pipeline_utils.py 71.1 KB
Newer Older
1
# coding=utf-8
Patrick von Platen's avatar
Patrick von Platen committed
2
# Copyright 2023 The HuggingFace Inc. team.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Copyright (c) 2022, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

17
import fnmatch
18
19
20
import importlib
import inspect
import os
21
import re
22
import sys
23
import warnings
24
25
from dataclasses import dataclass
from pathlib import Path
26
from typing import Any, Callable, Dict, List, Optional, Union
27
28
29

import numpy as np
import PIL
30
import torch
31
from huggingface_hub import hf_hub_download, model_info, snapshot_download
32
from packaging import version
33
from requests.exceptions import HTTPError
34
35
from tqdm.auto import tqdm

36
37
import diffusers

38
from .. import __version__
39
40
41
42
43
from ..configuration_utils import ConfigMixin
from ..models.modeling_utils import _LOW_CPU_MEM_USAGE_DEFAULT
from ..schedulers.scheduling_utils import SCHEDULER_CONFIG_NAME
from ..utils import (
    CONFIG_NAME,
44
    DEPRECATED_REVISION_ARGS,
45
46
    DIFFUSERS_CACHE,
    HF_HUB_OFFLINE,
47
    SAFETENSORS_WEIGHTS_NAME,
48
49
50
51
52
    WEIGHTS_NAME,
    BaseOutput,
    deprecate,
    get_class_from_dynamic_module,
    is_accelerate_available,
53
    is_accelerate_version,
54
    is_compiled_module,
55
56
57
58
    is_safetensors_available,
    is_torch_version,
    is_transformers_available,
    logging,
Patrick von Platen's avatar
Patrick von Platen committed
59
    numpy_to_pil,
60
61
62
63
64
65
)


if is_transformers_available():
    import transformers
    from transformers import PreTrainedModel
66
67
68
69
    from transformers.utils import FLAX_WEIGHTS_NAME as TRANSFORMERS_FLAX_WEIGHTS_NAME
    from transformers.utils import SAFE_WEIGHTS_NAME as TRANSFORMERS_SAFE_WEIGHTS_NAME
    from transformers.utils import WEIGHTS_NAME as TRANSFORMERS_WEIGHTS_NAME

70
from ..utils import FLAX_WEIGHTS_NAME, ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME
71
72


73
74
75
76
if is_accelerate_available():
    import accelerate


77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
INDEX_FILE = "diffusion_pytorch_model.bin"
CUSTOM_PIPELINE_FILE_NAME = "pipeline.py"
DUMMY_MODULES_FOLDER = "diffusers.utils"
TRANSFORMERS_DUMMY_MODULES_FOLDER = "transformers.utils"


logger = logging.get_logger(__name__)


LOADABLE_CLASSES = {
    "diffusers": {
        "ModelMixin": ["save_pretrained", "from_pretrained"],
        "SchedulerMixin": ["save_pretrained", "from_pretrained"],
        "DiffusionPipeline": ["save_pretrained", "from_pretrained"],
        "OnnxRuntimeModel": ["save_pretrained", "from_pretrained"],
    },
    "transformers": {
        "PreTrainedTokenizer": ["save_pretrained", "from_pretrained"],
        "PreTrainedTokenizerFast": ["save_pretrained", "from_pretrained"],
        "PreTrainedModel": ["save_pretrained", "from_pretrained"],
        "FeatureExtractionMixin": ["save_pretrained", "from_pretrained"],
        "ProcessorMixin": ["save_pretrained", "from_pretrained"],
        "ImageProcessingMixin": ["save_pretrained", "from_pretrained"],
    },
    "onnxruntime.training": {
        "ORTModule": ["save_pretrained", "from_pretrained"],
    },
}

ALL_IMPORTABLE_CLASSES = {}
for library in LOADABLE_CLASSES:
    ALL_IMPORTABLE_CLASSES.update(LOADABLE_CLASSES[library])


@dataclass
class ImagePipelineOutput(BaseOutput):
    """
    Output class for image pipelines.

    Args:
        images (`List[PIL.Image.Image]` or `np.ndarray`)
            List of denoised PIL images of length `batch_size` or numpy array of shape `(batch_size, height, width,
            num_channels)`. PIL images or numpy array present the denoised images of the diffusion pipeline.
    """

    images: Union[List[PIL.Image.Image], np.ndarray]


@dataclass
class AudioPipelineOutput(BaseOutput):
    """
    Output class for audio pipelines.

    Args:
        audios (`np.ndarray`)
            List of denoised samples of shape `(batch_size, num_channels, sample_rate)`. Numpy array present the
            denoised audio samples of the diffusion pipeline.
    """

    audios: np.ndarray


139
def is_safetensors_compatible(filenames, variant=None, passed_components=None) -> bool:
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
    """
    Checking for safetensors compatibility:
    - By default, all models are saved with the default pytorch serialization, so we use the list of default pytorch
      files to know which safetensors files are needed.
    - The model is safetensors compatible only if there is a matching safetensors file for every default pytorch file.

    Converting default pytorch serialized filenames to safetensors serialized filenames:
    - For models from the diffusers library, just replace the ".bin" extension with ".safetensors"
    - For models from the transformers library, the filename changes from "pytorch_model" to "model", and the ".bin"
      extension is replaced with ".safetensors"
    """
    pt_filenames = []

    sf_filenames = set()

155
156
    passed_components = passed_components or []

157
158
159
    for filename in filenames:
        _, extension = os.path.splitext(filename)

160
161
162
        if len(filename.split("/")) == 2 and filename.split("/")[0] in passed_components:
            continue

163
164
165
166
167
168
169
170
171
172
        if extension == ".bin":
            pt_filenames.append(filename)
        elif extension == ".safetensors":
            sf_filenames.add(filename)

    for filename in pt_filenames:
        #  filename = 'foo/bar/baz.bam' -> path = 'foo/bar', filename = 'baz', extention = '.bam'
        path, filename = os.path.split(filename)
        filename, extension = os.path.splitext(filename)

173
174
        if filename.startswith("pytorch_model"):
            filename = filename.replace("pytorch_model", "model")
175
        else:
176
177
178
179
180
181
182
183
184
185
            filename = filename

        expected_sf_filename = os.path.join(path, filename)
        expected_sf_filename = f"{expected_sf_filename}.safetensors"

        if expected_sf_filename not in sf_filenames:
            logger.warning(f"{expected_sf_filename} not found")
            return False

    return True
186
187


188
def variant_compatible_siblings(filenames, variant=None) -> Union[List[os.PathLike], str]:
189
190
191
192
193
194
195
    weight_names = [
        WEIGHTS_NAME,
        SAFETENSORS_WEIGHTS_NAME,
        FLAX_WEIGHTS_NAME,
        ONNX_WEIGHTS_NAME,
        ONNX_EXTERNAL_WEIGHTS_NAME,
    ]
196
197
198
199
200
201
202
203

    if is_transformers_available():
        weight_names += [TRANSFORMERS_WEIGHTS_NAME, TRANSFORMERS_SAFE_WEIGHTS_NAME, TRANSFORMERS_FLAX_WEIGHTS_NAME]

    # model_pytorch, diffusion_model_pytorch, ...
    weight_prefixes = [w.split(".")[0] for w in weight_names]
    # .bin, .safetensors, ...
    weight_suffixs = [w.split(".")[-1] for w in weight_names]
204
    # -00001-of-00002
205
    transformers_index_format = r"\d{5}-of-\d{5}"
206
207
208
209

    if variant is not None:
        # `diffusion_pytorch_model.fp16.bin` as well as `model.fp16-00001-of-00002.safetenstors`
        variant_file_re = re.compile(
210
            rf"({'|'.join(weight_prefixes)})\.({variant}|{variant}-{transformers_index_format})\.({'|'.join(weight_suffixs)})$"
211
212
213
        )
        # `text_encoder/pytorch_model.bin.index.fp16.json`
        variant_index_re = re.compile(
214
            rf"({'|'.join(weight_prefixes)})\.({'|'.join(weight_suffixs)})\.index\.{variant}\.json$"
215
        )
216

