pipeline_utils.py 81.7 KB
Newer Older
1
# coding=utf-8
Patrick von Platen's avatar
Patrick von Platen committed
2
# Copyright 2023 The HuggingFace Inc. team.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Copyright (c) 2022, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

17
import fnmatch
18
19
20
import importlib
import inspect
import os
21
import re
22
import sys
23
import warnings
24
25
from dataclasses import dataclass
from pathlib import Path
26
from typing import Any, Callable, Dict, List, Optional, Union
27
28
29

import numpy as np
import PIL
30
import torch
31
from huggingface_hub import ModelCard, hf_hub_download, model_info, snapshot_download
32
from packaging import version
33
from requests.exceptions import HTTPError
34
35
from tqdm.auto import tqdm

36
37
import diffusers

38
from .. import __version__
39
40
41
42
43
from ..configuration_utils import ConfigMixin
from ..models.modeling_utils import _LOW_CPU_MEM_USAGE_DEFAULT
from ..schedulers.scheduling_utils import SCHEDULER_CONFIG_NAME
from ..utils import (
    CONFIG_NAME,
44
    DEPRECATED_REVISION_ARGS,
45
46
    DIFFUSERS_CACHE,
    HF_HUB_OFFLINE,
47
    SAFETENSORS_WEIGHTS_NAME,
48
49
50
51
52
    WEIGHTS_NAME,
    BaseOutput,
    deprecate,
    get_class_from_dynamic_module,
    is_accelerate_available,
53
    is_accelerate_version,
54
    is_compiled_module,
55
56
57
    is_torch_version,
    is_transformers_available,
    logging,
Patrick von Platen's avatar
Patrick von Platen committed
58
    numpy_to_pil,
59
60
61
62
63
64
)


if is_transformers_available():
    import transformers
    from transformers import PreTrainedModel
65
66
67
68
    from transformers.utils import FLAX_WEIGHTS_NAME as TRANSFORMERS_FLAX_WEIGHTS_NAME
    from transformers.utils import SAFE_WEIGHTS_NAME as TRANSFORMERS_SAFE_WEIGHTS_NAME
    from transformers.utils import WEIGHTS_NAME as TRANSFORMERS_WEIGHTS_NAME

69
from ..utils import FLAX_WEIGHTS_NAME, ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME
70
71


72
73
74
75
if is_accelerate_available():
    import accelerate


76
77
78
79
INDEX_FILE = "diffusion_pytorch_model.bin"
CUSTOM_PIPELINE_FILE_NAME = "pipeline.py"
DUMMY_MODULES_FOLDER = "diffusers.utils"
TRANSFORMERS_DUMMY_MODULES_FOLDER = "transformers.utils"
80
CONNECTED_PIPES_KEYS = ["prior"]
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117


logger = logging.get_logger(__name__)


LOADABLE_CLASSES = {
    "diffusers": {
        "ModelMixin": ["save_pretrained", "from_pretrained"],
        "SchedulerMixin": ["save_pretrained", "from_pretrained"],
        "DiffusionPipeline": ["save_pretrained", "from_pretrained"],
        "OnnxRuntimeModel": ["save_pretrained", "from_pretrained"],
    },
    "transformers": {
        "PreTrainedTokenizer": ["save_pretrained", "from_pretrained"],
        "PreTrainedTokenizerFast": ["save_pretrained", "from_pretrained"],
        "PreTrainedModel": ["save_pretrained", "from_pretrained"],
        "FeatureExtractionMixin": ["save_pretrained", "from_pretrained"],
        "ProcessorMixin": ["save_pretrained", "from_pretrained"],
        "ImageProcessingMixin": ["save_pretrained", "from_pretrained"],
    },
    "onnxruntime.training": {
        "ORTModule": ["save_pretrained", "from_pretrained"],
    },
}

ALL_IMPORTABLE_CLASSES = {}
for library in LOADABLE_CLASSES:
    ALL_IMPORTABLE_CLASSES.update(LOADABLE_CLASSES[library])


@dataclass
class ImagePipelineOutput(BaseOutput):
    """
    Output class for image pipelines.

    Args:
        images (`List[PIL.Image.Image]` or `np.ndarray`)
Steven Liu's avatar
Steven Liu committed
118
119
            List of denoised PIL images of length `batch_size` or NumPy array of shape `(batch_size, height, width,
            num_channels)`.
120
121
122
123
124
125
126
127
128
129
130
131
    """

    images: Union[List[PIL.Image.Image], np.ndarray]


@dataclass
class AudioPipelineOutput(BaseOutput):
    """
    Output class for audio pipelines.

    Args:
        audios (`np.ndarray`)
Steven Liu's avatar
Steven Liu committed
132
            List of denoised audio samples of a NumPy array of shape `(batch_size, num_channels, sample_rate)`.
133
134
135
136
137
    """

    audios: np.ndarray


138
def is_safetensors_compatible(filenames, variant=None, passed_components=None) -> bool:
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
    """
    Checking for safetensors compatibility:
    - By default, all models are saved with the default pytorch serialization, so we use the list of default pytorch
      files to know which safetensors files are needed.
    - The model is safetensors compatible only if there is a matching safetensors file for every default pytorch file.

    Converting default pytorch serialized filenames to safetensors serialized filenames:
    - For models from the diffusers library, just replace the ".bin" extension with ".safetensors"
    - For models from the transformers library, the filename changes from "pytorch_model" to "model", and the ".bin"
      extension is replaced with ".safetensors"
    """
    pt_filenames = []

    sf_filenames = set()

154
155
    passed_components = passed_components or []

156
157
158
    for filename in filenames:
        _, extension = os.path.splitext(filename)

159
160
161
        if len(filename.split("/")) == 2 and filename.split("/")[0] in passed_components:
            continue

162
163
164
165
166
167
168
169
170
171
        if extension == ".bin":
            pt_filenames.append(filename)
        elif extension == ".safetensors":
            sf_filenames.add(filename)

    for filename in pt_filenames:
        #  filename = 'foo/bar/baz.bam' -> path = 'foo/bar', filename = 'baz', extention = '.bam'
        path, filename = os.path.split(filename)
        filename, extension = os.path.splitext(filename)

172
173
        if filename.startswith("pytorch_model"):
            filename = filename.replace("pytorch_model", "model")
174
        else:
175
176
177
178
179
180
181
182
183
184
            filename = filename

        expected_sf_filename = os.path.join(path, filename)
        expected_sf_filename = f"{expected_sf_filename}.safetensors"

        if expected_sf_filename not in sf_filenames:
            logger.warning(f"{expected_sf_filename} not found")
            return False

    return True
185
186


187
def variant_compatible_siblings(filenames, variant=None) -> Union[List[os.PathLike], str]:
188
189
190
191
192
193
194
    weight_names = [
        WEIGHTS_NAME,
        SAFETENSORS_WEIGHTS_NAME,
        FLAX_WEIGHTS_NAME,
        ONNX_WEIGHTS_NAME,
        ONNX_EXTERNAL_WEIGHTS_NAME,
    ]
195
196
197
198
199
200
201
202

    if is_transformers_available():
        weight_names += [TRANSFORMERS_WEIGHTS_NAME, TRANSFORMERS_SAFE_WEIGHTS_NAME, TRANSFORMERS_FLAX_WEIGHTS_NAME]

    # model_pytorch, diffusion_model_pytorch, ...
    weight_prefixes = [w.split(".")[0] for w in weight_names]
    # .bin, .safetensors, ...
    weight_suffixs = [w.split(".")[-1] for w in weight_names]
203
    # -00001-of-00002
204
    transformers_index_format = r"\d{5}-of-\d{5}"
205
206

    if variant is not None:
207
        # `diffusion_pytorch_model.fp16.bin` as well as `model.fp16-00001-of-00002.safetensors`
208
        variant_file_re = re.compile(
209
            rf"({'|'.join(weight_prefixes)})\.({variant}|{variant}-{transformers_index_format})\.({'|'.join(weight_suffixs)})$"
210
211
212
        )
        # `text_encoder/pytorch_model.bin.index.fp16.json`
        variant_index_re = re.compile(
213
            rf"({'|'.join(weight_prefixes)})\.({'|'.join(weight_suffixs)})\.index\.{variant}\.json$"
214
        )
215

216
    # `diffusion_pytorch_model.bin` as well as `model-00001-of-00002.safetensors`
217
    non_variant_file_re = re.compile(
218
        rf"({'|'.join(weight_prefixes)})(-{transformers_index_format})?\.({'|'.join(weight_suffixs)})$"
219
    )
220
    # `text_encoder/pytorch_model.bin.index.json`
221
    non_variant_index_re = re.compile(rf"({'|'.join(weight_prefixes)})\.({'|'.join(weight_suffixs)})\.index\.json")
222
223

    if variant is not None:
224
225
226
        variant_weights = {f for f in filenames if variant_file_re.match(f.split("/")[-1]) is not None}
        variant_indexes = {f for f in filenames if variant_index_re.match(f.split("/")[-1]) is not None}
        variant_filenames = variant_weights | variant_indexes
227
228
229
    else:
        variant_filenames = set()

230
231
232
    non_variant_weights = {f for f in filenames if non_variant_file_re.match(f.split("/")[-1]) is not None}
    non_variant_indexes = {f for f in filenames if non_variant_index_re.match(f.split("/")[-1]) is not None}
    non_variant_filenames = non_variant_weights | non_variant_indexes
233

