop("torch_dtype", torch.float32)
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915

        # derive the pipeline class to instantiate
        custom_pipeline = kwargs.pop("custom_pipeline", None)
        custom_revision = kwargs.pop("custom_revision", None)

        if custom_pipeline is not None:
            pipeline_class = _get_custom_pipeline_class(custom_pipeline, revision=custom_revision)
        else:
            pipeline_class = cls

        expected_modules, optional_kwargs = cls._get_signature_keys(pipeline_class)
        # true_optional_modules are optional components with default value in signature so it is ok not to pass them to `__init__`
        # e.g. `image_encoder` for StableDiffusionPipeline
        parameters = inspect.signature(cls.__init__).parameters
        true_optional_modules = set(
            {k for k, v in parameters.items() if v.default != inspect._empty and k in expected_modules}
        )

        # get the class of each component based on its type hint
        # e.g. {"unet": UNet2DConditionModel, "text_encoder": CLIPTextMode}
        component_types = pipeline_class._get_signature_types()

        pretrained_model_name_or_path = original_config.pop("_name_or_path", None)
        # allow users pass modules in `kwargs` to override the original pipeline's components
        passed_class_obj = {k: kwargs.pop(k) for k in expected_modules if k in kwargs}

        original_class_obj = {}
        for name, component in pipeline.components.items():
            if name in expected_modules and name not in passed_class_obj:
                # for model components, we will not switch over if the class does not matches the type hint in the new pipeline's signature
                if (
                    not isinstance(component, ModelMixin)
                    or type(component) in component_types[name]
                    or (component is None and name in cls._optional_components)
                ):
                    original_class_obj[name] = component
                else:
1916
                    logger.warning(
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
                        f"component {name} is not switched over to new pipeline because type does not match the expected."
                        f" {name} is {type(component)} while the new pipeline expect {component_types[name]}."
                        f" please pass the component of the correct type to the new pipeline. `from_pipe(..., {name}={name})`"
                    )

        # allow users pass optional kwargs to override the original pipelines config attribute
        passed_pipe_kwargs = {k: kwargs.pop(k) for k in optional_kwargs if k in kwargs}
        original_pipe_kwargs = {
            k: original_config[k]
            for k in original_config.keys()
            if k in optional_kwargs and k not in passed_pipe_kwargs
        }

        # config attribute that were not expected by pipeline is stored as its private attribute
        # (i.e. when the original pipeline was also instantiated with `from_pipe` from another pipeline that has this config)
        # in this case, we will pass them as optional arguments if they can be accepted by the new pipeline
        additional_pipe_kwargs = [
            k[1:]
            for k in original_config.keys()
            if k.startswith("_") and k[1:] in optional_kwargs and k[1:] not in passed_pipe_kwargs
        ]
        for k in additional_pipe_kwargs:
            original_pipe_kwargs[k] = original_config.pop(f"_{k}")

        pipeline_kwargs = {
            **passed_class_obj,
            **original_class_obj,
            **passed_pipe_kwargs,
            **original_pipe_kwargs,
            **kwargs,
        }

        # store unused config as private attribute in the new pipeline
        unused_original_config = {
            f"{'' if k.startswith('_') else '_'}{k}": v for k, v in original_config.items() if k not in pipeline_kwargs
        }

        missing_modules = (
            set(expected_modules)
            - set(pipeline._optional_components)
            - set(pipeline_kwargs.keys())
            - set(true_optional_modules)
        )

        if len(missing_modules) > 0:
            raise ValueError(
                f"Pipeline {pipeline_class} expected {expected_modules}, but only {set(list(passed_class_obj.keys()) + list(original_class_obj.keys()))} were passed"
            )

        new_pipeline = pipeline_class(**pipeline_kwargs)
        if pretrained_model_name_or_path is not None:
            new_pipeline.register_to_config(_name_or_path=pretrained_model_name_or_path)
        new_pipeline.register_to_config(**unused_original_config)

        if torch_dtype is not None:
            new_pipeline.to(dtype=torch_dtype)