217
218
    # `diffusion_pytorch_model.bin` as well as `model-00001-of-00002.safetenstors`
    non_variant_file_re = re.compile(
219
        rf"({'|'.join(weight_prefixes)})(-{transformers_index_format})?\.({'|'.join(weight_suffixs)})$"
220
    )
221
    # `text_encoder/pytorch_model.bin.index.json`
222
    non_variant_index_re = re.compile(rf"({'|'.join(weight_prefixes)})\.({'|'.join(weight_suffixs)})\.index\.json")
223
224

    if variant is not None:
225
226
227
        variant_weights = {f for f in filenames if variant_file_re.match(f.split("/")[-1]) is not None}
        variant_indexes = {f for f in filenames if variant_index_re.match(f.split("/")[-1]) is not None}
        variant_filenames = variant_weights | variant_indexes
228
229
230
    else:
        variant_filenames = set()

231
232
233
    non_variant_weights = {f for f in filenames if non_variant_file_re.match(f.split("/")[-1]) is not None}
    non_variant_indexes = {f for f in filenames if non_variant_index_re.match(f.split("/")[-1]) is not None}
    non_variant_filenames = non_variant_weights | non_variant_indexes
234

235
    # all variant filenames will be used by default
236
    usable_filenames = set(variant_filenames)
237
238
239
240
241
242
243
244
245
246

    def convert_to_variant(filename):
        if "index" in filename:
            variant_filename = filename.replace("index", f"index.{variant}")
        elif re.compile(f"^(.*?){transformers_index_format}").match(filename) is not None:
            variant_filename = f"{filename.split('-')[0]}.{variant}-{'-'.join(filename.split('-')[1:])}"
        else:
            variant_filename = f"{filename.split('.')[0]}.{variant}.{filename.split('.')[1]}"
        return variant_filename

247
    for f in non_variant_filenames:
248
        variant_filename = convert_to_variant(f)
249
250
251
252
253
254
        if variant_filename not in usable_filenames:
            usable_filenames.add(f)

    return usable_filenames, variant_filenames


255
256
257
258
259
260
def warn_deprecated_model_variant(pretrained_model_name_or_path, use_auth_token, variant, revision, model_filenames):
    info = model_info(
        pretrained_model_name_or_path,
        use_auth_token=use_auth_token,
        revision=None,
    )
261
    filenames = {sibling.rfilename for sibling in info.siblings}
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
    comp_model_filenames, _ = variant_compatible_siblings(filenames, variant=revision)
    comp_model_filenames = [".".join(f.split(".")[:1] + f.split(".")[2:]) for f in comp_model_filenames]

    if set(comp_model_filenames) == set(model_filenames):
        warnings.warn(
            f"You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'` even though you can load it via `variant=`{revision}`. Loading model variants via `revision='{revision}'` is deprecated and will be removed in diffusers v1. Please use `variant='{revision}'` instead.",
            FutureWarning,
        )
    else:
        warnings.warn(
            f"You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant='{revision}'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have the required variant filenames in the 'main' branch. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title '{pretrained_model_name_or_path} is missing {revision} files' so that the correct variant file can be added.",
            FutureWarning,
        )


def maybe_raise_or_warn(
    library_name, library, class_name, importable_classes, passed_class_obj, name, is_pipeline_module
):
    """Simple helper method to raise or warn in case incorrect module has been passed"""
    if not is_pipeline_module:
        library = importlib.import_module(library_name)
        class_obj = getattr(library, class_name)
        class_candidates = {c: getattr(library, c, None) for c in importable_classes.keys()}

        expected_class_obj = None
        for class_name, class_candidate in class_candidates.items():
            if class_candidate is not None and issubclass(class_obj, class_candidate):
                expected_class_obj = class_candidate

291
292
293
294
295
296
297
298
        # Dynamo wraps the original model in a private class.
        # I didn't find a public API to get the original class.
        sub_model = passed_class_obj[name]
        model_cls = sub_model.__class__
        if is_compiled_module(sub_model):
            model_cls = sub_model._orig_mod.__class__

        if not issubclass(model_cls, expected_class_obj):
299
            raise ValueError(
300
                f"{passed_class_obj[name]} is of type: {model_cls}, but should be" f" {expected_class_obj}"
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
            )
    else:
        logger.warning(
            f"You have passed a non-standard module {passed_class_obj[name]}. We cannot verify whether it"
            " has the correct type"
        )


def get_class_obj_and_candidates(library_name, class_name, importable_classes, pipelines, is_pipeline_module):
    """Simple helper method to retrieve class object of module as well as potential parent class objects"""
    if is_pipeline_module:
        pipeline_module = getattr(pipelines, library_name)

        class_obj = getattr(pipeline_module, class_name)
        class_candidates = {c: class_obj for c in importable_classes.keys()}
    else:
        # else we just import it from the library.
        library = importlib.import_module(library_name)

        class_obj = getattr(library, class_name)
        class_candidates = {c: getattr(library, c, None) for c in importable_classes.keys()}

    return class_obj, class_candidates


326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
def _get_pipeline_class(class_obj, config, custom_pipeline=None, cache_dir=None, revision=None):
    if custom_pipeline is not None:
        if custom_pipeline.endswith(".py"):
            path = Path(custom_pipeline)
            # decompose into folder & file
            file_name = path.name
            custom_pipeline = path.parent.absolute()
        else:
            file_name = CUSTOM_PIPELINE_FILE_NAME

        return get_class_from_dynamic_module(
            custom_pipeline, module_file=file_name, cache_dir=cache_dir, revision=revision
        )

    if class_obj != DiffusionPipeline:
        return class_obj

    diffusers_module = importlib.import_module(class_obj.__module__.split(".")[0])
    return getattr(diffusers_module, config["_class_name"])


347
348
349
350
351
352
353
354
355
356
357
def load_sub_model(
    library_name: str,
    class_name: str,
    importable_classes: List[Any],
    pipelines: Any,
    is_pipeline_module: bool,
    pipeline_class: Any,
    torch_dtype: torch.dtype,
    provider: Any,
    sess_options: Any,
    device_map: Optional[Union[Dict[str, torch.device], str]],
358
359
360
    max_memory: Optional[Dict[Union[int, str], Union[int, str]]],
    offload_folder: Optional[Union[str, os.PathLike]],
    offload_state_dict: bool,
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
    model_variants: Dict[str, str],
    name: str,
    from_flax: bool,
    variant: str,
    low_cpu_mem_usage: bool,
    cached_folder: Union[str, os.PathLike],
):
    """Helper method to load the module `name` from `library_name` and `class_name`"""
    # retrieve class candidates
    class_obj, class_candidates = get_class_obj_and_candidates(
        library_name, class_name, importable_classes, pipelines, is_pipeline_module
    )

    load_method_name = None
    # retrive load method name
    for class_name, class_candidate in class_candidates.items():
        if class_candidate is not None and issubclass(class_obj, class_candidate):
            load_method_name = importable_classes[class_name][1]

    # if load method name is None, then we have a dummy module -> raise Error
    if load_method_name is None:
        none_module = class_obj.__module__
        is_dummy_path = none_module.startswith(DUMMY_MODULES_FOLDER) or none_module.startswith(
            TRANSFORMERS_DUMMY_MODULES_FOLDER
        )
        if is_dummy_path and "dummy" in none_module:
            # call class_obj for nice error message of missing requirements
            class_obj()

        raise ValueError(
            f"The component {class_obj} of {pipeline_class} cannot be loaded as it does not seem to have"
            f" any of the loading methods defined in {ALL_IMPORTABLE_CLASSES}."
        )

    load_method = getattr(class_obj, load_method_name)

    # add kwargs to loading method
    loading_kwargs = {}
    if issubclass(class_obj, torch.nn.Module):
        loading_kwargs["torch_dtype"] = torch_dtype
    if issubclass(class_obj, diffusers.OnnxRuntimeModel):
        loading_kwargs["provider"] = provider
        loading_kwargs["sess_options"] = sess_options

    is_diffusers_model = issubclass(class_obj, diffusers.ModelMixin)

    if is_transformers_available():
        transformers_version = version.parse(version.parse(transformers.__version__).base_version)
    else:
        transformers_version = "N/A"

    is_transformers_model = (
        is_transformers_available()
        and issubclass(class_obj, PreTrainedModel)
        and transformers_version >= version.parse("4.20.0")
    )