234
    # all variant filenames will be used by default
235
    usable_filenames = set(variant_filenames)
236
237
238
239
240
241
242
243
244
245

    def convert_to_variant(filename):
        if "index" in filename:
            variant_filename = filename.replace("index", f"index.{variant}")
        elif re.compile(f"^(.*?){transformers_index_format}").match(filename) is not None:
            variant_filename = f"{filename.split('-')[0]}.{variant}-{'-'.join(filename.split('-')[1:])}"
        else:
            variant_filename = f"{filename.split('.')[0]}.{variant}.{filename.split('.')[1]}"
        return variant_filename

246
    for f in non_variant_filenames:
247
        variant_filename = convert_to_variant(f)
248
249
250
251
252
253
        if variant_filename not in usable_filenames:
            usable_filenames.add(f)

    return usable_filenames, variant_filenames


254
255
256
257
258
259
def warn_deprecated_model_variant(pretrained_model_name_or_path, use_auth_token, variant, revision, model_filenames):
    info = model_info(
        pretrained_model_name_or_path,
        use_auth_token=use_auth_token,
        revision=None,
    )
260
    filenames = {sibling.rfilename for sibling in info.siblings}
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
    comp_model_filenames, _ = variant_compatible_siblings(filenames, variant=revision)
    comp_model_filenames = [".".join(f.split(".")[:1] + f.split(".")[2:]) for f in comp_model_filenames]

    if set(comp_model_filenames) == set(model_filenames):
        warnings.warn(
            f"You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'` even though you can load it via `variant=`{revision}`. Loading model variants via `revision='{revision}'` is deprecated and will be removed in diffusers v1. Please use `variant='{revision}'` instead.",
            FutureWarning,
        )
    else:
        warnings.warn(
            f"You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant='{revision}'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have the required variant filenames in the 'main' branch. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title '{pretrained_model_name_or_path} is missing {revision} files' so that the correct variant file can be added.",
            FutureWarning,
        )


def maybe_raise_or_warn(
    library_name, library, class_name, importable_classes, passed_class_obj, name, is_pipeline_module
):
    """Simple helper method to raise or warn in case incorrect module has been passed"""
    if not is_pipeline_module:
        library = importlib.import_module(library_name)
        class_obj = getattr(library, class_name)
        class_candidates = {c: getattr(library, c, None) for c in importable_classes.keys()}

        expected_class_obj = None
        for class_name, class_candidate in class_candidates.items():
            if class_candidate is not None and issubclass(class_obj, class_candidate):
                expected_class_obj = class_candidate

290
291
292
293
294
295
296
297
        # Dynamo wraps the original model in a private class.
        # I didn't find a public API to get the original class.
        sub_model = passed_class_obj[name]
        model_cls = sub_model.__class__
        if is_compiled_module(sub_model):
            model_cls = sub_model._orig_mod.__class__

        if not issubclass(model_cls, expected_class_obj):
298
            raise ValueError(
299
                f"{passed_class_obj[name]} is of type: {model_cls}, but should be" f" {expected_class_obj}"
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
            )
    else:
        logger.warning(
            f"You have passed a non-standard module {passed_class_obj[name]}. We cannot verify whether it"
            " has the correct type"
        )


def get_class_obj_and_candidates(library_name, class_name, importable_classes, pipelines, is_pipeline_module):
    """Simple helper method to retrieve class object of module as well as potential parent class objects"""
    if is_pipeline_module:
        pipeline_module = getattr(pipelines, library_name)

        class_obj = getattr(pipeline_module, class_name)
        class_candidates = {c: class_obj for c in importable_classes.keys()}
    else:
        # else we just import it from the library.
        library = importlib.import_module(library_name)

        class_obj = getattr(library, class_name)
        class_candidates = {c: getattr(library, c, None) for c in importable_classes.keys()}

    return class_obj, class_candidates


325
326
327
def _get_pipeline_class(
    class_obj, config, load_connected_pipeline=False, custom_pipeline=None, cache_dir=None, revision=None
):
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
    if custom_pipeline is not None:
        if custom_pipeline.endswith(".py"):
            path = Path(custom_pipeline)
            # decompose into folder & file
            file_name = path.name
            custom_pipeline = path.parent.absolute()
        else:
            file_name = CUSTOM_PIPELINE_FILE_NAME

        return get_class_from_dynamic_module(
            custom_pipeline, module_file=file_name, cache_dir=cache_dir, revision=revision
        )

    if class_obj != DiffusionPipeline:
        return class_obj

    diffusers_module = importlib.import_module(class_obj.__module__.split(".")[0])
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
    pipeline_cls = getattr(diffusers_module, config["_class_name"])

    if load_connected_pipeline:
        from .auto_pipeline import _get_connected_pipeline

        connected_pipeline_cls = _get_connected_pipeline(pipeline_cls)
        if connected_pipeline_cls is not None:
            logger.info(
                f"Loading connected pipeline {connected_pipeline_cls.__name__} instead of {pipeline_cls.__name__} as specified via `load_connected_pipeline=True`"
            )
        else:
            logger.info(f"{pipeline_cls.__name__} has no connected pipeline class. Loading {pipeline_cls.__name__}.")

        pipeline_cls = connected_pipeline_cls or pipeline_cls

    return pipeline_cls
361
362


363
364
365
366
367
368
369
370
371
372
373
def load_sub_model(
    library_name: str,
    class_name: str,
    importable_classes: List[Any],
    pipelines: Any,
    is_pipeline_module: bool,
    pipeline_class: Any,
    torch_dtype: torch.dtype,
    provider: Any,
    sess_options: Any,
    device_map: Optional[Union[Dict[str, torch.device], str]],
374
375
376
    max_memory: Optional[Dict[Union[int, str], Union[int, str]]],
    offload_folder: Optional[Union[str, os.PathLike]],
    offload_state_dict: bool,
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
    model_variants: Dict[str, str],
    name: str,
    from_flax: bool,
    variant: str,
    low_cpu_mem_usage: bool,
    cached_folder: Union[str, os.PathLike],
):
    """Helper method to load the module `name` from `library_name` and `class_name`"""
    # retrieve class candidates
    class_obj, class_candidates = get_class_obj_and_candidates(
        library_name, class_name, importable_classes, pipelines, is_pipeline_module
    )

    load_method_name = None
    # retrive load method name
    for class_name, class_candidate in class_candidates.items():
        if class_candidate is not None and issubclass(class_obj, class_candidate):
            load_method_name = importable_classes[class_name][1]

    # if load method name is None, then we have a dummy module -> raise Error
    if load_method_name is None:
        none_module = class_obj.__module__
        is_dummy_path = none_module.startswith(DUMMY_MODULES_FOLDER) or none_module.startswith(
            TRANSFORMERS_DUMMY_MODULES_FOLDER
        )
        if is_dummy_path and "dummy" in none_module:
            # call class_obj for nice error message of missing requirements
            class_obj()

        raise ValueError(
            f"The component {class_obj} of {pipeline_class} cannot be loaded as it does not seem to have"
            f" any of the loading methods defined in {ALL_IMPORTABLE_CLASSES}."
        )

    load_method = getattr(class_obj, load_method_name)

    # add kwargs to loading method
    loading_kwargs = {}
    if issubclass(class_obj, torch.nn.Module):
        loading_kwargs["torch_dtype"] = torch_dtype
    if issubclass(class_obj, diffusers.OnnxRuntimeModel):
        loading_kwargs["provider"] = provider
        loading_kwargs["sess_options"] = sess_options

    is_diffusers_model = issubclass(class_obj, diffusers.ModelMixin)

    if is_transformers_available():
        transformers_version = version.parse(version.parse(transformers.__version__).base_version)
    else:
        transformers_version = "N/A"

    is_transformers_model = (
        is_transformers_available()
        and issubclass(class_obj, PreTrainedModel)
        and transformers_version >= version.parse("4.20.0")
    )

    # When loading a transformers model, if the device_map is None, the weights will be initialized as opposed to diffusers.
    # To make default loading faster we set the `low_cpu_mem_usage=low_cpu_mem_usage` flag which is `True` by default.
    # This makes sure that the weights won't be initialized which significantly speeds up loading.
    if is_diffusers_model or is_transformers_model:
        loading_kwargs["device_map"] = device_map
439
440
441
        loading_kwargs["max_memory"] = max_memory
        loading_kwargs["offload_folder"] = offload_folder
        loading_kwargs["offload_state_dict"] = offload_state_dict
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
        loading_kwargs["variant"] = model_variants.pop(name, None)
        if from_flax:
            loading_kwargs["from_flax"] = True

        # the following can be deleted once the minimum required `transformers` version
        # is higher than 4.27
        if (
            is_transformers_model
            and loading_kwargs["variant"] is not None
            and transformers_version < version.parse("4.27.0")
        ):
            raise ImportError(
                f"When passing `variant='{variant}'`, please make sure to upgrade your `transformers` version to at least 4.27.0.dev0"
            )
        elif is_transformers_model and loading_kwargs["variant"] is None:
            loading_kwargs.pop("variant")

        # if `from_flax` and model is transformer model, can currently not load with `low_cpu_mem_usage`
        if not (from_flax and is_transformers_model):
            loading_kwargs["low_cpu_mem_usage"] = low_cpu_mem_usage
        else:
            loading_kwargs["low_cpu_mem_usage"] = False

    # check if the module is in a subdirectory
    if os.path.isdir(os.path.join(cached_folder, name)):
        loaded_sub_model = load_method(os.path.join(cached_folder, name), **loading_kwargs)
    else:
        # else load from the root directory
        loaded_sub_model = load_method(cached_folder, **loading_kwargs)

    return loaded_sub_model


475
476
class DiffusionPipeline(ConfigMixin):
    r"""
Steven Liu's avatar
Steven Liu committed
477
    Base class for all pipelines.
478