        return new_pipeline

Aryan's avatar
Aryan committed
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
    def _maybe_raise_error_if_group_offload_active(
        self, raise_error: bool = False, module: Optional[torch.nn.Module] = None
    ) -> bool:
        from ..hooks.group_offloading import _is_group_offload_enabled

        components = self.components.values() if module is None else [module]
        components = [component for component in components if isinstance(component, torch.nn.Module)]
        for component in components:
            if _is_group_offload_enabled(component):
                if raise_error:
                    raise ValueError(
                        "You are trying to apply model/sequential CPU offloading to a pipeline that contains components "
                        "with group offloading enabled. This is not supported. Please disable group offloading for "
                        "components of the pipeline to use other offloading methods."
                    )
                return True
        return False

1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029

class StableDiffusionMixin:
    r"""
    Helper for DiffusionPipeline with vae and unet.(mainly for LDM such as stable diffusion)
    """

    def enable_vae_slicing(self):
        r"""
        Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
        compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
        """
        self.vae.enable_slicing()

    def disable_vae_slicing(self):
        r"""
        Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
        computing decoding in one step.
        """
        self.vae.disable_slicing()

    def enable_vae_tiling(self):
        r"""
        Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
        compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
        processing larger images.
        """
        self.vae.enable_tiling()

    def disable_vae_tiling(self):
        r"""
        Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
        computing decoding in one step.
        """
        self.vae.disable_tiling()

    def enable_freeu(self, s1: float, s2: float, b1: float, b2: float):
Quentin Gallouédec's avatar
Quentin Gallouédec committed
2030
        r"""Enables the FreeU mechanism as in https://huggingface.co/papers/2309.11497.
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056

        The suffixes after the scaling factors represent the stages where they are being applied.

        Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of the values
        that are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL.

        Args:
            s1 (`float`):
                Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to
                mitigate "oversmoothing effect" in the enhanced denoising process.
            s2 (`float`):
                Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to
                mitigate "oversmoothing effect" in the enhanced denoising process.
            b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features.
            b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features.
        """
        if not hasattr(self, "unet"):
            raise ValueError("The pipeline must have `unet` for using FreeU.")
        self.unet.enable_freeu(s1=s1, s2=s2, b1=b1, b2=b2)

    def disable_freeu(self):
        """Disables the FreeU mechanism if enabled."""
        self.unet.disable_freeu()

    def fuse_qkv_projections(self, unet: bool = True, vae: bool = True):
        """
2057
2058
        Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value)
        are fused. For cross-attention modules, key and value projection matrices are fused.
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112

        <Tip warning={true}>

        This API is 🧪 experimental.

        </Tip>

        Args:
            unet (`bool`, defaults to `True`): To apply fusion on the UNet.
            vae (`bool`, defaults to `True`): To apply fusion on the VAE.
        """
        self.fusing_unet = False
        self.fusing_vae = False

        if unet:
            self.fusing_unet = True
            self.unet.fuse_qkv_projections()
            self.unet.set_attn_processor(FusedAttnProcessor2_0())

        if vae:
            if not isinstance(self.vae, AutoencoderKL):
                raise ValueError("`fuse_qkv_projections()` is only supported for the VAE of type `AutoencoderKL`.")

            self.fusing_vae = True
            self.vae.fuse_qkv_projections()
            self.vae.set_attn_processor(FusedAttnProcessor2_0())

    def unfuse_qkv_projections(self, unet: bool = True, vae: bool = True):
        """Disable QKV projection fusion if enabled.

        <Tip warning={true}>

        This API is 🧪 experimental.

        </Tip>

        Args:
            unet (`bool`, defaults to `True`): To apply fusion on the UNet.
            vae (`bool`, defaults to `True`): To apply fusion on the VAE.

        """
        if unet:
            if not self.fusing_unet:
                logger.warning("The UNet was not initially fused for QKV projections. Doing nothing.")
            else:
                self.unet.unfuse_qkv_projections()
                self.fusing_unet = False

        if vae:
            if not self.fusing_vae:
                logger.warning("The VAE was not initially fused for QKV projections. Doing nothing.")
            else:
                self.vae.unfuse_qkv_projections()
                self.fusing_vae = False