    # When loading a transformers model, if the device_map is None, the weights will be initialized as opposed to diffusers.
    # To make default loading faster we set the `low_cpu_mem_usage=low_cpu_mem_usage` flag which is `True` by default.
    # This makes sure that the weights won't be initialized which significantly speeds up loading.
    if is_diffusers_model or is_transformers_model:
        loading_kwargs["device_map"] = device_map
423
424
425
        loading_kwargs["max_memory"] = max_memory
        loading_kwargs["offload_folder"] = offload_folder
        loading_kwargs["offload_state_dict"] = offload_state_dict
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
        loading_kwargs["variant"] = model_variants.pop(name, None)
        if from_flax:
            loading_kwargs["from_flax"] = True

        # the following can be deleted once the minimum required `transformers` version
        # is higher than 4.27
        if (
            is_transformers_model
            and loading_kwargs["variant"] is not None
            and transformers_version < version.parse("4.27.0")
        ):
            raise ImportError(
                f"When passing `variant='{variant}'`, please make sure to upgrade your `transformers` version to at least 4.27.0.dev0"
            )
        elif is_transformers_model and loading_kwargs["variant"] is None:
            loading_kwargs.pop("variant")

        # if `from_flax` and model is transformer model, can currently not load with `low_cpu_mem_usage`
        if not (from_flax and is_transformers_model):
            loading_kwargs["low_cpu_mem_usage"] = low_cpu_mem_usage
        else:
            loading_kwargs["low_cpu_mem_usage"] = False

    # check if the module is in a subdirectory
    if os.path.isdir(os.path.join(cached_folder, name)):
        loaded_sub_model = load_method(os.path.join(cached_folder, name), **loading_kwargs)
    else:
        # else load from the root directory
        loaded_sub_model = load_method(cached_folder, **loading_kwargs)

    return loaded_sub_model


459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
class DiffusionPipeline(ConfigMixin):
    r"""
    Base class for all models.

    [`DiffusionPipeline`] takes care of storing all components (models, schedulers, processors) for diffusion pipelines
    and handles methods for loading, downloading and saving models as well as a few methods common to all pipelines to:

        - move all PyTorch modules to the device of your choice
        - enabling/disabling the progress bar for the denoising iteration

    Class attributes:

        - **config_name** (`str`) -- name of the config file that will store the class and module names of all
          components of the diffusion pipeline.
        - **_optional_components** (List[`str`]) -- list of all components that are optional so they don't have to be
          passed for the pipeline to function (should be overridden by subclasses).
    """
    config_name = "model_index.json"
    _optional_components = []

    def register_modules(self, **kwargs):
        # import it here to avoid circular import
        from diffusers import pipelines

        for name, module in kwargs.items():
            # retrieve library
            if module is None:
                register_dict = {name: (None, None)}
            else:
488
                # register the config from the original module, not the dynamo compiled one
489
                if is_compiled_module(module):
490
491
492
                    not_compiled_module = module._orig_mod
                else:
                    not_compiled_module = module
493

494
                library = not_compiled_module.__module__.split(".")[0]
495
496

                # check if the module is a pipeline module
497
                module_path_items = not_compiled_module.__module__.split(".")
498
499
                pipeline_dir = module_path_items[-2] if len(module_path_items) > 2 else None

500
                path = not_compiled_module.__module__.split(".")
501
502
503
504
505
                is_pipeline_module = pipeline_dir in path and hasattr(pipelines, pipeline_dir)

                # if library is not in LOADABLE_CLASSES, then it is a custom module.
                # Or if it's a pipeline module, then the module is inside the pipeline
                # folder so we set the library to module name.
506
                if is_pipeline_module:
507
                    library = pipeline_dir
508
                elif library not in LOADABLE_CLASSES:
509
                    library = not_compiled_module.__module__
510
511

                # retrieve class_name
512
                class_name = not_compiled_module.__class__.__name__
513
514
515
516
517
518
519
520
521

                register_dict = {name: (library, class_name)}

            # save model index config
            self.register_to_config(**register_dict)

            # set models
            setattr(self, name, module)

522
    def __setattr__(self, name: str, value: Any):
523
        if name in self.__dict__ and hasattr(self.config, name):
524
525
            # We need to overwrite the config if name exists in config
            if isinstance(getattr(self.config, name), (tuple, list)):
526
                if value is not None and self.config[name][0] is not None:
527
528
529
530
531
532
533
534
535
536
                    class_library_tuple = (value.__module__.split(".")[0], value.__class__.__name__)
                else:
                    class_library_tuple = (None, None)

                self.register_to_config(**{name: class_library_tuple})
            else:
                self.register_to_config(**{name: value})

        super().__setattr__(name, value)

537
538
539
540
    def save_pretrained(
        self,
        save_directory: Union[str, os.PathLike],
        safe_serialization: bool = False,
541
        variant: Optional[str] = None,
542
543
544
545
    ):
        """
        Save all variables of the pipeline that can be saved and loaded as well as the pipelines configuration file to
        a directory. A pipeline variable can be saved and loaded if its class implements both a save and loading
Steven Liu's avatar
Steven Liu committed
546
        method. The pipeline can easily be re-loaded using the [`~DiffusionPipeline.from_pretrained`] class method.
547
548
549
550
551
552

        Arguments:
            save_directory (`str` or `os.PathLike`):
                Directory to which to save. Will be created if it doesn't exist.
            safe_serialization (`bool`, *optional*, defaults to `False`):
                Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
553
554
            variant (`str`, *optional*):
                If specified, weights are saved in the format pytorch_model.<variant>.bin.
555
556
        """
        model_index_dict = dict(self.config)
557
558
        model_index_dict.pop("_class_name", None)
        model_index_dict.pop("_diffusers_version", None)
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
        model_index_dict.pop("_module", None)

        expected_modules, optional_kwargs = self._get_signature_keys(self)

        def is_saveable_module(name, value):
            if name not in expected_modules:
                return False
            if name in self._optional_components and value[0] is None:
                return False
            return True

        model_index_dict = {k: v for k, v in model_index_dict.items() if is_saveable_module(k, v)}
        for pipeline_component_name in model_index_dict.keys():
            sub_model = getattr(self, pipeline_component_name)
            model_cls = sub_model.__class__

575
576
577
578
579
580
            # Dynamo wraps the original model in a private class.
            # I didn't find a public API to get the original class.
            if is_compiled_module(sub_model):
                sub_model = sub_model._orig_mod
                model_cls = sub_model.__class__

581
582
583
            save_method_name = None
            # search for the model's base class in LOADABLE_CLASSES
            for library_name, library_classes in LOADABLE_CLASSES.items():
584
585
586
587
588
589
590
                if library_name in sys.modules:
                    library = importlib.import_module(library_name)
                else:
                    logger.info(
                        f"{library_name} is not installed. Cannot save {pipeline_component_name} as {library_classes} from {library_name}"
                    )

591
592
593
594
595
596
597
598
599
                for base_class, save_load_methods in library_classes.items():
                    class_candidate = getattr(library, base_class, None)
                    if class_candidate is not None and issubclass(model_cls, class_candidate):
                        # if we found a suitable base class in LOADABLE_CLASSES then grab its save method
                        save_method_name = save_load_methods[0]
                        break
                if save_method_name is not None:
                    break

600
601
602
603
604
605
            if save_method_name is None:
                logger.warn(f"self.{pipeline_component_name}={sub_model} of type {type(sub_model)} cannot be saved.")
                # make sure that unsaveable components are not tried to be loaded afterward
                self.register_to_config(**{pipeline_component_name: (None, None)})
                continue

606
607
608
609
610
            save_method = getattr(sub_model, save_method_name)