Steven Liu's avatar
Steven Liu committed
479
480
    [`DiffusionPipeline`] stores all components (models, schedulers, and processors) for diffusion pipelines and
    provides methods for loading, downloading and saving models. It also includes methods to:
481
482

        - move all PyTorch modules to the device of your choice
483
        - enable/disable the progress bar for the denoising iteration
484
485
486

    Class attributes:

Steven Liu's avatar
Steven Liu committed
487
488
        - **config_name** (`str`) -- The configuration filename that stores the class and module names of all the
          diffusion pipeline's components.
489
        - **_optional_components** (`List[str]`) -- List of all optional components that don't have to be passed to the
Steven Liu's avatar
Steven Liu committed
490
          pipeline to function (should be overridden by subclasses).
491
492
493
    """
    config_name = "model_index.json"
    _optional_components = []
494
    _exclude_from_cpu_offload = []
495
    _load_connected_pipes = False
496
    _is_onnx = False
497
498
499
500
501
502
503
504
505
506

    def register_modules(self, **kwargs):
        # import it here to avoid circular import
        from diffusers import pipelines

        for name, module in kwargs.items():
            # retrieve library
            if module is None:
                register_dict = {name: (None, None)}
            else:
507
                # register the config from the original module, not the dynamo compiled one
508
                if is_compiled_module(module):
509
510
511
                    not_compiled_module = module._orig_mod
                else:
                    not_compiled_module = module
512

513
                library = not_compiled_module.__module__.split(".")[0]
514
515

                # check if the module is a pipeline module
516
                module_path_items = not_compiled_module.__module__.split(".")
517
518
                pipeline_dir = module_path_items[-2] if len(module_path_items) > 2 else None

519
                path = not_compiled_module.__module__.split(".")
520
521
522
523
524
                is_pipeline_module = pipeline_dir in path and hasattr(pipelines, pipeline_dir)

                # if library is not in LOADABLE_CLASSES, then it is a custom module.
                # Or if it's a pipeline module, then the module is inside the pipeline
                # folder so we set the library to module name.
525
                if is_pipeline_module:
526
                    library = pipeline_dir
527
                elif library not in LOADABLE_CLASSES:
528
                    library = not_compiled_module.__module__
529
530

                # retrieve class_name
531
                class_name = not_compiled_module.__class__.__name__
532
533
534
535
536
537
538
539
540

                register_dict = {name: (library, class_name)}

            # save model index config
            self.register_to_config(**register_dict)

            # set models
            setattr(self, name, module)

541
    def __setattr__(self, name: str, value: Any):
542
        if name in self.__dict__ and hasattr(self.config, name):
543
544
            # We need to overwrite the config if name exists in config
            if isinstance(getattr(self.config, name), (tuple, list)):
545
                if value is not None and self.config[name][0] is not None:
546
547
548
549
550
551
552
553
554
555
                    class_library_tuple = (value.__module__.split(".")[0], value.__class__.__name__)
                else:
                    class_library_tuple = (None, None)

                self.register_to_config(**{name: class_library_tuple})
            else:
                self.register_to_config(**{name: value})

        super().__setattr__(name, value)

556
557
558
559
    def save_pretrained(
        self,
        save_directory: Union[str, os.PathLike],
        safe_serialization: bool = False,
560
        variant: Optional[str] = None,
561
562
    ):
        """
Steven Liu's avatar
Steven Liu committed
563
564
565
        Save all saveable variables of the pipeline to a directory. A pipeline variable can be saved and loaded if its
        class implements both a save and loading method. The pipeline is easily reloaded using the
        [`~DiffusionPipeline.from_pretrained`] class method.
566
567
568

        Arguments:
            save_directory (`str` or `os.PathLike`):
Steven Liu's avatar
Steven Liu committed
569
                Directory to save a pipeline to. Will be created if it doesn't exist.
570
            safe_serialization (`bool`, *optional*, defaults to `False`):
Steven Liu's avatar
Steven Liu committed
571
                Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
572
            variant (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
573
                If specified, weights are saved in the format `pytorch_model.<variant>.bin`.
574
575
        """
        model_index_dict = dict(self.config)
576
577
        model_index_dict.pop("_class_name", None)
        model_index_dict.pop("_diffusers_version", None)
578
        model_index_dict.pop("_module", None)
579
        model_index_dict.pop("_name_or_path", None)
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594

        expected_modules, optional_kwargs = self._get_signature_keys(self)

        def is_saveable_module(name, value):
            if name not in expected_modules:
                return False
            if name in self._optional_components and value[0] is None:
                return False
            return True

        model_index_dict = {k: v for k, v in model_index_dict.items() if is_saveable_module(k, v)}
        for pipeline_component_name in model_index_dict.keys():
            sub_model = getattr(self, pipeline_component_name)
            model_cls = sub_model.__class__

595
596
597
598
599
600
            # Dynamo wraps the original model in a private class.
            # I didn't find a public API to get the original class.
            if is_compiled_module(sub_model):
                sub_model = sub_model._orig_mod
                model_cls = sub_model.__class__

601
602
603
            save_method_name = None
            # search for the model's base class in LOADABLE_CLASSES
            for library_name, library_classes in LOADABLE_CLASSES.items():
604
605
606
607
608
609
610
                if library_name in sys.modules:
                    library = importlib.import_module(library_name)
                else:
                    logger.info(
                        f"{library_name} is not installed. Cannot save {pipeline_component_name} as {library_classes} from {library_name}"
                    )

611
612
613
614
615
616
617
618
619
                for base_class, save_load_methods in library_classes.items():
                    class_candidate = getattr(library, base_class, None)
                    if class_candidate is not None and issubclass(model_cls, class_candidate):
                        # if we found a suitable base class in LOADABLE_CLASSES then grab its save method
                        save_method_name = save_load_methods[0]
                        break
                if save_method_name is not None:
                    break

620
621
622
623
624
625
            if save_method_name is None:
                logger.warn(f"self.{pipeline_component_name}={sub_model} of type {type(sub_model)} cannot be saved.")
                # make sure that unsaveable components are not tried to be loaded afterward
                self.register_to_config(**{pipeline_component_name: (None, None)})
                continue

626
627
628
629
630
            save_method = getattr(sub_model, save_method_name)

            # Call the save method with the argument safe_serialization only if it's supported
            save_method_signature = inspect.signature(save_method)
            save_method_accept_safe = "safe_serialization" in save_method_signature.parameters
631
632
633
            save_method_accept_variant = "variant" in save_method_signature.parameters

            save_kwargs = {}
634
            if save_method_accept_safe:
635
636
637
638
639
                save_kwargs["safe_serialization"] = safe_serialization
            if save_method_accept_variant:
                save_kwargs["variant"] = variant

            save_method(os.path.join(save_directory, pipeline_component_name), **save_kwargs)
640

641
642
643
        # finally save the config
        self.save_config(save_directory)

644
645
646
647
648
649
650
    def to(
        self,
        torch_device: Optional[Union[str, torch.device]] = None,
        torch_dtype: Optional[torch.dtype] = None,
        silence_dtype_warnings: bool = False,
    ):
        if torch_device is None and torch_dtype is None:
651
652
            return self

653
654
655
656
657
        # throw warning if pipeline is in "offloaded"-mode but user tries to manually set to GPU.
        def module_is_sequentially_offloaded(module):
            if not is_accelerate_available() or is_accelerate_version("<", "0.14.0"):
                return False

Patrick von Platen's avatar
Patrick von Platen committed
658
659
660
            return hasattr(module, "_hf_hook") and not isinstance(
                module._hf_hook, (accelerate.hooks.CpuOffload, accelerate.hooks.AlignDevicesHook)
            )
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683

        def module_is_offloaded(module):
            if not is_accelerate_available() or is_accelerate_version("<", "0.17.0.dev0"):
                return False

            return hasattr(module, "_hf_hook") and isinstance(module._hf_hook, accelerate.hooks.CpuOffload)

        # .to("cuda") would raise an error if the pipeline is sequentially offloaded, so we raise our own to make it clearer
        pipeline_is_sequentially_offloaded = any(
            module_is_sequentially_offloaded(module) for _, module in self.components.items()
        )
        if pipeline_is_sequentially_offloaded and torch.device(torch_device).type == "cuda":
            raise ValueError(
                "It seems like you have activated sequential model offloading by calling `enable_sequential_cpu_offload`, but are now attempting to move the pipeline to GPU. This is not compatible with offloading. Please, move your pipeline `.to('cpu')` or consider removing the move altogether if you use sequential offloading."
            )

        # Display a warning in this case (the operation succeeds but the benefits are lost)
        pipeline_is_offloaded = any(module_is_offloaded(module) for _, module in self.components.items())
        if pipeline_is_offloaded and torch.device(torch_device).type == "cuda":
            logger.warning(
                f"It seems like you have activated model offloading by calling `enable_model_cpu_offload`, but are now manually moving the pipeline to GPU. It is strongly recommended against doing so as memory gains from offloading are likely to be lost. Offloading automatically takes care of moving the individual components {', '.join(self.components.keys())} to GPU when needed. To make sure offloading works as expected, you should consider moving the pipeline back to CPU: `pipeline.to('cpu')` or removing the move altogether if you use offloading."
            )

684
        module_names, _ = self._get_signature_keys(self)
685
686
        modules = [getattr(self, n, None) for n in module_names]
        modules = [m for m in modules if isinstance(m, torch.nn.Module)]
687