            # Call the save method with the argument safe_serialization only if it's supported
            save_method_signature = inspect.signature(save_method)
            save_method_accept_safe = "safe_serialization" in save_method_signature.parameters
611
612
613
            save_method_accept_variant = "variant" in save_method_signature.parameters

            save_kwargs = {}
614
            if save_method_accept_safe:
615
616
617
618
619
                save_kwargs["safe_serialization"] = safe_serialization
            if save_method_accept_variant:
                save_kwargs["variant"] = variant

            save_method(os.path.join(save_directory, pipeline_component_name), **save_kwargs)
620

621
622
623
        # finally save the config
        self.save_config(save_directory)

624
625
626
627
628
629
630
    def to(
        self,
        torch_device: Optional[Union[str, torch.device]] = None,
        torch_dtype: Optional[torch.dtype] = None,
        silence_dtype_warnings: bool = False,
    ):
        if torch_device is None and torch_dtype is None:
631
632
            return self

633
634
635
636
637
        # throw warning if pipeline is in "offloaded"-mode but user tries to manually set to GPU.
        def module_is_sequentially_offloaded(module):
            if not is_accelerate_available() or is_accelerate_version("<", "0.14.0"):
                return False

Patrick von Platen's avatar
Patrick von Platen committed
638
639
640
            return hasattr(module, "_hf_hook") and not isinstance(
                module._hf_hook, (accelerate.hooks.CpuOffload, accelerate.hooks.AlignDevicesHook)
            )
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663

        def module_is_offloaded(module):
            if not is_accelerate_available() or is_accelerate_version("<", "0.17.0.dev0"):
                return False

            return hasattr(module, "_hf_hook") and isinstance(module._hf_hook, accelerate.hooks.CpuOffload)

        # .to("cuda") would raise an error if the pipeline is sequentially offloaded, so we raise our own to make it clearer
        pipeline_is_sequentially_offloaded = any(
            module_is_sequentially_offloaded(module) for _, module in self.components.items()
        )
        if pipeline_is_sequentially_offloaded and torch.device(torch_device).type == "cuda":
            raise ValueError(
                "It seems like you have activated sequential model offloading by calling `enable_sequential_cpu_offload`, but are now attempting to move the pipeline to GPU. This is not compatible with offloading. Please, move your pipeline `.to('cpu')` or consider removing the move altogether if you use sequential offloading."
            )

        # Display a warning in this case (the operation succeeds but the benefits are lost)
        pipeline_is_offloaded = any(module_is_offloaded(module) for _, module in self.components.items())
        if pipeline_is_offloaded and torch.device(torch_device).type == "cuda":
            logger.warning(
                f"It seems like you have activated model offloading by calling `enable_model_cpu_offload`, but are now manually moving the pipeline to GPU. It is strongly recommended against doing so as memory gains from offloading are likely to be lost. Offloading automatically takes care of moving the individual components {', '.join(self.components.keys())} to GPU when needed. To make sure offloading works as expected, you should consider moving the pipeline back to CPU: `pipeline.to('cpu')` or removing the move altogether if you use offloading."
            )

664
        module_names, _ = self._get_signature_keys(self)
665
666
        modules = [getattr(self, n, None) for n in module_names]
        modules = [m for m in modules if isinstance(m, torch.nn.Module)]
667

668
        is_offloaded = pipeline_is_offloaded or pipeline_is_sequentially_offloaded
669
        for module in modules:
Patrick von Platen's avatar
Patrick von Platen committed
670
671
672
673
674
675
676
677
678
679
680
681
682
683
            is_loaded_in_8bit = hasattr(module, "is_loaded_in_8bit") and module.is_loaded_in_8bit

            if is_loaded_in_8bit and torch_dtype is not None:
                logger.warning(
                    f"The module '{module.__class__.__name__}' has been loaded in 8bit and conversion to {torch_dtype} is not yet supported. Module is still in 8bit precision."
                )

            if is_loaded_in_8bit and torch_device is not None:
                logger.warning(
                    f"The module '{module.__class__.__name__}' has been loaded in 8bit and moving it to {torch_dtype} via `.to()` is not yet supported. Module is still on {module.device}."
                )
            else:
                module.to(torch_device, torch_dtype)

684
685
686
687
688
689
690
691
692
693
694
695
696
            if (
                module.dtype == torch.float16
                and str(torch_device) in ["cpu"]
                and not silence_dtype_warnings
                and not is_offloaded
            ):
                logger.warning(
                    "Pipelines loaded with `torch_dtype=torch.float16` cannot run with `cpu` device. It"
                    " is not recommended to move them to `cpu` as running them will fail. Please make"
                    " sure to use an accelerator to run the pipeline in inference, due to the lack of"
                    " support for`float16` operations on this device in PyTorch. Please, remove the"
                    " `torch_dtype=torch.float16` argument, or use another device for inference."
                )
697
698
699
700
701
702
703
704
        return self

    @property
    def device(self) -> torch.device:
        r"""
        Returns:
            `torch.device`: The torch device on which the pipeline is located.
        """
705
        module_names, _ = self._get_signature_keys(self)
706
707
708
709
710
        modules = [getattr(self, n, None) for n in module_names]
        modules = [m for m in modules if isinstance(m, torch.nn.Module)]

        for module in modules:
            return module.device
711

712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
        return torch.device("cpu")

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs):
        r"""
        Instantiate a PyTorch diffusion pipeline from pre-trained pipeline weights.

        The pipeline is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated).

        The warning *Weights from XXX not initialized from pretrained model* means that the weights of XXX do not come
        pretrained with the rest of the model. It is up to you to train those weights with a downstream fine-tuning
        task.

        The warning *Weights from XXX not used in YYY* means that the layer XXX is not used by YYY, therefore those
        weights are discarded.

        Parameters:
            pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*):
                Can be either:

                    - A string, the *repo id* of a pretrained pipeline hosted inside a model repo on
                      https://huggingface.co/ Valid repo ids have to be located under a user or organization name, like
                      `CompVis/ldm-text2im-large-256`.
                    - A path to a *directory* containing pipeline weights saved using
                      [`~DiffusionPipeline.save_pretrained`], e.g., `./my_pipeline_directory/`.
            torch_dtype (`str` or `torch.dtype`, *optional*):
                Override the default `torch.dtype` and load the model under this dtype. If `"auto"` is passed the dtype
                will be automatically derived from the model's weights.
            custom_pipeline (`str`, *optional*):

                <Tip warning={true}>

                    This is an experimental feature and is likely to change in the future.

                </Tip>

                Can be either:

                    - A string, the *repo id* of a custom pipeline hosted inside a model repo on
                      https://huggingface.co/. Valid repo ids have to be located under a user or organization name,
                      like `hf-internal-testing/diffusers-dummy-pipeline`.

                        <Tip>

                         It is required that the model repo has a file, called `pipeline.py` that defines the custom
                         pipeline.

                        </Tip>

                    - A string, the *file name* of a community pipeline hosted on GitHub under
                      https://github.com/huggingface/diffusers/tree/main/examples/community. Valid file names have to
                      match exactly the file name without `.py` located under the above link, *e.g.*
                      `clip_guided_stable_diffusion`.

                        <Tip>

                         Community pipelines are always loaded from the current `main` branch of GitHub.

                        </Tip>

                    - A path to a *directory* containing a custom pipeline, e.g., `./my_pipeline_directory/`.

                        <Tip>

                         It is required that the directory has a file, called `pipeline.py` that defines the custom
                         pipeline.