688
        is_offloaded = pipeline_is_offloaded or pipeline_is_sequentially_offloaded
689
        for module in modules:
Patrick von Platen's avatar
Patrick von Platen committed
690
691
692
693
694
695
696
697
698
699
700
701
702
703
            is_loaded_in_8bit = hasattr(module, "is_loaded_in_8bit") and module.is_loaded_in_8bit

            if is_loaded_in_8bit and torch_dtype is not None:
                logger.warning(
                    f"The module '{module.__class__.__name__}' has been loaded in 8bit and conversion to {torch_dtype} is not yet supported. Module is still in 8bit precision."
                )

            if is_loaded_in_8bit and torch_device is not None:
                logger.warning(
                    f"The module '{module.__class__.__name__}' has been loaded in 8bit and moving it to {torch_dtype} via `.to()` is not yet supported. Module is still on {module.device}."
                )
            else:
                module.to(torch_device, torch_dtype)

704
705
706
707
708
709
710
711
712
713
714
715
716
            if (
                module.dtype == torch.float16
                and str(torch_device) in ["cpu"]
                and not silence_dtype_warnings
                and not is_offloaded
            ):
                logger.warning(
                    "Pipelines loaded with `torch_dtype=torch.float16` cannot run with `cpu` device. It"
                    " is not recommended to move them to `cpu` as running them will fail. Please make"
                    " sure to use an accelerator to run the pipeline in inference, due to the lack of"
                    " support for`float16` operations on this device in PyTorch. Please, remove the"
                    " `torch_dtype=torch.float16` argument, or use another device for inference."
                )
717
718
719
720
721
722
723
724
        return self

    @property
    def device(self) -> torch.device:
        r"""
        Returns:
            `torch.device`: The torch device on which the pipeline is located.
        """
725
        module_names, _ = self._get_signature_keys(self)
726
727
728
729
730
        modules = [getattr(self, n, None) for n in module_names]
        modules = [m for m in modules if isinstance(m, torch.nn.Module)]

        for module in modules:
            return module.device
731

732
733
734
735
736
        return torch.device("cpu")

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs):
        r"""
Steven Liu's avatar
Steven Liu committed
737
        Instantiate a PyTorch diffusion pipeline from pretrained pipeline weights.
738

Steven Liu's avatar
Steven Liu committed
739
        The pipeline is set in evaluation mode (`model.eval()`) by default.
740

Steven Liu's avatar
Steven Liu committed
741
        If you get the error message below, you need to finetune the weights for your downstream task:
742

Steven Liu's avatar
Steven Liu committed
743
744
745
746
747
        ```
        Some weights of UNet2DConditionModel were not initialized from the model checkpoint at runwayml/stable-diffusion-v1-5 and are newly initialized because the shapes did not match:
        - conv_in.weight: found shape torch.Size([320, 4, 3, 3]) in the checkpoint and torch.Size([320, 9, 3, 3]) in the model instantiated
        You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
        ```
748
749
750
751
752

        Parameters:
            pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*):
                Can be either:

Steven Liu's avatar
Steven Liu committed
753
754
755
756
757
                    - A string, the *repo id* (for example `CompVis/ldm-text2im-large-256`) of a pretrained pipeline
                      hosted on the Hub.
                    - A path to a *directory* (for example `./my_pipeline_directory/`) containing pipeline weights
                      saved using
                    [`~DiffusionPipeline.save_pretrained`].
758
            torch_dtype (`str` or `torch.dtype`, *optional*):
Steven Liu's avatar
Steven Liu committed
759
760
                Override the default `torch.dtype` and load the model with another dtype. If "auto" is passed, the
                dtype is automatically derived from the model's weights.
761
762
763
764
            custom_pipeline (`str`, *optional*):

                <Tip warning={true}>

Steven Liu's avatar
Steven Liu committed
765
                🧪 This is an experimental feature and may change in the future.
766
767
768
769
770

                </Tip>

                Can be either:

Steven Liu's avatar
Steven Liu committed
771
772
773
                    - A string, the *repo id* (for example `hf-internal-testing/diffusers-dummy-pipeline`) of a custom
                      pipeline hosted on the Hub. The repository must contain a file called pipeline.py that defines
                      the custom pipeline.
774
                    - A string, the *file name* of a community pipeline hosted on GitHub under
Steven Liu's avatar
Steven Liu committed
775
776
777
778
779
780
                      [Community](https://github.com/huggingface/diffusers/tree/main/examples/community). Valid file
                      names must match the file name and not the pipeline script (`clip_guided_stable_diffusion`
                      instead of `clip_guided_stable_diffusion.py`). Community pipelines are always loaded from the
                      current main branch of GitHub.
                    - A path to a directory (`./my_pipeline_directory/`) containing a custom pipeline. The directory
                      must contain a file called `pipeline.py` that defines the custom pipeline.
781
782
783
784
785
786
787

                For more information on how to load and create custom pipelines, please have a look at [Loading and
                Adding Custom
                Pipelines](https://huggingface.co/docs/diffusers/using-diffusers/custom_pipeline_overview)
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
788
            cache_dir (`Union[str, os.PathLike]`, *optional*):
Steven Liu's avatar
Steven Liu committed
789
790
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
791
            resume_download (`bool`, *optional*, defaults to `False`):
Steven Liu's avatar
Steven Liu committed
792
793
                Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
                incompletely downloaded files are deleted.
794
            proxies (`Dict[str, str]`, *optional*):
Steven Liu's avatar
Steven Liu committed
795
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
796
797
798
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            output_loading_info(`bool`, *optional*, defaults to `False`):
                Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
Steven Liu's avatar
Steven Liu committed
799
800
801
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
802
            use_auth_token (`str` or *bool*, *optional*):
Steven Liu's avatar
Steven Liu committed
803
804
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
805
            revision (`str`, *optional*, defaults to `"main"`):
Steven Liu's avatar
Steven Liu committed
806
807
808
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
            custom_revision (`str`, *optional*, defaults to `"main"`):
809
                The specific model version to use. It can be a branch name, a tag name, or a commit id similar to
Steven Liu's avatar
Steven Liu committed
810
811
                `revision` when loading a custom pipeline from the Hub. It can be a 🤗 Diffusers version when loading a
                custom pipeline from GitHub, otherwise it defaults to `"main"` when loading from the Hub.
812
            mirror (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
813
814
815
                Mirror source to resolve accessibility issues if you’re downloading a model in China. We do not
                guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
                information.
816
            device_map (`str` or `Dict[str, Union[int, str, torch.device]]`, *optional*):
Steven Liu's avatar
Steven Liu committed
817
818
                A map that specifies where each submodule should go. It doesn’t need to be defined for each
                parameter/buffer name; once a given module name is inside, every submodule of it will be sent to the
819
820
                same device.

Steven Liu's avatar
Steven Liu committed
821
                Set `device_map="auto"` to have 🤗 Accelerate automatically compute the most optimized `device_map`. For
822
823
                more information about each option see [designing a device
                map](https://hf.co/docs/accelerate/main/en/usage_guides/big_modeling#designing-a-device-map).
824
            max_memory (`Dict`, *optional*):
Steven Liu's avatar
Steven Liu committed
825
826
                A dictionary device identifier for the maximum memory. Will default to the maximum memory available for
                each GPU and the available CPU RAM if unset.
827
            offload_folder (`str` or `os.PathLike`, *optional*):
Steven Liu's avatar
Steven Liu committed
828
                The path to offload weights if device_map contains the value `"disk"`.
829
            offload_state_dict (`bool`, *optional*):
Steven Liu's avatar
Steven Liu committed
830
831
832
                If `True`, temporarily offloads the CPU state dict to the hard drive to avoid running out of CPU RAM if
                the weight of the CPU state dict + the biggest shard of the checkpoint does not fit. Defaults to `True`
                when there is some disk offload.
833
            low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
Steven Liu's avatar
Steven Liu committed
834
835
836
837
                Speed up model loading only loading the pretrained weights and not initializing the weights. This also
                tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
                Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
                argument to `True` will raise an error.
838
            use_safetensors (`bool`, *optional*, defaults to `None`):
Steven Liu's avatar
Steven Liu committed
839
840
841
                If set to `None`, the safetensors weights are downloaded if they're available **and** if the
                safetensors library is installed. If set to `True`, the model is forcibly loaded from safetensors
                weights. If set to `False`, safetensors weights are not loaded.
842
843
844
845
846
            use_onnx (`bool`, *optional*, defaults to `None`):
                If set to `True`, ONNX weights will always be downloaded if present. If set to `False`, ONNX weights
                will never be downloaded. By default `use_onnx` defaults to the `_is_onnx` class attribute which is
                `False` for non-ONNX pipelines and `True` for ONNX pipelines. ONNX weights include both files ending
                with `.onnx` and `.pb`.
847
            kwargs (remaining dictionary of keyword arguments, *optional*):
Steven Liu's avatar
Steven Liu committed
848
849
850
                Can be used to overwrite load and saveable variables (the pipeline components of the specific pipeline
                class). The overwritten components are passed directly to the pipelines `__init__` method. See example
                below for more information.
851
            variant (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
852
853
                Load weights from a specified variant filename such as `"fp16"` or `"ema"`. This is ignored when
                loading `from_flax`.
854
855
856

        <Tip>

Steven Liu's avatar
Steven Liu committed
857
858
        To use private or [gated](https://huggingface.co/docs/hub/models-gated#gated-models) models, log-in with
        `huggingface-cli login`.
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888

        </Tip>

        Examples:

        ```py
        >>> from diffusers import DiffusionPipeline

        >>> # Download pipeline from huggingface.co and cache.
        >>> pipeline = DiffusionPipeline.from_pretrained("CompVis/ldm-text2im-large-256")