                        </Tip>

                For more information on how to load and create custom pipelines, please have a look at [Loading and
                Adding Custom
                Pipelines](https://huggingface.co/docs/diffusers/using-diffusers/custom_pipeline_overview)

            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
788
789
790
            cache_dir (`Union[str, os.PathLike]`, *optional*):
                Path to a directory in which a downloaded pretrained model configuration should be cached if the
                standard cache should not be used.
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
            resume_download (`bool`, *optional*, defaults to `False`):
                Whether or not to delete incompletely received files. Will attempt to resume the download if such a
                file exists.
            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            output_loading_info(`bool`, *optional*, defaults to `False`):
                Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
            local_files_only(`bool`, *optional*, defaults to `False`):
                Whether or not to only look at local files (i.e., do not try to download the model).
            use_auth_token (`str` or *bool*, *optional*):
                The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated
                when running `huggingface-cli login` (stored in `~/.huggingface`).
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
                git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
                identifier allowed by git.
            custom_revision (`str`, *optional*, defaults to `"main"` when loading from the Hub and to local version of `diffusers` when loading from GitHub):
                The specific model version to use. It can be a branch name, a tag name, or a commit id similar to
                `revision` when loading a custom pipeline from the Hub. It can be a diffusers version when loading a
                custom pipeline from GitHub.
            mirror (`str`, *optional*):
                Mirror source to accelerate downloads in China. If you are from China and have an accessibility
                problem, you can set this option to resolve it. Note that we do not guarantee the timeliness or safety.
                Please refer to the mirror site for more information. specify the folder name here.
            device_map (`str` or `Dict[str, Union[int, str, torch.device]]`, *optional*):
                A map that specifies where each submodule should go. It doesn't need to be refined to each
                parameter/buffer name, once a given module name is inside, every submodule of it will be sent to the
                same device.

                To have Accelerate compute the most optimized `device_map` automatically, set `device_map="auto"`. For
                more information about each option see [designing a device
                map](https://hf.co/docs/accelerate/main/en/usage_guides/big_modeling#designing-a-device-map).
824
825
826
827
828
829
830
831
832
            max_memory (`Dict`, *optional*):
                A dictionary device identifier to maximum memory. Will default to the maximum memory available for each
                GPU and the available CPU RAM if unset.
            offload_folder (`str` or `os.PathLike`, *optional*):
                If the `device_map` contains any value `"disk"`, the folder where we will offload weights.
            offload_state_dict (`bool`, *optional*):
                If `True`, will temporarily offload the CPU state dict to the hard drive to avoid getting out of CPU
                RAM if the weight of the CPU state dict + the biggest shard of the checkpoint does not fit. Defaults to
                `True` when there is some disk offload.
833
834
835
836
837
            low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
                Speed up model loading by not initializing the weights and only loading the pre-trained weights. This
                also tries to not use more than 1x model size in CPU memory (including peak memory) while loading the
                model. This is only supported when torch version >= 1.9.0. If you are using an older version of torch,
                setting this argument to `True` will raise an error.
838
839
840
841
            use_safetensors (`bool`, *optional*, defaults to `None`):
                If set to `None`, the pipeline will load the `safetensors` weights if they're available **and** if the
                `safetensors` library is installed. If set to `True`, the pipeline will forcibly load the models from
                `safetensors` weights. If set to `False` the pipeline will *not* use `safetensors`.
842
843
844
845
            kwargs (remaining dictionary of keyword arguments, *optional*):
                Can be used to overwrite load - and saveable variables - *i.e.* the pipeline components - of the
                specific pipeline class. The overwritten components are then directly passed to the pipelines
                `__init__` method. See example below for more information.
846
847
848
            variant (`str`, *optional*):
                If specified load weights from `variant` filename, *e.g.* pytorch_model.<variant>.bin. `variant` is
                ignored when using `from_flax`.
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890

        <Tip>

         It is required to be logged in (`huggingface-cli login`) when you want to use private or [gated
         models](https://huggingface.co/docs/hub/models-gated#gated-models), *e.g.* `"runwayml/stable-diffusion-v1-5"`

        </Tip>

        <Tip>

        Activate the special ["offline-mode"](https://huggingface.co/diffusers/installation.html#offline-mode) to use
        this method in a firewalled environment.

        </Tip>

        Examples:

        ```py
        >>> from diffusers import DiffusionPipeline

        >>> # Download pipeline from huggingface.co and cache.
        >>> pipeline = DiffusionPipeline.from_pretrained("CompVis/ldm-text2im-large-256")

        >>> # Download pipeline that requires an authorization token
        >>> # For more information on access tokens, please refer to this section
        >>> # of the documentation](https://huggingface.co/docs/hub/security-tokens)
        >>> pipeline = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")

        >>> # Use a different scheduler
        >>> from diffusers import LMSDiscreteScheduler

        >>> scheduler = LMSDiscreteScheduler.from_config(pipeline.scheduler.config)
        >>> pipeline.scheduler = scheduler
        ```
        """
        cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
        resume_download = kwargs.pop("resume_download", False)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
        use_auth_token = kwargs.pop("use_auth_token", None)
        revision = kwargs.pop("revision", None)
891
        from_flax = kwargs.pop("from_flax", False)
892
893
894
895
896
897
        torch_dtype = kwargs.pop("torch_dtype", None)
        custom_pipeline = kwargs.pop("custom_pipeline", None)
        custom_revision = kwargs.pop("custom_revision", None)
        provider = kwargs.pop("provider", None)
        sess_options = kwargs.pop("sess_options", None)
        device_map = kwargs.pop("device_map", None)
898
899
900
        max_memory = kwargs.pop("max_memory", None)
        offload_folder = kwargs.pop("offload_folder", None)
        offload_state_dict = kwargs.pop("offload_state_dict", False)
901
        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT)
902
        variant = kwargs.pop("variant", None)
903
        use_safetensors = kwargs.pop("use_safetensors", None if is_safetensors_available() else False)
904
905
906
907

        # 1. Download the checkpoints and configs
        # use snapshot download here to get it working from from_pretrained
        if not os.path.isdir(pretrained_model_name_or_path):
908
            cached_folder = cls.download(
909
910
911
912
913
914
915
916
                pretrained_model_name_or_path,
                cache_dir=cache_dir,
                resume_download=resume_download,
                force_download=force_download,
                proxies=proxies,
                local_files_only=local_files_only,
                use_auth_token=use_auth_token,
                revision=revision,
917
                from_flax=from_flax,
918
                use_safetensors=use_safetensors,
919
                custom_pipeline=custom_pipeline,
920
                custom_revision=custom_revision,
921
                variant=variant,
922
                **kwargs,
923
924
925
926
            )
        else:
            cached_folder = pretrained_model_name_or_path

927
928
        config_dict = cls.load_config(cached_folder)

Patrick von Platen's avatar
Patrick von Platen committed
929
930
931
        # pop out "_ignore_files" as it is only needed for download
        config_dict.pop("_ignore_files", None)

932
933
934
        # 2. Define which model components should load variants
        # We retrieve the information by matching whether variant
        # model checkpoints exist in the subfolders
935
936
937
938
939
        model_variants = {}
        if variant is not None:
            for folder in os.listdir(cached_folder):
                folder_path = os.path.join(cached_folder, folder)
                is_folder = os.path.isdir(folder_path) and folder in config_dict
940
941
942
                variant_exists = is_folder and any(
                    p.split(".")[1].startswith(variant) for p in os.listdir(folder_path)
                )
943
944
945
                if variant_exists:
                    model_variants[folder] = variant

946
        # 3. Load the pipeline class, if using custom module then load it from the hub
947
        # if we load from explicit class, let's use it
948
949
950
        pipeline_class = _get_pipeline_class(
            cls, config_dict, custom_pipeline=custom_pipeline, cache_dir=cache_dir, revision=custom_revision
        )
951

952
        # DEPRECATED: To be removed in 1.0.0
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
        if pipeline_class.__name__ == "StableDiffusionInpaintPipeline" and version.parse(
            version.parse(config_dict["_diffusers_version"]).base_version
        ) <= version.parse("0.5.1"):
            from diffusers import StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy

            pipeline_class = StableDiffusionInpaintPipelineLegacy

            deprecation_message = (
                "You are using a legacy checkpoint for inpainting with Stable Diffusion, therefore we are loading the"
                f" {StableDiffusionInpaintPipelineLegacy} class instead of {StableDiffusionInpaintPipeline}. For"
                " better inpainting results, we strongly suggest using Stable Diffusion's official inpainting"
                " checkpoint: https://huggingface.co/runwayml/stable-diffusion-inpainting instead or adapting your"
                f" checkpoint {pretrained_model_name_or_path} to the format of"
                " https://huggingface.co/runwayml/stable-diffusion-inpainting. Note that we do not actively maintain"
                " the {StableDiffusionInpaintPipelineLegacy} class and will likely remove it in version 1.0.0."
            )
            deprecate("StableDiffusionInpaintPipelineLegacy", "1.0.0", deprecation_message, standard_warn=False)