        >>> # Download pipeline that requires an authorization token
        >>> # For more information on access tokens, please refer to this section
        >>> # of the documentation](https://huggingface.co/docs/hub/security-tokens)
        >>> pipeline = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")

        >>> # Use a different scheduler
        >>> from diffusers import LMSDiscreteScheduler

        >>> scheduler = LMSDiscreteScheduler.from_config(pipeline.scheduler.config)
        >>> pipeline.scheduler = scheduler
        ```
        """
        cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
        resume_download = kwargs.pop("resume_download", False)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
        use_auth_token = kwargs.pop("use_auth_token", None)
        revision = kwargs.pop("revision", None)
889
        from_flax = kwargs.pop("from_flax", False)
890
891
892
893
894
895
        torch_dtype = kwargs.pop("torch_dtype", None)
        custom_pipeline = kwargs.pop("custom_pipeline", None)
        custom_revision = kwargs.pop("custom_revision", None)
        provider = kwargs.pop("provider", None)
        sess_options = kwargs.pop("sess_options", None)
        device_map = kwargs.pop("device_map", None)
896
897
898
        max_memory = kwargs.pop("max_memory", None)
        offload_folder = kwargs.pop("offload_folder", None)
        offload_state_dict = kwargs.pop("offload_state_dict", False)
899
        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT)
900
        variant = kwargs.pop("variant", None)
901
        use_safetensors = kwargs.pop("use_safetensors", None)
902
        load_connected_pipeline = kwargs.pop("load_connected_pipeline", False)
903
904
905
906

        # 1. Download the checkpoints and configs
        # use snapshot download here to get it working from from_pretrained
        if not os.path.isdir(pretrained_model_name_or_path):
907
            cached_folder = cls.download(
908
909
910
911
912
913
914
915
                pretrained_model_name_or_path,
                cache_dir=cache_dir,
                resume_download=resume_download,
                force_download=force_download,
                proxies=proxies,
                local_files_only=local_files_only,
                use_auth_token=use_auth_token,
                revision=revision,
916
                from_flax=from_flax,
917
                use_safetensors=use_safetensors,
918
                custom_pipeline=custom_pipeline,
919
                custom_revision=custom_revision,
920
                variant=variant,
921
                load_connected_pipeline=load_connected_pipeline,
922
                **kwargs,
923
924
925
926
            )
        else:
            cached_folder = pretrained_model_name_or_path

927
928
        config_dict = cls.load_config(cached_folder)

Patrick von Platen's avatar
Patrick von Platen committed
929
930
931
        # pop out "_ignore_files" as it is only needed for download
        config_dict.pop("_ignore_files", None)

932
933
934
        # 2. Define which model components should load variants
        # We retrieve the information by matching whether variant
        # model checkpoints exist in the subfolders
935
936
937
938
939
        model_variants = {}
        if variant is not None:
            for folder in os.listdir(cached_folder):
                folder_path = os.path.join(cached_folder, folder)
                is_folder = os.path.isdir(folder_path) and folder in config_dict
940
941
942
                variant_exists = is_folder and any(
                    p.split(".")[1].startswith(variant) for p in os.listdir(folder_path)
                )
943
944
945
                if variant_exists:
                    model_variants[folder] = variant

946
        # 3. Load the pipeline class, if using custom module then load it from the hub
947
        # if we load from explicit class, let's use it
948
        pipeline_class = _get_pipeline_class(
949
950
951
952
953
954
            cls,
            config_dict,
            load_connected_pipeline=load_connected_pipeline,
            custom_pipeline=custom_pipeline,
            cache_dir=cache_dir,
            revision=custom_revision,
955
        )
956

957
        # DEPRECATED: To be removed in 1.0.0
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
        if pipeline_class.__name__ == "StableDiffusionInpaintPipeline" and version.parse(
            version.parse(config_dict["_diffusers_version"]).base_version
        ) <= version.parse("0.5.1"):
            from diffusers import StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy

            pipeline_class = StableDiffusionInpaintPipelineLegacy

            deprecation_message = (
                "You are using a legacy checkpoint for inpainting with Stable Diffusion, therefore we are loading the"
                f" {StableDiffusionInpaintPipelineLegacy} class instead of {StableDiffusionInpaintPipeline}. For"
                " better inpainting results, we strongly suggest using Stable Diffusion's official inpainting"
                " checkpoint: https://huggingface.co/runwayml/stable-diffusion-inpainting instead or adapting your"
                f" checkpoint {pretrained_model_name_or_path} to the format of"
                " https://huggingface.co/runwayml/stable-diffusion-inpainting. Note that we do not actively maintain"
                " the {StableDiffusionInpaintPipelineLegacy} class and will likely remove it in version 1.0.0."
            )
            deprecate("StableDiffusionInpaintPipelineLegacy", "1.0.0", deprecation_message, standard_warn=False)

976
977
978
        # 4. Define expected modules given pipeline signature
        # and define non-None initialized modules (=`init_kwargs`)

979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
        # some modules can be passed directly to the init
        # in this case they are already instantiated in `kwargs`
        # extract them here
        expected_modules, optional_kwargs = cls._get_signature_keys(pipeline_class)
        passed_class_obj = {k: kwargs.pop(k) for k in expected_modules if k in kwargs}
        passed_pipe_kwargs = {k: kwargs.pop(k) for k in optional_kwargs if k in kwargs}

        init_dict, unused_kwargs, _ = pipeline_class.extract_init_dict(config_dict, **kwargs)

        # define init kwargs
        init_kwargs = {k: init_dict.pop(k) for k in optional_kwargs if k in init_dict}
        init_kwargs = {**init_kwargs, **passed_pipe_kwargs}

        # remove `null` components
        def load_module(name, value):
            if value[0] is None:
                return False
            if name in passed_class_obj and passed_class_obj[name] is None:
                return False
            return True

        init_dict = {k: v for k, v in init_dict.items() if load_module(k, v)}

1002
1003
1004
1005
1006
1007
1008
1009
        # Special case: safety_checker must be loaded separately when using `from_flax`
        if from_flax and "safety_checker" in init_dict and "safety_checker" not in passed_class_obj:
            raise NotImplementedError(
                "The safety checker cannot be automatically loaded when loading weights `from_flax`."
                " Please, pass `safety_checker=None` to `from_pretrained`, and load the safety checker"
                " separately if you need it."
            )

1010
        # 5. Throw nice warnings / errors for fast accelerate loading
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
        if len(unused_kwargs) > 0:
            logger.warning(
                f"Keyword arguments {unused_kwargs} are not expected by {pipeline_class.__name__} and will be ignored."
            )

        if low_cpu_mem_usage and not is_accelerate_available():
            low_cpu_mem_usage = False
            logger.warning(
                "Cannot initialize model with low cpu memory usage because `accelerate` was not found in the"
                " environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install"
                " `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip"
                " install accelerate\n```\n."
            )

        if device_map is not None and not is_torch_version(">=", "1.9.0"):
            raise NotImplementedError(
                "Loading and dispatching requires torch >= 1.9.0. Please either update your PyTorch version or set"
                " `device_map=None`."
            )

        if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"):
            raise NotImplementedError(
                "Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set"
                " `low_cpu_mem_usage=False`."
            )

        if low_cpu_mem_usage is False and device_map is not None:
            raise ValueError(
                f"You cannot set `low_cpu_mem_usage` to False while using device_map={device_map} for loading and"
                " dispatching. Please make sure to set `low_cpu_mem_usage=True`."
            )

        # import it here to avoid circular import
        from diffusers import pipelines

1046
        # 6. Load each module in the pipeline
1047
        for name, (library_name, class_name) in tqdm(init_dict.items(), desc="Loading pipeline components..."):
1048
            # 6.1 - now that JAX/Flax is an official framework of the library, we might load from Flax names
1049
1050
1051
            if class_name.startswith("Flax"):
                class_name = class_name[4:]

1052
            # 6.2 Define all importable classes
1053
            is_pipeline_module = hasattr(pipelines, library_name)
1054
            importable_classes = ALL_IMPORTABLE_CLASSES
1055
1056
            loaded_sub_model = None

1057
            # 6.3 Use passed sub model or load class_name from library_name
1058
            if name in passed_class_obj:
1059
1060
1061
1062
1063
                # if the model is in a pipeline module, then we load it from the pipeline
                # check that passed_class_obj has correct parent class
                maybe_raise_or_warn(
                    library_name, library, class_name, importable_classes, passed_class_obj, name, is_pipeline_module
                )
1064
1065
1066

                loaded_sub_model = passed_class_obj[name]
            else:
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
                # load sub model
                loaded_sub_model = load_sub_model(
                    library_name=library_name,
                    class_name=class_name,
                    importable_classes=importable_classes,
                    pipelines=pipelines,
                    is_pipeline_module=is_pipeline_module,
                    pipeline_class=pipeline_class,
                    torch_dtype=torch_dtype,
                    provider=provider,
                    sess_options=sess_options,
                    device_map=device_map,
1079
1080
1081
                    max_memory=max_memory,
                    offload_folder=offload_folder,
                    offload_state_dict=offload_state_dict,
1082
1083
1084
1085
1086
1087
                    model_variants=model_variants,
                    name=name,
                    from_flax=from_flax,
                    variant=variant,
                    low_cpu_mem_usage=low_cpu_mem_usage,
                    cached_folder=cached_folder,
1088
                )
1089
1090
1091
                logger.info(
                    f"Loaded {name} as {class_name} from `{name}` subfolder of {pretrained_model_name_or_path}."
                )
1092
1093
1094

            init_kwargs[name] = loaded_sub_model  # UNet(...), # DiffusionSchedule(...)

1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
        if pipeline_class._load_connected_pipes and os.path.isfile(os.path.join(cached_folder, "README.md")):
            modelcard = ModelCard.load(os.path.join(cached_folder, "README.md"))
            connected_pipes = {prefix: getattr(modelcard.data, prefix, [None])[0] for prefix in CONNECTED_PIPES_KEYS}
            load_kwargs = {
                "cache_dir": cache_dir,
                "resume_download": resume_download,
                "force_download": force_download,
                "proxies": proxies,
                "local_files_only": local_files_only,
                "use_auth_token": use_auth_token,
                "revision": revision,
                "torch_dtype": torch_dtype,
                "custom_pipeline": custom_pipeline,
                "custom_revision": custom_revision,
                "provider": provider,
                "sess_options": sess_options,
                "device_map": device_map,
                "max_memory": max_memory,
                "offload_folder": offload_folder,
                "offload_state_dict": offload_state_dict,
                "low_cpu_mem_usage": low_cpu_mem_usage,
                "variant": variant,
                "use_safetensors": use_safetensors,
            }
            connected_pipes = {
                prefix: DiffusionPipeline.from_pretrained(repo_id, **load_kwargs.copy())
                for prefix, repo_id in connected_pipes.items()
                if repo_id is not None
            }

            for prefix, connected_pipe in connected_pipes.items():
                # add connected pipes to `init_kwargs` with <prefix>_<component_name>, e.g. "prior_text_encoder"
                init_kwargs.update(
                    {"_".join([prefix, name]): component for name, component in connected_pipe.components.items()}
                )

1131
        # 7. Potentially add passed objects if expected
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
        missing_modules = set(expected_modules) - set(init_kwargs.keys())
        passed_modules = list(passed_class_obj.keys())
        optional_modules = pipeline_class._optional_components
        if len(missing_modules) > 0 and missing_modules <= set(passed_modules + optional_modules):
            for module in missing_modules:
                init_kwargs[module] = passed_class_obj.get(module, None)
        elif len(missing_modules) > 0:
            passed_modules = set(list(init_kwargs.keys()) + list(passed_class_obj.keys())) - optional_kwargs
            raise ValueError(
                f"Pipeline {pipeline_class} expected {expected_modules}, but only {passed_modules} were passed."
            )

1144
        # 8. Instantiate the pipeline
1145
        model = pipeline_class(**init_kwargs)
1146
1147
1148

        # 9. Save where the model was instantiated from
        model.register_to_config(_name_or_path=pretrained_model_name_or_path)
1149
1150
        return model

1151
1152
1153
1154
    @property
    def name_or_path(self) -> str:
        return getattr(self.config, "_name_or_path", None)

1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
    @property
    def _execution_device(self):
        r"""
        Returns the device on which the pipeline's models will be executed. After calling
        [`~DiffusionPipeline.enable_sequential_cpu_offload`] the execution device can only be inferred from
        Accelerate's module hooks.
        """
        for name, model in self.components.items():
            if not isinstance(model, torch.nn.Module) or name in self._exclude_from_cpu_offload:
                continue

            if not hasattr(model, "_hf_hook"):
                return self.device
            for module in model.modules():
                if (
                    hasattr(module, "_hf_hook")
                    and hasattr(module._hf_hook, "execution_device")
                    and module._hf_hook.execution_device is not None
                ):
                    return torch.device(module._hf_hook.execution_device)
        return self.device

    def enable_sequential_cpu_offload(self, gpu_id: int = 0, device: Union[torch.device, str] = "cuda"):
        r"""
        Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet,
        text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a
        `torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called.
        Note that offloading happens on a submodule basis. Memory savings are higher than with
        `enable_model_cpu_offload`, but performance is lower.
        """
        if is_accelerate_available() and is_accelerate_version(">=", "0.14.0"):
            from accelerate import cpu_offload
        else:
            raise ImportError("`enable_sequential_cpu_offload` requires `accelerate v0.14.0` or higher")

        if device == "cuda":
            device = torch.device(f"{device}:{gpu_id}")

        if self.device.type != "cpu":
            self.to("cpu", silence_dtype_warnings=True)
1195
1196
1197
            device_mod = getattr(torch, self.device.type, None)
            if hasattr(device_mod, "empty_cache") and device_mod.is_available():
                device_mod.empty_cache()  # otherwise we don't see the memory savings (but they probably exist)
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210

        for name, model in self.components.items():
            if not isinstance(model, torch.nn.Module):
                continue

            if name in self._exclude_from_cpu_offload:
                model.to(device)
            else:
                # make sure to offload buffers if not all high level weights
                # are of type nn.Module
                offload_buffers = len(model._parameters) > 0
                cpu_offload(model, device, offload_buffers=offload_buffers)

1211
1212
1213
    @classmethod
    def download(cls, pretrained_model_name, **kwargs) -> Union[str, os.PathLike]:
        r"""
Steven Liu's avatar
Steven Liu committed
1214
        Download and cache a PyTorch diffusion pipeline from pretrained pipeline weights.
1215
1216

        Parameters:
Steven Liu's avatar
Steven Liu committed
1217
            pretrained_model_name (`str` or `os.PathLike`, *optional*):
Steven Liu's avatar
Steven Liu committed
1218
                A string, the *repository id* (for example `CompVis/ldm-text2im-large-256`) of a pretrained pipeline
Steven Liu's avatar
Steven Liu committed
1219
                hosted on the Hub.
1220
1221
1222
            custom_pipeline (`str`, *optional*):
                Can be either:

Steven Liu's avatar
Steven Liu committed
1223
                    - A string, the *repository id* (for example `CompVis/ldm-text2im-large-256`) of a pretrained
Steven Liu's avatar
Steven Liu committed
1224
1225
                      pipeline hosted on the Hub. The repository must contain a file called `pipeline.py` that defines
                      the custom pipeline.
1226
1227

                    - A string, the *file name* of a community pipeline hosted on GitHub under
Steven Liu's avatar
Steven Liu committed
1228
1229
1230
1231
                      [Community](https://github.com/huggingface/diffusers/tree/main/examples/community). Valid file
                      names must match the file name and not the pipeline script (`clip_guided_stable_diffusion`
                      instead of `clip_guided_stable_diffusion.py`). Community pipelines are always loaded from the
                      current `main` branch of GitHub.
1232

Steven Liu's avatar
Steven Liu committed
1233
1234
                    - A path to a *directory* (`./my_pipeline_directory/`) containing a custom pipeline. The directory
                      must contain a file called `pipeline.py` that defines the custom pipeline.
1235

Steven Liu's avatar
Steven Liu committed
1236
                <Tip warning={true}>
1237

Steven Liu's avatar
Steven Liu committed
1238
                🧪 This is an experimental feature and may change in the future.
1239

Steven Liu's avatar
Steven Liu committed
1240
                </Tip>
1241

Steven Liu's avatar
Steven Liu committed
1242
1243
                For more information on how to load and create custom pipelines, take a look at [How to contribute a
                community pipeline](https://huggingface.co/docs/diffusers/main/en/using-diffusers/contribute_pipeline).
1244
1245
1246
1247
1248

            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            resume_download (`bool`, *optional*, defaults to `False`):
Steven Liu's avatar
Steven Liu committed
1249
                Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
Steven Liu's avatar
Steven Liu committed
1250
                incompletely downloaded files are deleted.
1251
            proxies (`Dict[str, str]`, *optional*):
Steven Liu's avatar
Steven Liu committed
1252
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
1253
1254
1255
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            output_loading_info(`bool`, *optional*, defaults to `False`):
                Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
Steven Liu's avatar
Steven Liu committed
1256
1257
1258
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
1259
            use_auth_token (`str` or *bool*, *optional*):
Steven Liu's avatar
Steven Liu committed
1260
1261
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
1262
            revision (`str`, *optional*, defaults to `"main"`):
Steven Liu's avatar
Steven Liu committed
1263
1264
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
Steven Liu's avatar
Steven Liu committed
1265
            custom_revision (`str`, *optional*, defaults to `"main"`):
1266
                The specific model version to use. It can be a branch name, a tag name, or a commit id similar to
Steven Liu's avatar
Steven Liu committed
1267
1268
                `revision` when loading a custom pipeline from the Hub. It can be a 🤗 Diffusers version when loading a
                custom pipeline from GitHub, otherwise it defaults to `"main"` when loading from the Hub.
1269
            mirror (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
1270
1271
1272
                Mirror source to resolve accessibility issues if you're downloading a model in China. We do not
                guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
                information.
1273
            variant (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
1274
1275
                Load weights from a specified variant filename such as `"fp16"` or `"ema"`. This is ignored when
                loading `from_flax`.
1276
1277
1278
1279
1280
1281
1282
1283
1284
            use_safetensors (`bool`, *optional*, defaults to `None`):
                If set to `None`, the safetensors weights are downloaded if they're available **and** if the
                safetensors library is installed. If set to `True`, the model is forcibly loaded from safetensors
                weights. If set to `False`, safetensors weights are not loaded.
            use_onnx (`bool`, *optional*, defaults to `False`):
                If set to `True`, ONNX weights will always be downloaded if present. If set to `False`, ONNX weights
                will never be downloaded. By default `use_onnx` defaults to the `_is_onnx` class attribute which is
                `False` for non-ONNX pipelines and `True` for ONNX pipelines. ONNX weights include both files ending
                with `.onnx` and `.pb`.
Steven Liu's avatar
Steven Liu committed
1285
1286
1287
1288

        Returns:
            `os.PathLike`:
                A path to the downloaded pipeline.
1289
1290
1291

        <Tip>

Steven Liu's avatar
Steven Liu committed
1292
1293
        To use private or [gated models](https://huggingface.co/docs/hub/models-gated#gated-models), log-in with
        `huggingface-cli login`.
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306