971
972
973
        # 4. Define expected modules given pipeline signature
        # and define non-None initialized modules (=`init_kwargs`)

974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
        # some modules can be passed directly to the init
        # in this case they are already instantiated in `kwargs`
        # extract them here
        expected_modules, optional_kwargs = cls._get_signature_keys(pipeline_class)
        passed_class_obj = {k: kwargs.pop(k) for k in expected_modules if k in kwargs}
        passed_pipe_kwargs = {k: kwargs.pop(k) for k in optional_kwargs if k in kwargs}

        init_dict, unused_kwargs, _ = pipeline_class.extract_init_dict(config_dict, **kwargs)

        # define init kwargs
        init_kwargs = {k: init_dict.pop(k) for k in optional_kwargs if k in init_dict}
        init_kwargs = {**init_kwargs, **passed_pipe_kwargs}

        # remove `null` components
        def load_module(name, value):
            if value[0] is None:
                return False
            if name in passed_class_obj and passed_class_obj[name] is None:
                return False
            return True

        init_dict = {k: v for k, v in init_dict.items() if load_module(k, v)}

997
998
999
1000
1001
1002
1003
1004
        # Special case: safety_checker must be loaded separately when using `from_flax`
        if from_flax and "safety_checker" in init_dict and "safety_checker" not in passed_class_obj:
            raise NotImplementedError(
                "The safety checker cannot be automatically loaded when loading weights `from_flax`."
                " Please, pass `safety_checker=None` to `from_pretrained`, and load the safety checker"
                " separately if you need it."
            )

1005
        # 5. Throw nice warnings / errors for fast accelerate loading
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
        if len(unused_kwargs) > 0:
            logger.warning(
                f"Keyword arguments {unused_kwargs} are not expected by {pipeline_class.__name__} and will be ignored."
            )

        if low_cpu_mem_usage and not is_accelerate_available():
            low_cpu_mem_usage = False
            logger.warning(
                "Cannot initialize model with low cpu memory usage because `accelerate` was not found in the"
                " environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install"
                " `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip"
                " install accelerate\n```\n."
            )

        if device_map is not None and not is_torch_version(">=", "1.9.0"):
            raise NotImplementedError(
                "Loading and dispatching requires torch >= 1.9.0. Please either update your PyTorch version or set"
                " `device_map=None`."
            )

        if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"):
            raise NotImplementedError(
                "Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set"
                " `low_cpu_mem_usage=False`."
            )

        if low_cpu_mem_usage is False and device_map is not None:
            raise ValueError(
                f"You cannot set `low_cpu_mem_usage` to False while using device_map={device_map} for loading and"
                " dispatching. Please make sure to set `low_cpu_mem_usage=True`."
            )

        # import it here to avoid circular import
        from diffusers import pipelines

1041
        # 6. Load each module in the pipeline
1042
        for name, (library_name, class_name) in init_dict.items():
1043
            # 6.1 - now that JAX/Flax is an official framework of the library, we might load from Flax names
1044
1045
1046
            if class_name.startswith("Flax"):
                class_name = class_name[4:]

1047
            # 6.2 Define all importable classes
1048
            is_pipeline_module = hasattr(pipelines, library_name)
1049
            importable_classes = ALL_IMPORTABLE_CLASSES
1050
1051
            loaded_sub_model = None

1052
            # 6.3 Use passed sub model or load class_name from library_name
1053
            if name in passed_class_obj:
1054
1055
1056
1057
1058
                # if the model is in a pipeline module, then we load it from the pipeline
                # check that passed_class_obj has correct parent class
                maybe_raise_or_warn(
                    library_name, library, class_name, importable_classes, passed_class_obj, name, is_pipeline_module
                )
1059
1060
1061

                loaded_sub_model = passed_class_obj[name]
            else:
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
                # load sub model
                loaded_sub_model = load_sub_model(
                    library_name=library_name,
                    class_name=class_name,
                    importable_classes=importable_classes,
                    pipelines=pipelines,
                    is_pipeline_module=is_pipeline_module,
                    pipeline_class=pipeline_class,
                    torch_dtype=torch_dtype,
                    provider=provider,
                    sess_options=sess_options,
                    device_map=device_map,
1074
1075
1076
                    max_memory=max_memory,
                    offload_folder=offload_folder,
                    offload_state_dict=offload_state_dict,
1077
1078
1079
1080
1081
1082
                    model_variants=model_variants,
                    name=name,
                    from_flax=from_flax,
                    variant=variant,
                    low_cpu_mem_usage=low_cpu_mem_usage,
                    cached_folder=cached_folder,
1083
1084
1085
1086
                )

            init_kwargs[name] = loaded_sub_model  # UNet(...), # DiffusionSchedule(...)

1087
        # 7. Potentially add passed objects if expected
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
        missing_modules = set(expected_modules) - set(init_kwargs.keys())
        passed_modules = list(passed_class_obj.keys())
        optional_modules = pipeline_class._optional_components
        if len(missing_modules) > 0 and missing_modules <= set(passed_modules + optional_modules):
            for module in missing_modules:
                init_kwargs[module] = passed_class_obj.get(module, None)
        elif len(missing_modules) > 0:
            passed_modules = set(list(init_kwargs.keys()) + list(passed_class_obj.keys())) - optional_kwargs
            raise ValueError(
                f"Pipeline {pipeline_class} expected {expected_modules}, but only {passed_modules} were passed."
            )

1100
        # 8. Instantiate the pipeline
1101
1102
1103
        model = pipeline_class(**init_kwargs)
        return model

1104
1105
1106
    @classmethod
    def download(cls, pretrained_model_name, **kwargs) -> Union[str, os.PathLike]:
        r"""
Steven Liu's avatar
Steven Liu committed
1107
        Download and cache a PyTorch diffusion pipeline from pretrained pipeline weights.
1108
1109

        Parameters:
Steven Liu's avatar
Steven Liu committed
1110
            pretrained_model_name (`str` or `os.PathLike`, *optional*):
Steven Liu's avatar
Steven Liu committed
1111
1112
                A string, the repository id (for example `CompVis/ldm-text2im-large-256`) of a pretrained pipeline
                hosted on the Hub.
1113
1114
1115
            custom_pipeline (`str`, *optional*):
                Can be either:

Steven Liu's avatar
Steven Liu committed
1116
1117
1118
                    - A string, the repository id (for example `CompVis/ldm-text2im-large-256`) of a pretrained
                      pipeline hosted on the Hub. The repository must contain a file called `pipeline.py` that defines
                      the custom pipeline.
1119
1120

                    - A string, the *file name* of a community pipeline hosted on GitHub under
Steven Liu's avatar
Steven Liu committed
1121
1122
1123
1124
                      [Community](https://github.com/huggingface/diffusers/tree/main/examples/community). Valid file
                      names must match the file name and not the pipeline script (`clip_guided_stable_diffusion`
                      instead of `clip_guided_stable_diffusion.py`). Community pipelines are always loaded from the
                      current `main` branch of GitHub.
1125

Steven Liu's avatar
Steven Liu committed
1126
1127
                    - A path to a *directory* (`./my_pipeline_directory/`) containing a custom pipeline. The directory
                      must contain a file called `pipeline.py` that defines the custom pipeline.
1128

Steven Liu's avatar
Steven Liu committed
1129
                <Tip warning={true}>
1130

Steven Liu's avatar
Steven Liu committed
1131
                🧪 This is an experimental feature and may change in the future.
1132

Steven Liu's avatar
Steven Liu committed
1133
                </Tip>
1134

Steven Liu's avatar
Steven Liu committed
1135
1136
                For more information on how to load and create custom pipelines, take a look at [How to contribute a
                community pipeline](https://huggingface.co/docs/diffusers/main/en/using-diffusers/contribute_pipeline).
1137
1138
1139
1140
1141