        </Tip>

        """
        cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
        resume_download = kwargs.pop("resume_download", False)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
        use_auth_token = kwargs.pop("use_auth_token", None)
        revision = kwargs.pop("revision", None)
        from_flax = kwargs.pop("from_flax", False)
        custom_pipeline = kwargs.pop("custom_pipeline", None)
1307
        custom_revision = kwargs.pop("custom_revision", None)
1308
        variant = kwargs.pop("variant", None)
1309
        use_safetensors = kwargs.pop("use_safetensors", None)
1310
        use_onnx = kwargs.pop("use_onnx", None)
1311
        load_connected_pipeline = kwargs.pop("load_connected_pipeline", False)
1312
1313
1314

        allow_pickle = False
        if use_safetensors is None:
1315
            use_safetensors = True
1316
            allow_pickle = True
1317
1318
1319
1320

        allow_patterns = None
        ignore_patterns = None

1321
        model_info_call_error: Optional[Exception] = None
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
        if not local_files_only:
            try:
                info = model_info(
                    pretrained_model_name,
                    use_auth_token=use_auth_token,
                    revision=revision,
                )
            except HTTPError as e:
                logger.warn(f"Couldn't connect to the Hub: {e}.\nWill try to load from local cache.")
                local_files_only = True
1332
                model_info_call_error = e  # save error to reraise it if model is not cached locally
1333

1334
1335
1336
1337
1338
        if not local_files_only:
            config_file = hf_hub_download(
                pretrained_model_name,
                cls.config_name,
                cache_dir=cache_dir,
1339
                revision=revision,
1340
1341
1342
1343
1344
1345
1346
                proxies=proxies,
                force_download=force_download,
                resume_download=resume_download,
                use_auth_token=use_auth_token,
            )

            config_dict = cls._dict_from_json_file(config_file)
Patrick von Platen's avatar
Patrick von Platen committed
1347
1348
1349

            ignore_filenames = config_dict.pop("_ignore_files", [])

1350
1351
1352
            # retrieve all folder_names that contain relevant files
            folder_names = [k for k, v in config_dict.items() if isinstance(v, list)]

1353
            filenames = {sibling.rfilename for sibling in info.siblings}
1354
1355
            model_filenames, variant_filenames = variant_compatible_siblings(filenames, variant=variant)

1356
1357
1358
1359
1360
1361
1362
1363
1364
            if len(variant_filenames) == 0 and variant is not None:
                deprecation_message = (
                    f"You are trying to load the model files of the `variant={variant}`, but no such modeling files are available."
                    f"The default model files: {model_filenames} will be loaded instead. Make sure to not load from `variant={variant}`"
                    "if such variant modeling files are not available. Doing so will lead to an error in v0.22.0 as defaulting to non-variant"
                    "modeling files is deprecated."
                )
                deprecate("no variant default", "0.22.0", deprecation_message, standard_warn=False)

Patrick von Platen's avatar
Patrick von Platen committed
1365
1366
1367
1368
            # remove ignored filenames
            model_filenames = set(model_filenames) - set(ignore_filenames)
            variant_filenames = set(variant_filenames) - set(ignore_filenames)

1369
1370
1371
            # if the whole pipeline is cached we don't have to ping the Hub
            if revision in DEPRECATED_REVISION_ARGS and version.parse(
                version.parse(__version__).base_version
Patrick von Platen's avatar
Patrick von Platen committed
1372
            ) >= version.parse("0.22.0"):
1373
1374
1375
1376
                warn_deprecated_model_variant(
                    pretrained_model_name, use_auth_token, variant, revision, model_filenames
                )

1377
            model_folder_names = {os.path.split(f)[0] for f in model_filenames if os.path.split(f)[0] in folder_names}
1378
1379
1380
1381
1382
1383

            # all filenames compatible with variant will be added
            allow_patterns = list(model_filenames)

            # allow all patterns from non-model folders
            # this enables downloading schedulers, tokenizers, ...
1384
            allow_patterns += [f"{k}/*" for k in folder_names if k not in model_folder_names]
1385
            # also allow downloading config.json files with the model
1386
            allow_patterns += [os.path.join(k, "config.json") for k in model_folder_names]
1387
1388
1389
1390
1391
1392
1393
1394

            allow_patterns += [
                SCHEDULER_CONFIG_NAME,
                CONFIG_NAME,
                cls.config_name,
                CUSTOM_PIPELINE_FILE_NAME,
            ]

1395
1396
            # retrieve passed components that should not be downloaded
            pipeline_class = _get_pipeline_class(
1397
1398
1399
1400
1401
1402
                cls,
                config_dict,
                load_connected_pipeline=load_connected_pipeline,
                custom_pipeline=custom_pipeline,
                cache_dir=cache_dir,
                revision=custom_revision,
1403
1404
1405
1406
            )
            expected_components, _ = cls._get_signature_keys(pipeline_class)
            passed_components = [k for k in expected_components if k in kwargs]

1407
1408
1409
            if (
                use_safetensors
                and not allow_pickle
1410
1411
1412
                and not is_safetensors_compatible(
                    model_filenames, variant=variant, passed_components=passed_components
                )
1413
1414
1415
1416
            ):
                raise EnvironmentError(
                    f"Could not found the necessary `safetensors` weights in {model_filenames} (variant={variant})"
                )
1417
1418
            if from_flax:
                ignore_patterns = ["*.bin", "*.safetensors", "*.onnx", "*.pb"]
1419
1420
1421
            elif use_safetensors and is_safetensors_compatible(
                model_filenames, variant=variant, passed_components=passed_components
            ):
1422
1423
                ignore_patterns = ["*.bin", "*.msgpack"]

1424
1425
1426
1427
                use_onnx = use_onnx if use_onnx is not None else pipeline_class._is_onnx
                if not use_onnx:
                    ignore_patterns += ["*.onnx", "*.pb"]

1428
1429
                safetensors_variant_filenames = {f for f in variant_filenames if f.endswith(".safetensors")}
                safetensors_model_filenames = {f for f in model_filenames if f.endswith(".safetensors")}
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
                if (
                    len(safetensors_variant_filenames) > 0
                    and safetensors_model_filenames != safetensors_variant_filenames
                ):
                    logger.warn(
                        f"\nA mixture of {variant} and non-{variant} filenames will be loaded.\nLoaded {variant} filenames:\n[{', '.join(safetensors_variant_filenames)}]\nLoaded non-{variant} filenames:\n[{', '.join(safetensors_model_filenames - safetensors_variant_filenames)}\nIf this behavior is not expected, please check your folder structure."
                    )
            else:
                ignore_patterns = ["*.safetensors", "*.msgpack"]

1440
1441
1442
1443
                use_onnx = use_onnx if use_onnx is not None else pipeline_class._is_onnx
                if not use_onnx:
                    ignore_patterns += ["*.onnx", "*.pb"]

1444
1445
                bin_variant_filenames = {f for f in variant_filenames if f.endswith(".bin")}
                bin_model_filenames = {f for f in model_filenames if f.endswith(".bin")}
1446
1447
1448
1449
1450
                if len(bin_variant_filenames) > 0 and bin_model_filenames != bin_variant_filenames:
                    logger.warn(
                        f"\nA mixture of {variant} and non-{variant} filenames will be loaded.\nLoaded {variant} filenames:\n[{', '.join(bin_variant_filenames)}]\nLoaded non-{variant} filenames:\n[{', '.join(bin_model_filenames - bin_variant_filenames)}\nIf this behavior is not expected, please check your folder structure."
                    )

1451
1452
1453
1454
            # Don't download any objects that are passed
            allow_patterns = [
                p for p in allow_patterns if not (len(p.split("/")) == 2 and p.split("/")[0] in passed_components)
            ]
1455
1456
1457
1458

            if pipeline_class._load_connected_pipes:
                allow_patterns.append("README.md")

1459
1460
1461
            # Don't download index files of forbidden patterns either
            ignore_patterns = ignore_patterns + [f"{i}.index.*json" for i in ignore_patterns]

1462
1463
1464
1465
1466
            re_ignore_pattern = [re.compile(fnmatch.translate(p)) for p in ignore_patterns]
            re_allow_pattern = [re.compile(fnmatch.translate(p)) for p in allow_patterns]

            expected_files = [f for f in filenames if not any(p.match(f) for p in re_ignore_pattern)]
            expected_files = [f for f in expected_files if any(p.match(f) for p in re_allow_pattern)]
1467

1468
1469
            snapshot_folder = Path(config_file).parent
            pipeline_is_cached = all((snapshot_folder / f).is_file() for f in expected_files)
1470

1471
            if pipeline_is_cached and not force_download:
1472
1473
1474
                # if the pipeline is cached, we can directly return it
                # else call snapshot_download
                return snapshot_folder
1475

1476
1477
1478
        user_agent = {"pipeline_class": cls.__name__}
        if custom_pipeline is not None and not custom_pipeline.endswith(".py"):
            user_agent["custom_pipeline"] = custom_pipeline
1479
1480

        # download all allow_patterns - ignore_patterns
1481
        try:
1482
            cached_folder = snapshot_download(
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
                pretrained_model_name,
                cache_dir=cache_dir,
                resume_download=resume_download,
                proxies=proxies,
                local_files_only=local_files_only,
                use_auth_token=use_auth_token,
                revision=revision,
                allow_patterns=allow_patterns,
                ignore_patterns=ignore_patterns,
                user_agent=user_agent,
            )
1494