            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            resume_download (`bool`, *optional*, defaults to `False`):
Steven Liu's avatar
Steven Liu committed
1142
1143
                Whether or not to resume downloading the model weights and configuration files. If set to False, any
                incompletely downloaded files are deleted.
1144
            proxies (`Dict[str, str]`, *optional*):
Steven Liu's avatar
Steven Liu committed
1145
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
1146
1147
1148
1149
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            output_loading_info(`bool`, *optional*, defaults to `False`):
                Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
            local_files_only(`bool`, *optional*, defaults to `False`):
Steven Liu's avatar
Steven Liu committed
1150
1151
                Whether to only load local model weights and configuration files or not. If set to True, the model
                won’t be downloaded from the Hub.
1152
            use_auth_token (`str` or *bool*, *optional*):
Steven Liu's avatar
Steven Liu committed
1153
1154
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
1155
            revision (`str`, *optional*, defaults to `"main"`):
Steven Liu's avatar
Steven Liu committed
1156
1157
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
1158
1159
1160
1161
1162
1163
            custom_revision (`str`, *optional*, defaults to `"main"` when loading from the Hub and to local version of
            `diffusers` when loading from GitHub):
                The specific model version to use. It can be a branch name, a tag name, or a commit id similar to
                `revision` when loading a custom pipeline from the Hub. It can be a diffusers version when loading a
                custom pipeline from GitHub.
            mirror (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
1164
1165
1166
                Mirror source to resolve accessibility issues if you're downloading a model in China. We do not
                guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
                information.
1167
            variant (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
1168
1169
1170
1171
1172
1173
                Load weights from a specified variant filename such as `"fp16"` or `"ema"`. This is ignored when
                loading `from_flax`.

        Returns:
            `os.PathLike`:
                A path to the downloaded pipeline.
1174
1175
1176

        <Tip>

Steven Liu's avatar
Steven Liu committed
1177
1178
        To use private or [gated models](https://huggingface.co/docs/hub/models-gated#gated-models), log-in with
        `huggingface-cli login`.
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191

        </Tip>

        """
        cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
        resume_download = kwargs.pop("resume_download", False)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
        use_auth_token = kwargs.pop("use_auth_token", None)
        revision = kwargs.pop("revision", None)
        from_flax = kwargs.pop("from_flax", False)
        custom_pipeline = kwargs.pop("custom_pipeline", None)
1192
        custom_revision = kwargs.pop("custom_revision", None)
1193
        variant = kwargs.pop("variant", None)
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
        use_safetensors = kwargs.pop("use_safetensors", None)

        if use_safetensors and not is_safetensors_available():
            raise ValueError(
                "`use_safetensors`=True but safetensors is not installed. Please install safetensors with `pip install safetenstors"
            )

        allow_pickle = False
        if use_safetensors is None:
            use_safetensors = is_safetensors_available()
            allow_pickle = True
1205
1206
1207
1208
1209

        pipeline_is_cached = False
        allow_patterns = None
        ignore_patterns = None

1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
        if not local_files_only:
            try:
                info = model_info(
                    pretrained_model_name,
                    use_auth_token=use_auth_token,
                    revision=revision,
                )
            except HTTPError as e:
                logger.warn(f"Couldn't connect to the Hub: {e}.\nWill try to load from local cache.")
                local_files_only = True

1221
1222
1223
1224
1225
        if not local_files_only:
            config_file = hf_hub_download(
                pretrained_model_name,
                cls.config_name,
                cache_dir=cache_dir,
1226
                revision=revision,
1227
1228
1229
1230
1231
1232
1233
                proxies=proxies,
                force_download=force_download,
                resume_download=resume_download,
                use_auth_token=use_auth_token,
            )

            config_dict = cls._dict_from_json_file(config_file)
Patrick von Platen's avatar
Patrick von Platen committed
1234
1235
1236

            ignore_filenames = config_dict.pop("_ignore_files", [])

1237
1238
1239
            # retrieve all folder_names that contain relevant files
            folder_names = [k for k, v in config_dict.items() if isinstance(v, list)]

1240
            filenames = {sibling.rfilename for sibling in info.siblings}
1241
1242
            model_filenames, variant_filenames = variant_compatible_siblings(filenames, variant=variant)

Patrick von Platen's avatar
Patrick von Platen committed
1243
1244
1245
1246
            # remove ignored filenames
            model_filenames = set(model_filenames) - set(ignore_filenames)
            variant_filenames = set(variant_filenames) - set(ignore_filenames)

1247
1248
1249
            # if the whole pipeline is cached we don't have to ping the Hub
            if revision in DEPRECATED_REVISION_ARGS and version.parse(
                version.parse(__version__).base_version
1250
            ) >= version.parse("0.20.0"):
1251
1252
1253
1254
                warn_deprecated_model_variant(
                    pretrained_model_name, use_auth_token, variant, revision, model_filenames
                )

1255
            model_folder_names = {os.path.split(f)[0] for f in model_filenames}
1256
1257
1258
1259
1260
1261

            # all filenames compatible with variant will be added
            allow_patterns = list(model_filenames)

            # allow all patterns from non-model folders
            # this enables downloading schedulers, tokenizers, ...
1262
            allow_patterns += [f"{k}/*" for k in folder_names if k not in model_folder_names]
1263
            # also allow downloading config.json files with the model
1264
            allow_patterns += [os.path.join(k, "config.json") for k in model_folder_names]
1265
1266
1267
1268
1269
1270
1271
1272

            allow_patterns += [
                SCHEDULER_CONFIG_NAME,
                CONFIG_NAME,
                cls.config_name,
                CUSTOM_PIPELINE_FILE_NAME,
            ]

1273
1274
1275
1276
1277
1278
1279
            # retrieve passed components that should not be downloaded
            pipeline_class = _get_pipeline_class(
                cls, config_dict, custom_pipeline=custom_pipeline, cache_dir=cache_dir, revision=custom_revision
            )
            expected_components, _ = cls._get_signature_keys(pipeline_class)
            passed_components = [k for k in expected_components if k in kwargs]

1280
1281
1282
            if (
                use_safetensors
                and not allow_pickle
1283
1284
1285
                and not is_safetensors_compatible(
                    model_filenames, variant=variant, passed_components=passed_components
                )
1286
1287
1288
1289
            ):
                raise EnvironmentError(
                    f"Could not found the necessary `safetensors` weights in {model_filenames} (variant={variant})"
                )
1290
1291
            if from_flax:
                ignore_patterns = ["*.bin", "*.safetensors", "*.onnx", "*.pb"]
1292
1293
1294
            elif use_safetensors and is_safetensors_compatible(
                model_filenames, variant=variant, passed_components=passed_components
            ):
1295
1296
                ignore_patterns = ["*.bin", "*.msgpack"]

1297
1298
                safetensors_variant_filenames = {f for f in variant_filenames if f.endswith(".safetensors")}
                safetensors_model_filenames = {f for f in model_filenames if f.endswith(".safetensors")}
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
                if (
                    len(safetensors_variant_filenames) > 0
                    and safetensors_model_filenames != safetensors_variant_filenames
                ):
                    logger.warn(
                        f"\nA mixture of {variant} and non-{variant} filenames will be loaded.\nLoaded {variant} filenames:\n[{', '.join(safetensors_variant_filenames)}]\nLoaded non-{variant} filenames:\n[{', '.join(safetensors_model_filenames - safetensors_variant_filenames)}\nIf this behavior is not expected, please check your folder structure."
                    )
            else:
                ignore_patterns = ["*.safetensors", "*.msgpack"]

1309
1310
                bin_variant_filenames = {f for f in variant_filenames if f.endswith(".bin")}
                bin_model_filenames = {f for f in model_filenames if f.endswith(".bin")}
1311
1312
1313
1314
1315
                if len(bin_variant_filenames) > 0 and bin_model_filenames != bin_variant_filenames:
                    logger.warn(
                        f"\nA mixture of {variant} and non-{variant} filenames will be loaded.\nLoaded {variant} filenames:\n[{', '.join(bin_variant_filenames)}]\nLoaded non-{variant} filenames:\n[{', '.join(bin_model_filenames - bin_variant_filenames)}\nIf this behavior is not expected, please check your folder structure."
                    )

1316
1317
1318
1319
1320
1321
1322
            # Don't download any objects that are passed
            allow_patterns = [
                p for p in allow_patterns if not (len(p.split("/")) == 2 and p.split("/")[0] in passed_components)
            ]
            # Don't download index files of forbidden patterns either
            ignore_patterns = ignore_patterns + [f"{i}.index.*json" for i in ignore_patterns]

1323
1324
1325
1326
1327
            re_ignore_pattern = [re.compile(fnmatch.translate(p)) for p in ignore_patterns]
            re_allow_pattern = [re.compile(fnmatch.translate(p)) for p in allow_patterns]

            expected_files = [f for f in filenames if not any(p.match(f) for p in re_ignore_pattern)]
            expected_files = [f for f in expected_files if any(p.match(f) for p in re_allow_pattern)]
1328

1329
1330
            snapshot_folder = Path(config_file).parent
            pipeline_is_cached = all((snapshot_folder / f).is_file() for f in expected_files)
1331

1332
1333
1334
1335
            if pipeline_is_cached:
                # if the pipeline is cached, we can directly return it
                # else call snapshot_download
                return snapshot_folder
1336

1337
1338
1339
        user_agent = {"pipeline_class": cls.__name__}
        if custom_pipeline is not None and not custom_pipeline.endswith(".py"):
            user_agent["custom_pipeline"] = custom_pipeline
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356

        # download all allow_patterns - ignore_patterns
        cached_folder = snapshot_download(
            pretrained_model_name,
            cache_dir=cache_dir,
            resume_download=resume_download,
            proxies=proxies,
            local_files_only=local_files_only,
            use_auth_token=use_auth_token,
            revision=revision,
            allow_patterns=allow_patterns,
            ignore_patterns=ignore_patterns,
            user_agent=user_agent,
        )

        return cached_folder

1357
1358
1359
1360
1361
    @staticmethod
    def _get_signature_keys(obj):
        parameters = inspect.signature(obj.__init__).parameters
        required_parameters = {k: v for k, v in parameters.items() if v.default == inspect._empty}
        optional_parameters = set({k for k, v in parameters.items() if v.default != inspect._empty})
1362
        expected_modules = set(required_parameters.keys()) - {"self"}
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
        return expected_modules, optional_parameters

    @property
    def components(self) -> Dict[str, Any]:
        r"""

        The `self.components` property can be useful to run different pipelines with the same weights and
        configurations to not have to re-allocate memory.

        Examples:

        ```py
        >>> from diffusers import (
        ...     StableDiffusionPipeline,
        ...     StableDiffusionImg2ImgPipeline,
        ...     StableDiffusionInpaintPipeline,
        ... )

        >>> text2img = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
        >>> img2img = StableDiffusionImg2ImgPipeline(**text2img.components)
        >>> inpaint = StableDiffusionInpaintPipeline(**text2img.components)
        ```

        Returns:
            A dictionary containing all the modules needed to initialize the pipeline.
        """
        expected_modules, optional_parameters = self._get_signature_keys(self)
        components = {
            k: getattr(self, k) for k in self.config.keys() if not k.startswith("_") and k not in optional_parameters
        }

        if set(components.keys()) != expected_modules:
            raise ValueError(
                f"{self} has been incorrectly initialized or {self.__class__} is incorrectly implemented. Expected"
1397
                f" {expected_modules} to be defined, but {components.keys()} are defined."
1398
1399
1400
1401
1402
1403
1404
1405
1406
            )

        return components

    @staticmethod
    def numpy_to_pil(images):
        """
        Convert a numpy image or a batch of images to a PIL image.
        """
Patrick von Platen's avatar
Patrick von Platen committed
1407
        return numpy_to_pil(images)
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426

    def progress_bar(self, iterable=None, total=None):
        if not hasattr(self, "_progress_bar_config"):
            self._progress_bar_config = {}
        elif not isinstance(self._progress_bar_config, dict):
            raise ValueError(
                f"`self._progress_bar_config` should be of type `dict`, but is {type(self._progress_bar_config)}."
            )

        if iterable is not None:
            return tqdm(iterable, **self._progress_bar_config)
        elif total is not None:
            return tqdm(total=total, **self._progress_bar_config)
        else:
            raise ValueError("Either `total` or `iterable` has to be defined.")

    def set_progress_bar_config(self, **kwargs):
        self._progress_bar_config = kwargs

1427
    def enable_xformers_memory_efficient_attention(self, attention_op: Optional[Callable] = None):
1428
1429
1430
1431
1432
1433
1434
1435
        r"""
        Enable memory efficient attention as implemented in xformers.

        When this option is enabled, you should observe lower GPU memory usage and a potential speed up at inference
        time. Speed up at training time is not guaranteed.

        Warning: When Memory Efficient Attention and Sliced attention are both enabled, the Memory Efficient Attention
        is used.
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455

        Parameters:
            attention_op (`Callable`, *optional*):
                Override the default `None` operator for use as `op` argument to the
                [`memory_efficient_attention()`](https://facebookresearch.github.io/xformers/components/ops.html#xformers.ops.memory_efficient_attention)
                function of xFormers.

        Examples:

        ```py
        >>> import torch
        >>> from diffusers import DiffusionPipeline
        >>> from xformers.ops import MemoryEfficientAttentionFlashAttentionOp

        >>> pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1", torch_dtype=torch.float16)
        >>> pipe = pipe.to("cuda")
        >>> pipe.enable_xformers_memory_efficient_attention(attention_op=MemoryEfficientAttentionFlashAttentionOp)
        >>> # Workaround for not accepting attention shape using VAE for Flash Attention
        >>> pipe.vae.enable_xformers_memory_efficient_attention(attention_op=None)
        ```
1456
        """
1457
        self.set_use_memory_efficient_attention_xformers(True, attention_op)
1458
1459
1460
1461
1462
1463
1464

    def disable_xformers_memory_efficient_attention(self):
        r"""
        Disable memory efficient attention as implemented in xformers.
        """
        self.set_use_memory_efficient_attention_xformers(False)

1465
1466
1467
    def set_use_memory_efficient_attention_xformers(
        self, valid: bool, attention_op: Optional[Callable] = None
    ) -> None:
1468
1469
1470
1471
1472
        # Recursively walk through all the children.
        # Any children which exposes the set_use_memory_efficient_attention_xformers method
        # gets the message
        def fn_recursive_set_mem_eff(module: torch.nn.Module):
            if hasattr(module, "set_use_memory_efficient_attention_xformers"):
1473
                module.set_use_memory_efficient_attention_xformers(valid, attention_op)
1474
1475
1476
1477

            for child in module.children():
                fn_recursive_set_mem_eff(child)

1478
1479
1480
        module_names, _ = self._get_signature_keys(self)
        modules = [getattr(self, n, None) for n in module_names]
        modules = [m for m in modules if isinstance(m, torch.nn.Module)]
1481

1482
1483
        for module in modules:
            fn_recursive_set_mem_eff(module)
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494

    def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"):
        r"""
        Enable sliced attention computation.

        When this option is enabled, the attention module will split the input tensor in slices, to compute attention
        in several steps. This is useful to save some memory in exchange for a small speed decrease.

        Args:
            slice_size (`str` or `int`, *optional*, defaults to `"auto"`):
                When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
Alexander Pivovarov's avatar
Alexander Pivovarov committed
1495
                `"max"`, maximum amount of memory will be saved by running only one slice at a time. If a number is
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
                provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
                must be a multiple of `slice_size`.
        """
        self.set_attention_slice(slice_size)

    def disable_attention_slicing(self):
        r"""
        Disable sliced attention computation. If `enable_attention_slicing` was previously invoked, this method will go
        back to computing attention in one step.
        """
        # set slice_size = `None` to disable `attention slicing`
        self.enable_attention_slicing(None)

    def set_attention_slice(self, slice_size: Optional[int]):
1510
1511
1512
        module_names, _ = self._get_signature_keys(self)
        modules = [getattr(self, n, None) for n in module_names]
        modules = [m for m in modules if isinstance(m, torch.nn.Module) and hasattr(m, "set_attention_slice")]
1513

1514
1515
        for module in modules:
            module.set_attention_slice(slice_size)