1495
1496
1497
1498
1499
            # retrieve pipeline class from local file
            cls_name = cls.load_config(os.path.join(cached_folder, "model_index.json")).get("_class_name", None)
            pipeline_class = getattr(diffusers, cls_name, None)

            if pipeline_class is not None and pipeline_class._load_connected_pipes:
1500
1501
1502
                modelcard = ModelCard.load(os.path.join(cached_folder, "README.md"))
                connected_pipes = sum([getattr(modelcard.data, k, []) for k in CONNECTED_PIPES_KEYS], [])
                for connected_pipe_repo_id in connected_pipes:
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
                    download_kwargs = {
                        "cache_dir": cache_dir,
                        "resume_download": resume_download,
                        "force_download": force_download,
                        "proxies": proxies,
                        "local_files_only": local_files_only,
                        "use_auth_token": use_auth_token,
                        "variant": variant,
                        "use_safetensors": use_safetensors,
                    }
                    DiffusionPipeline.download(connected_pipe_repo_id, **download_kwargs)
1514
1515
1516

            return cached_folder

1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
        except FileNotFoundError:
            # Means we tried to load pipeline with `local_files_only=True` but the files have not been found in local cache.
            # This can happen in two cases:
            # 1. If the user passed `local_files_only=True`                    => we raise the error directly
            # 2. If we forced `local_files_only=True` when `model_info` failed => we raise the initial error
            if model_info_call_error is None:
                # 1. user passed `local_files_only=True`
                raise
            else:
                # 2. we forced `local_files_only=True` when `model_info` failed
                raise EnvironmentError(
                    f"Cannot load model {pretrained_model_name}: model is not cached locally and an error occured"
                    " while trying to fetch metadata from the Hub. Please check out the root cause in the stacktrace"
                    " above."
                ) from model_info_call_error
1532

1533
1534
1535
1536
1537
    @staticmethod
    def _get_signature_keys(obj):
        parameters = inspect.signature(obj.__init__).parameters
        required_parameters = {k: v for k, v in parameters.items() if v.default == inspect._empty}
        optional_parameters = set({k for k, v in parameters.items() if v.default != inspect._empty})
1538
        expected_modules = set(required_parameters.keys()) - {"self"}
1539
1540
1541
1542
1543
1544
        return expected_modules, optional_parameters

    @property
    def components(self) -> Dict[str, Any]:
        r"""
        The `self.components` property can be useful to run different pipelines with the same weights and
Steven Liu's avatar
Steven Liu committed
1545
1546
1547
1548
        configurations without reallocating additional memory.

        Returns (`dict`):
            A dictionary containing all the modules needed to initialize the pipeline.
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571

        Examples:

        ```py
        >>> from diffusers import (
        ...     StableDiffusionPipeline,
        ...     StableDiffusionImg2ImgPipeline,
        ...     StableDiffusionInpaintPipeline,
        ... )

        >>> text2img = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
        >>> img2img = StableDiffusionImg2ImgPipeline(**text2img.components)
        >>> inpaint = StableDiffusionInpaintPipeline(**text2img.components)
        ```
        """
        expected_modules, optional_parameters = self._get_signature_keys(self)
        components = {
            k: getattr(self, k) for k in self.config.keys() if not k.startswith("_") and k not in optional_parameters
        }

        if set(components.keys()) != expected_modules:
            raise ValueError(
                f"{self} has been incorrectly initialized or {self.__class__} is incorrectly implemented. Expected"
1572
                f" {expected_modules} to be defined, but {components.keys()} are defined."
1573
1574
1575
1576
1577
1578
1579
            )

        return components

    @staticmethod
    def numpy_to_pil(images):
        """
Steven Liu's avatar
Steven Liu committed
1580
        Convert a NumPy image or a batch of images to a PIL image.
1581
        """
Patrick von Platen's avatar
Patrick von Platen committed
1582
        return numpy_to_pil(images)
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601

    def progress_bar(self, iterable=None, total=None):
        if not hasattr(self, "_progress_bar_config"):
            self._progress_bar_config = {}
        elif not isinstance(self._progress_bar_config, dict):
            raise ValueError(
                f"`self._progress_bar_config` should be of type `dict`, but is {type(self._progress_bar_config)}."
            )

        if iterable is not None:
            return tqdm(iterable, **self._progress_bar_config)
        elif total is not None:
            return tqdm(total=total, **self._progress_bar_config)
        else:
            raise ValueError("Either `total` or `iterable` has to be defined.")

    def set_progress_bar_config(self, **kwargs):
        self._progress_bar_config = kwargs

1602
    def enable_xformers_memory_efficient_attention(self, attention_op: Optional[Callable] = None):
1603
        r"""
1604
1605
1606
        Enable memory efficient attention from [xFormers](https://facebookresearch.github.io/xformers/). When this
        option is enabled, you should observe lower GPU memory usage and a potential speed up during inference. Speed
        up during training is not guaranteed.
1607

Steven Liu's avatar
Steven Liu committed
1608
        <Tip warning={true}>
1609

Steven Liu's avatar
Steven Liu committed
1610
1611
1612
1613
        ⚠️ When memory efficient attention and sliced attention are both enabled, memory efficient attention takes
        precedent.

        </Tip>
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633

        Parameters:
            attention_op (`Callable`, *optional*):
                Override the default `None` operator for use as `op` argument to the
                [`memory_efficient_attention()`](https://facebookresearch.github.io/xformers/components/ops.html#xformers.ops.memory_efficient_attention)
                function of xFormers.

        Examples:

        ```py
        >>> import torch
        >>> from diffusers import DiffusionPipeline
        >>> from xformers.ops import MemoryEfficientAttentionFlashAttentionOp

        >>> pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1", torch_dtype=torch.float16)
        >>> pipe = pipe.to("cuda")
        >>> pipe.enable_xformers_memory_efficient_attention(attention_op=MemoryEfficientAttentionFlashAttentionOp)
        >>> # Workaround for not accepting attention shape using VAE for Flash Attention
        >>> pipe.vae.enable_xformers_memory_efficient_attention(attention_op=None)
        ```
1634
        """
1635
        self.set_use_memory_efficient_attention_xformers(True, attention_op)
1636
1637
1638

    def disable_xformers_memory_efficient_attention(self):
        r"""
Steven Liu's avatar
Steven Liu committed
1639
        Disable memory efficient attention from [xFormers](https://facebookresearch.github.io/xformers/).
1640
1641
1642
        """
        self.set_use_memory_efficient_attention_xformers(False)

1643
1644
1645
    def set_use_memory_efficient_attention_xformers(
        self, valid: bool, attention_op: Optional[Callable] = None
    ) -> None:
1646
1647
1648
1649
1650
        # Recursively walk through all the children.
        # Any children which exposes the set_use_memory_efficient_attention_xformers method
        # gets the message
        def fn_recursive_set_mem_eff(module: torch.nn.Module):
            if hasattr(module, "set_use_memory_efficient_attention_xformers"):
1651
                module.set_use_memory_efficient_attention_xformers(valid, attention_op)
1652
1653
1654
1655

            for child in module.children():
                fn_recursive_set_mem_eff(child)

1656
1657
1658
        module_names, _ = self._get_signature_keys(self)
        modules = [getattr(self, n, None) for n in module_names]
        modules = [m for m in modules if isinstance(m, torch.nn.Module)]
1659

1660
1661
        for module in modules:
            fn_recursive_set_mem_eff(module)
1662
1663
1664

    def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"):
        r"""
1665
        Enable sliced attention computation. When this option is enabled, the attention module splits the input tensor
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
        in slices to compute attention in several steps. For more than one attention head, the computation is performed
        sequentially over each head. This is useful to save some memory in exchange for a small speed decrease.

        <Tip warning={true}>

        ⚠️ Don't enable attention slicing if you're already using `scaled_dot_product_attention` (SDPA) from PyTorch
        2.0 or xFormers. These attention computations are already very memory efficient so you won't need to enable
        this function. If you enable attention slicing with SDPA or xFormers, it can lead to serious slow downs!

        </Tip>
1676
1677
1678
1679

        Args:
            slice_size (`str` or `int`, *optional*, defaults to `"auto"`):
                When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
Alexander Pivovarov's avatar
Alexander Pivovarov committed
1680
                `"max"`, maximum amount of memory will be saved by running only one slice at a time. If a number is
1681
1682
                provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
                must be a multiple of `slice_size`.
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699

        Examples:

        ```py
        >>> import torch
        >>> from diffusers import StableDiffusionPipeline

        >>> pipe = StableDiffusionPipeline.from_pretrained(
        ...     "runwayml/stable-diffusion-v1-5",
        ...     torch_dtype=torch.float16,
        ...     use_safetensors=True,
        ... )

        >>> prompt = "a photo of an astronaut riding a horse on mars"
        >>> pipe.enable_attention_slicing()
        >>> image = pipe(prompt).images[0]
        ```
1700
1701
1702
1703
1704
        """
        self.set_attention_slice(slice_size)

    def disable_attention_slicing(self):
        r"""
Steven Liu's avatar
Steven Liu committed
1705
1706
        Disable sliced attention computation. If `enable_attention_slicing` was previously called, attention is
        computed in one step.
1707
1708
1709
1710
1711
        """
        # set slice_size = `None` to disable `attention slicing`
        self.enable_attention_slicing(None)

    def set_attention_slice(self, slice_size: Optional[int]):
1712
1713
1714
        module_names, _ = self._get_signature_keys(self)
        modules = [getattr(self, n, None) for n in module_names]
        modules = [m for m in modules if isinstance(m, torch.nn.Module) and hasattr(m, "set_attention_slice")]
1715

1716
1717
        for module in modules:
            module.set_attention_slice(slice_size)